1 Mark Questions

- 1. Write the value of $\tan^{-1}(\sqrt{3}) \cot^{-1}(-\sqrt{3})$.
- 2. Find the principal value of $\tan^{-1}\sqrt{3} \sec^{-1}(-2)$.
- **3.** If $\sin\left(\sin^{-1}\frac{1}{5} + \cos^{-1}x\right) = 1$, then find the value of x
- 4. If $\tan^{-1} x + \tan^{-1} y = \frac{\pi}{4}$; xy < 1, then write the value of x + y + xy.
- **5.** Write the value of $\cos^{-1}\left(-\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$.
- Write the principal value of cos⁻¹[cos(680)°].
- 7. Write the principal value of $\tan^{-1} \left[\sin \left(\frac{-\pi}{2} \right) \right].$
- 8. Find the value of the following. $\cot\left(\frac{\pi}{2} - 2\cot^{-1}\sqrt{3}\right)$
- 9. Write the principal value of the following. $\left[\cos^{-1}\frac{\sqrt{3}}{2} + \cos^{-1}\left(-\frac{1}{2}\right)\right]$
- **10.** Write the principal value of $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right)$.
- **11.** Write the value of $\tan\left(2\tan^{-1}\frac{1}{5}\right)$.
- **12.** Write the value of $\tan^{-1}\left[2\sin\left(2\cos^{-1}\frac{\sqrt{3}}{2}\right)\right].$

13. Write the value of $\cos^{-1}\left(\frac{1}{2}\right) - 2\sin^{-1}\left(-\frac{1}{2}\right)$.

DCAM classes

14. Using the principal values, write the value of $\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$.

15. Write the value of $\sin\left[\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right]$.

- **16.** Write the value of $\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$.
- **17.** Write the value of $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$.
- **18.** What is the principal value of $\cos^{-1}\left(\cos\frac{2\pi}{3}\right) + \sin^{-1}\left(\sin\frac{2\pi}{3}\right)$?
- **19.** What is the principal value of $\tan^{-1}(-1)$?
- **20.** Using the principal values, write the value of $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$.
- **21.** Write the principal value of $\sin^{-1}\left(-\frac{1}{2}\right)$.
- **22.** What is the principal value of $\sec^{-1}(-2)$?
- **23.** What is the domain of the function $\sin^{-1} x$?
- **24.** Using the principal values, find the value of $\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$.
- **25.** If $\tan^{-1}(\sqrt{3}) + \cot^{-1} x = \frac{\pi}{2}$, then find the value of x.

2 Marks Questions

26. Prove that $3\sin^{-1} x = \sin^{-1}(3x - 4x^3), x \in \left[-\frac{1}{2}, \frac{1}{2}\right].$

27. Prove that

$$3\cos^{-1} x = \cos^{-1} (4x^3 - 3x), x \in \left[\frac{1}{2}, 1\right].$$

4 Marks Questions

28. Solve for x, $\tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}\frac{8}{31}$

29. Find the value of $\sin\left(\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\right)$.

- **30.** Solve for x, $\tan^{-1} 3x + \tan^{-1} 2x = \frac{\pi}{4}$.
- **31.** Solve $\tan^{-1} 4x + \tan^{-1} 6x = \frac{\pi}{4}$.
- **32.** If $\tan^{-1}\frac{x-3}{x-4} + \tan^{-1}\frac{x+3}{x+4} = \frac{\pi}{4}$, then find the value of x.
- **33.** Prove that $\tan\left\{\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right\} + \tan\left\{\frac{\pi}{4} \frac{1}{2}\cos^{-1}\left(\frac{a}{b}\right)\right\} = \frac{2b}{a}.$
- **34.** Solve the following equation for x.

$$\cos(\tan^{-1} x) = \sin\left(\cot^{-1} \frac{3}{4}\right)$$

35. Prove that

$$\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$$

36. Solve for x, $2 \tan^{-1} (\cos x) = \tan^{-1} (2 \operatorname{cosec} x)$.

- **37.** Solve for x, $\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1)$ $= \tan^{-1} 3x$
- 38. Prove that

$$\tan^{-1}\left(\frac{6x-8x^3}{1-12x^2}\right) - \tan^{-1}\left(\frac{4x}{1-4x^2}\right)$$
$$= \tan^{-1}2x; |2x| < \frac{1}{\sqrt{3}}.$$

39. Prove that

$$\cot^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right) = \frac{x}{2},$$
$$0 < x < \frac{\pi}{2}, \text{ or } x \in \left(0, \frac{\pi}{4}\right).$$

40. Solve for *x*,

$$\tan^{-1}\left(\frac{x-2}{x-1}\right) + \tan^{-1}\left(\frac{x+2}{x+1}\right) = \frac{\pi}{4}$$

41. If $\sin [\cot^{-1} (x + 1)] = \cos (\tan^{-1} x)$, then find x.

42. If
$$(\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8}$$
, then find x.

$$\cot^{-1}\left(\frac{xy+1}{yz+1}\right) + \cot^{-1}\left(\frac{yz+1}{yz+1}\right)$$

$$\cot^{-1}\left(\frac{xy}{x-y}\right) + \cot^{-1}\left(\frac{yz+1}{y-z}\right) + \cot^{-1}\left(\frac{zx+1}{z-x}\right) = 0;$$

$$(0 \le xy, yz, zx \le 1)$$

44. If
$$\tan^{-1}\left(\frac{1}{1+1\cdot 2}\right) + \tan^{-1}\left(\frac{1}{1+2\cdot 3}\right)$$

+...+ $\tan^{-1}\left(\frac{1}{1+n(n+1)}\right) = \tan^{-1}\theta$,

then find the value of θ .

45. Prove that

$$2\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \sin^{-1}\left(\frac{31}{25\sqrt{2}}\right)$$

46. Solve the following equation for x.

$$\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x, x > 0$$

47. Solve for x,
$$\tan^{-1} x + 2 \cot^{-1} x = \frac{2\pi}{3}$$

48. Prove that $2\tan^{-1}\left(\frac{1}{5}\right) + \sec^{-1}\left(\frac{5\sqrt{2}}{7}\right) + 2\tan^{-1}\left(\frac{1}{8}\right) = \frac{\pi}{4}.$

49. Prove that
$$\tan^{-1} \left[\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right]$$

= $\frac{\pi}{4} - \frac{1}{2} \cos^{-1} x, -\frac{1}{\sqrt{2}} \le x \le 1$

50. If
$$\tan^{-1}\left(\frac{x-2}{x-4}\right) + \tan^{-1}\left(\frac{x+2}{x+4}\right) = \frac{\pi}{4}$$
, then find the value of r

51. Prove that

$$\cos^{-1}(x) + \cos^{-1}\left\{\frac{x}{2} + \frac{\sqrt{3-3x^2}}{2}\right\} = \frac{\pi}{3}.$$

- **52.** Prove that $\cot^{-1} 7 + \cot^{-1} 8 + \cot^{-1} 18 = \cot^{-1} 3$.
- **53.** Prove that $\sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \cos^{-1}\left(\frac{36}{85}\right).$
- **54.** Show that $\tan\left(\frac{1}{2}\sin^{-1}\frac{3}{4}\right) = \frac{4-\sqrt{7}}{3}$.
- **55.** Solve for x, $\sin^{-1}(1-x) 2\sin^{-1}x = \frac{\pi}{2}$.

56. Prove that
$$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{77}{36}$$

57. Find the value of the following.

$$\tan \frac{1}{2} \left[\sin^{-1} \left(\frac{2x}{1+x^2} \right) + \cos^{-1} \left(\frac{1-y^2}{1+y^2} \right) \right],$$

if $|x| < 1, y > 0$ and $xy < 1$
58. Prove that

$$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{8}\right) = \frac{\pi}{4}.$$

59. Prove that

$$\tan^{-1}\left(\frac{\cos x}{1+\sin x}\right) = \frac{\pi}{4} - \frac{x}{2}, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

- **60.** Prove that $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right).$
- 61. Prove the following. $\cos\left(\sin^{-1}\frac{3}{5} + \cot^{-1}\frac{3}{2}\right) = \frac{6}{5\sqrt{13}}$
- **62.** Prove that $\sin^{-1}\left(\frac{63}{65}\right) = \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right)$.
- **63.** Solve for x, $2\tan^{-1}(\sin x) = \tan^{-1}(2 \sec x), x \neq \frac{\pi}{2}.$
- **64.** Find the value of $\tan^{-1}\left(\frac{x}{y}\right) \tan^{-1}\left(\frac{x-y}{x+y}\right)$.
- **65.** Prove that $2 \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \tan^{-1}\left(\frac{31}{17}\right).$
- **66.** Prove that $\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right) = \frac{9}{4}\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right).$
- **67.** Prove that $\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \frac{1}{2}\tan^{-1}\frac{4}{3}$.

68. Solve for x, $\cos(2\sin^{-1} x) = \frac{1}{9}$; x > 0.

69. Prove that $2 \tan^{-1} \frac{3}{4} - \tan^{-1} \frac{17}{31} = \frac{\pi}{4}$.

- 70. Solve for x, $\tan^{-1}\left(\frac{2x}{1-x^2}\right) + \cot^{-1}\left(\frac{1-x^2}{2x}\right) = \frac{\pi}{3},$ -1 < x < 1.
- 71. Prove that

$$\tan^{-1}\sqrt{x} = \frac{1}{2}\cos^{-1}\left(\frac{1-x}{1+x}\right), x \in (0,1).$$

72. Prove that

$$\cos^{-1}\left(\frac{12}{13}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{56}{65}\right)$$

- **73.** Prove that $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi$.
- 74. Prove that

$$\tan^{-1} x + \tan^{-1} \left(\frac{2x}{1-x^2} \right) = \tan^{-1} \left(\frac{3x-x^3}{1-3x^2} \right).$$

75. Prove that

$$\cos \left[\tan^{-1} \left\{ \sin \left(\cot^{-1} x \right) \right\} \right] = \sqrt{\frac{1+x^2}{2+x^2}}.$$

76. Solve for x,
$$\cos^{-1} x + \sin^{-1} \left(\frac{x}{2}\right) = \frac{\pi}{6}$$
.

- 77. Prove that $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}.$
- 78. Solve for x,

$$\tan^{-1}\frac{x}{2} + \tan^{-1}\frac{x}{3} = \frac{\pi}{4}, \sqrt{6} > x > 0.$$

79. Solve for x, $\tan^{-1}(x+2) + \tan^{-1}(x-2)$ = $\tan^{-1}\left(\frac{8}{79}\right), x > 0$

(For Complete Chapter)

1 Mark Questions

1. If $\cos^{-1} x > \sin^{-1} x$, then

(a)
$$\frac{1}{\sqrt{2}} < x \le 1$$

(b) $0 \le x < \frac{1}{\sqrt{2}}$
(c) $-1 \le x < \frac{1}{\sqrt{2}}$
(d) $x > 0$

2. If $\tan^{-1}\left(\frac{a}{x}\right) + \tan^{-1}\left(\frac{b}{x}\right) = \frac{\pi}{2}$, then x_{is} equal to (b) $\sqrt{2} ab$ (a) \sqrt{ab} (c) 2 ab (d) ab **3.** The value of $\sin (2 \sin^{-1} 0.8)$ is (a) 0.48 (b) sin 1.2° (c) sin 1.6° (d) 0.96 **4.** The principal value of $\sin^{-1}\left[\sin\left(\frac{2\pi}{3}\right)\right]_{i_8}$ (a) $\frac{-2\pi}{3}$ (b) $\frac{2\pi}{2\pi}$ (c) $\frac{4\pi}{2}$ (d) None of these **5.** The value of sin $(2 \tan^{-1} x), |x| \le 1$ is (a) 1/x(b) x(c) $1/x^2$ (d) $2x/(1 + x^2)$ 6. If $\tan^{-1} x = \frac{\pi}{4} - \tan^{-1} \left(\frac{1}{3}\right)$, then x is equal to (a) $\frac{1}{3}$ (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) $\frac{1}{2}$ 7. The value of $\sin\left[\tan^{-1}\left(\frac{1-x^2}{2x}\right) + \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right]$ is (a) 1 (b) 0 (d) $\frac{\pi}{2}$ (c) -18. If $\sin^{-1}\frac{1}{3} + \sin^{-1}\frac{2}{3} = \sin^{-1}x$, then the value of x is (b) $\frac{(\sqrt{5}-4\sqrt{2})}{9}$ (a) 0 (c) $\frac{(\sqrt{5}+4\sqrt{2})}{2}$ (d) $\frac{\pi}{2}$ 9. If x takes negative permissible value, then $\sin^{-1} x$ is equal to (a) $-\cos^{-1}\sqrt{1-x^2}$ (b) $\cos^{-1}\sqrt{x^2-1}$ (c) $\pi - \cos^{-1} \sqrt{1 - x^2}$ (d) $\cos^{-1} \sqrt{1 - x^2}$

10. If $-\frac{\pi}{2} < \sin^{-1} x < \frac{\pi}{2}$, then $\tan(\sin^{-1} x)$ is	
equal to	
(a) $\frac{x}{1-x^2}$	(b) $\frac{x}{1+x^2}$
(c) $\frac{x}{\sqrt{1-x^2}}$	$(d) \frac{1}{\sqrt{1-x^2}}$
11. The value of $\cot\left(\csc^{-1}\frac{5}{3} + \tan^{-1}\frac{2}{3}\right)$ is	
(a) $\frac{5}{17}$ (b) $\frac{6}{17}$	(c) $\frac{3}{17}$ (d) $\frac{4}{17}$
12. If $\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$, then	
$\cos^{-1} x + \cos^{-1} y$ is equal to	
(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$	(c) π (d) $\frac{3\pi}{4}$
13. If $\sin^{-1} x - \cos^{-1} x = \pi / 6$, then x is equal	
to	6
(a) $\frac{1}{2}$	(b) $\frac{\sqrt{3}}{2}$
(c) $\frac{-1}{2}$	(d) None of these
14. The value of $\tan\left\{\cos^{-1}\left(-\frac{2}{7}\right)-\frac{\pi}{2}\right\}$ is	
(a) $\frac{2}{3\sqrt{5}}$ (b) $\frac{2}{3}$	(c) $\frac{1}{\sqrt{5}}$ (d) $\frac{4}{\sqrt{5}}$

.

