〕 Solutions

1. We have, $\tan ^{-1}(\sqrt{3})-\cot ^{-1}(-\sqrt{3})$

$$
\begin{aligned}
& =\tan ^{-1}(\sqrt{3})-\left\{\pi-\cot ^{-1}(\sqrt{3})\right\} \\
& \left.\quad \because \because \cot ^{-1}(-x)=\pi-\cot ^{-1} x ; x \in R\right] \\
& =\tan ^{-1} \sqrt{3}-\pi+\cot ^{-1} \sqrt{3} \\
& =\left(\tan ^{-1} \sqrt{3}+\cot ^{-1} \sqrt{3}\right)-\pi \\
& =\frac{\pi}{2}-\pi=-\frac{\pi}{2}\left[\because \tan ^{-1} x+\cot ^{-1} \quad x=\frac{\pi}{2} ; x \in R\right](1)
\end{aligned}
$$

which is the required principal value.
2. We have, $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$

$$
\left.\begin{array}{l}
\quad=\tan ^{-1}\left(\tan \frac{\pi}{3}\right)-\sec ^{-1}\left(\sec \frac{2 \pi}{3}\right) \\
\quad\left[\because \tan \frac{\pi}{3}=\sqrt{3} \text { and } \sec \frac{2 \pi}{3}=-2\right] \\
\quad=\frac{\pi}{3}-\frac{2 \pi}{3}=-\frac{\pi}{3} \\
{\left[\because \tan ^{-1}(\tan \theta)=\theta ; \forall \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right. \text { and }} \\
\sec ^{-1}(\sec \theta)=\theta ; \forall \theta \in[0, \pi]-\left\{\frac{\pi}{2}\right\}
\end{array}\right] \text { (1) }
$$

which is the required princ̣ipal value.
3. Given, $\sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1$

$$
\begin{array}{ll}
\Rightarrow & \sin ^{-1} \frac{1}{5}+\cos ^{-1} x=\sin ^{-1}(1) \\
\Rightarrow & \quad \sin ^{-1} \frac{1}{5}+\cos ^{-1} x=\sin ^{-1}\left(\sin \frac{\pi}{2}\right)\left[\because \sin \frac{\pi}{2}=1\right] \\
\Rightarrow & \sin ^{-1} \frac{1}{5}+\cos ^{-1} x=\frac{\pi}{2} \\
\Rightarrow & \sin ^{-1} \frac{1}{5}=\frac{\pi}{2}-\cos ^{-1} x \tag{1/2}\\
\Rightarrow & \quad \sin ^{-1} \frac{1}{5}=\sin ^{-1} x \\
\Rightarrow & \quad\left[\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2} ; x \in[-1,1]\right]
\end{array}
$$

$$
\therefore \quad x=\frac{1}{5}
$$

4. Given, $\tan ^{-1} x+\tan ^{-1} y=\frac{\pi}{4}, x y<1$

We know that,

$$
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right), x y<1
$$

$$
\begin{array}{ll}
\therefore & \tan ^{-1}\left(\frac{x+y}{1-x y}\right)=\frac{\pi}{4} \Rightarrow \frac{x+y}{1-x y}=\tan \frac{\pi}{4} \\
\Rightarrow & \frac{x+y}{1-x y}=1 \\
\Rightarrow & x+y=1-x y \\
\therefore & x+y+x y=1
\end{array}
$$

5. We have, $\cos ^{-1}\left(\frac{-1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)$

$$
\begin{aligned}
& =\left[\pi-\cos ^{-1}\left(\frac{1}{2}\right)\right]+2 \sin ^{-1}\left(\frac{1}{2}\right) \\
& {\left[\because \cos ^{-1}(-x)=\pi-\cos ^{-1} x ; \forall x \in[-1,1]\right]} \\
& =\left[\pi-\cos ^{-1}\left(\cos \frac{\pi}{3}\right)\right]+2 \sin ^{-1}\left(\sin \frac{\pi}{6}\right) \quad(1 / 2) \\
& {\left[\because \cos \frac{\pi}{3}=\frac{1}{2} \text { and } \sin \frac{\pi}{6}=\frac{1}{2}\right]} \\
& =\left[\pi-\frac{\pi}{3}\right]+2 \times \frac{\pi}{6} \\
& {\left[\because \cos ^{-1}(\cos \theta)=\theta ; \forall \theta \in[0, \pi]\right.} \\
& =\frac{2 \pi}{3}+\frac{\pi}{3}=\frac{2 \pi+\pi}{3}=\pi
\end{aligned}
$$

6. First, we check the given angle lies in the principal value branch. If it is so, then use the property $\cos ^{-1}(\cos \theta)=\theta, \forall \theta \in\left[0,180^{\circ}\right]$ Otherwise reduce the angle such that, it lies in principal value branch.

We know that, principal value branch of $\cos ^{-1} x$ is [$0,180^{\circ}$].
Since, $680^{\circ} \Leftrightarrow\left[0,180^{\circ}\right]$, so write 680° as

$$
2 \times 360^{\circ}-40^{\circ}
$$

Now, $\cos ^{-1}\left[\cos (680)^{\circ}\right]=\cos ^{-1}\left[\cos \left(2 \times 360^{\circ}-40^{\circ}\right)\right]$

$$
=\cos ^{-1}\left(\cos 40^{\circ}\right) \quad[\because \cos (4 \pi-\theta)=\cos \theta](1 / 2)
$$

Since, $40^{\circ} \in\left[0,180^{\circ}\right]$
$\therefore \cos ^{-1}\left[\cos \left(680^{\circ}\right)\right]=40^{\circ}$

$$
\left[\because \cos ^{-1}(\cos \theta)=\theta ; \forall \theta \in\left[0,180^{\circ}\right]\right]
$$

which is the required principal value.
(1/2)
7. We have, $\tan ^{-1}\left[\sin \left(-\frac{\pi}{2}\right)\right]$

$$
\begin{aligned}
& =\tan ^{-1}\left[-\sin \left(\frac{\pi}{2}\right)\right]\left[\begin{array}{c}
\because \sin ^{-1}(-x)=-\sin ^{-1} x, \\
x \in(-1,1)
\end{array}\right] \\
& =\tan ^{-1}(-1) \\
& =\tan ^{-1}\left(-\tan \frac{\pi}{4}\right) \quad\left[\because \tan \frac{\pi}{4}=1\right]
\end{aligned}
$$

$$
\begin{aligned}
=\tan ^{-1} & {\left[\tan \left(\frac{-\pi}{4}\right)\right]=\frac{-\pi}{4} } \\
& {\left[\because \tan ^{-1}(\tan \theta)=\theta ; \forall \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right](1) }
\end{aligned}
$$ which is the required principal value.

8. First, use $\cot \left(\frac{\pi}{2}-\theta\right)=\tan \theta$, then put $\cot ^{-1} \sqrt{3}=\frac{\pi}{6}$ and simplify it.

We have, $\cot \left(\frac{\pi}{2}-2 \cot ^{-1} \sqrt{3}\right)$

$$
\begin{aligned}
& =\tan \left(2 \cot ^{-1} \sqrt{3}\right) \quad\left[\because \cot \left(\frac{\pi}{2}-\theta\right)=\tan \theta\right] \\
& =\tan \left(2 \times \frac{\pi}{6}\right) \quad\left[\because \cot ^{-1} \sqrt{3}=\cot ^{-1}\left(\cot \frac{\pi}{6}\right)=\frac{\pi}{6}\right]
\end{aligned}
$$

$$
\begin{equation*}
=\tan \left(\frac{\pi}{3}\right)=\sqrt{3} \tag{1/2}
\end{equation*}
$$

9. We have, $\cos ^{-1} \frac{\sqrt{3}}{2}+\cos ^{-1}\left(-\frac{1}{2}\right)$

$$
\begin{aligned}
& =\cos ^{-1} \frac{\sqrt{3}}{2}+\left[\pi-\cos ^{-1}\left(\frac{1}{2}\right)\right] \\
& =\quad\left[\because \cos ^{-1}(-x)=\pi-\cos ^{-1} x, \forall x \in[-1,1]\right] \\
& =\frac{\pi}{6}+\pi-\frac{\pi}{3}=\frac{\pi+6 \pi-2 \pi}{6}=\frac{5 \pi}{6}
\end{aligned}
$$

$$
\left[\because \cos ^{-1}(\cos \theta)=\theta ; \forall \theta \in[0, \pi]\right]
$$

which is the required principal value.
10. We have, $\tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)$
$=\tan ^{-1}\left(\tan \frac{\pi}{4}\right)+\cos ^{-1}\left(-\cos \frac{\pi}{3}\right)$

$$
\begin{equation*}
\left[\because \tan \frac{\pi}{4}=1 \text { and } \cos \frac{\pi}{3}=\frac{1}{2}\right] \tag{1/2}
\end{equation*}
$$

$=\frac{\pi}{4}+\cos ^{-1}\left[\cos \left(\pi-\frac{\pi}{3}\right)\right]$
[since, principal value branch of $\cos ^{-1} x$ is
$[0, \pi]$ so we write $-\cos \theta=\cos (\pi-\theta)]$
$=\frac{\pi}{4}+\cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)$
$=\frac{\pi}{4}+\frac{2 \pi}{3}=\frac{3 \pi+8 \pi}{12}=\frac{11 \pi}{12}$
$\left[\because \cos ^{-1}(\cos \theta)=\theta ; \forall \theta \in[0, \pi][(1 / 2)\right.$
which is the required principal value.

Alternate Method

We have,

$$
\begin{align*}
& \tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)=\tan ^{-1}(1)+\pi-\cos ^{-1}\left(\frac{1}{2}\right) \\
& \quad\left[\because \cos ^{-1}(-x)=\pi-\cos ^{-1} x ; \forall x \in[-1,1]\right] \\
& =\tan ^{-1}\left(\tan \frac{\pi}{4}\right)+\pi-\cos ^{-1}\left(\cos \frac{\pi}{3}\right) \\
& =\frac{\pi}{4}+\pi-\frac{\pi}{3}=\frac{3 \pi+12 \pi-4 \pi}{12}=\frac{11 \pi}{12} \tag{1/2}
\end{align*}
$$

which is the required principal value.
11. We have,
12. We have, $\tan ^{-1}\left[2 \sin \left(2 \cos ^{-1} \frac{\sqrt{3}}{2}\right)\right]$

$$
\begin{align*}
& =\tan ^{-1}\left[2 \sin \left\{2 \cos ^{-1}\left(\cos \frac{\pi}{6}\right)\right\}\right] \quad\left[\because \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}\right] \\
& =\tan ^{-1}\left[2 \sin \left\{2 \times \frac{\pi}{6}\right\}\right] \tag{1/2}
\end{align*}
$$

$$
\begin{aligned}
& \quad\left[\because \cos ^{-1}(\cos \theta)=\theta ; \forall \theta \in[0, \pi]\right] \\
& =\tan ^{-1}\left(2 \sin \frac{\pi}{3}\right)=\tan ^{-1}\left(2 \cdot \frac{\sqrt{3}}{2}\right)\left[\because \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}\right] \\
& =\tan ^{-1}(\sqrt{3})=\tan ^{-1}\left(\tan \frac{\pi}{3}\right)=\frac{\pi}{3}
\end{aligned}
$$

$$
\left[\because \tan \frac{\pi}{3}=\sqrt{3} \text { and } \tan ^{-1}(\tan \theta)=\theta, \forall \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right]
$$

(1/2]
13. Do same as Q. No. 5.
[Ans. $\left.\frac{2 \pi}{3}\right]$
14. Do same as Q. No. 5 .
[Ans. $\left.\frac{2 \pi}{3}\right]$
15. We have,

$$
\sin \left[\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right]=\sin \left[\frac{\pi}{3}+\sin ^{-1}\left(\frac{1}{2}\right)\right]
$$

$$
\left[\because \sin ^{-1}(-x)=-\sin ^{-1} x ; \forall x \in[-1,1]\right]
$$

$$
\begin{aligned}
& \tan \left(2 \tan ^{-1} \frac{1}{5}\right)=\tan \left[\tan ^{-1}\left(\frac{2 \times \frac{1}{5}}{1-\left(\frac{1}{5}\right)^{2}}\right)\right] \\
& {\left[\because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) ;-1<x<1\right]} \\
& =\tan \left[\tan ^{-1}\left(\frac{2 \times 5}{24}\right)\right]=\tan \left[\tan ^{-1}\left(\frac{5}{12}\right)\right]=\frac{5}{12} \\
& {\left[\because \tan \left(\tan ^{-1} x\right)=x ; \forall x \in R\right](1 / 2)}
\end{aligned}
$$

$=\sin \left[\frac{\pi}{3}+\sin ^{-1}\left(\sin \frac{\pi}{6}\right)\right]$
$\left[\because \sin \frac{\pi}{6}=\frac{1}{2}\right]$
$=\sin \left[\frac{\pi}{3}+\frac{\pi}{6}\right]=\sin \frac{\pi}{2}=1$
$\left[\because \sin ^{-1}(\sin \theta)=\theta ; \forall \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right](1)$
16.

First, we check the given angle lies in the principal value branch. If it is so, then use the property $\tan ^{-1}(\tan \theta)=\theta, \forall \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Otherwise reduce the angle such that it lies in principal value branch.

We know that, principal value branch of $\tan ^{-1} x$ is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
Since, $\frac{3 \pi}{4} \notin\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, so write as $\frac{3 \pi}{4}=\pi-\frac{\pi}{4}$

$$
\text { Now, } \tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)=\tan ^{-1}\left[\tan \left(\pi-\frac{\pi}{4}\right)\right]
$$

(1/2)
$=\tan ^{-1}\left(-\tan \frac{\pi}{4}\right) \quad[\because \tan (\pi-\theta)=-\tan \theta]$
$=\tan ^{-1}\left[\tan \left(-\frac{\pi}{4}\right)\right][\because-\tan \theta=\tan (-\theta)]$
$\because-\frac{\pi}{4} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan ^{-1}(\tan \theta)=\theta ; \forall \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$\therefore \quad \tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)=-\frac{\pi}{4}$
(1/2)
17. We know that, the principal value branch of $\cos ^{-1} x$ is $[0, \pi]$
Since, $\frac{7 \pi}{6} \notin[0, \pi]$, so write as $\frac{7 \pi}{6}=2 \pi-\frac{5 \pi}{6}$
Now, $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)=\cos ^{-1}\left[\cos \left(2 \pi-\frac{5 \pi}{6}\right)\right]$

$$
\begin{equation*}
=\cos ^{-1}\left(\cos \frac{5 \pi}{6}\right) \quad[\because \cos (2 \pi-\theta)=\cos \theta] \tag{1/2}
\end{equation*}
$$

$\because \frac{5 \pi}{6} \in[0, \pi]$ and $\cos ^{-1}(\cos \theta)=\theta ; \forall \theta \in[0, \pi]$
$\therefore \quad \cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)=\frac{5 \pi}{6}$
(1/2)
18. We know that, the principal value branch of $\cos ^{-1} x$ is $[0, \pi]$ and for $\sin ^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Since, $\frac{2 \pi}{3} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, so write $\frac{2 \pi}{3}=\left(\pi-\frac{\pi}{3}\right)$

$$
\text { Now, } \begin{align*}
& \cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)+\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right) \\
&= \frac{2 \pi}{3}+\sin ^{-1}\left[\sin \left(\pi-\frac{\pi}{3}\right)\right] \quad(1 / 2] \\
& {\left[\because \cos ^{-1}(\cos \theta)=\theta ; \forall \theta \in[0, \pi]\right] } \\
&= \frac{2 \pi}{3}+\sin ^{-1}\left(\sin \frac{\pi}{3}\right) \quad[\because \sin (\pi-\theta)=\sin \theta] \\
&= \frac{2 \pi}{3}+\frac{\pi}{3}\left[\because \sin ^{-1}(\sin \theta)=\theta ; \forall \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right] \\
&= \frac{3 \pi}{3}=\pi \tag{1/2}
\end{align*}
$$

which is the required principal value.
19. We have,

$$
\begin{align*}
\tan ^{-1}(-1) & =\tan ^{-1}\left(-\tan \frac{\pi}{4}\right) \quad\left[\because \tan \frac{\pi}{4}=1\right] \\
& =\tan ^{-1}\left[\tan \left(-\frac{\pi}{4}\right)\right] \quad[\because-\tan \theta=\tan (-\theta)] \\
& =-\frac{\pi}{4}\left[\because \tan -1(\tan \theta)=\theta ; \forall \theta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\right] \tag{1}
\end{align*}
$$

which is the required principal value.

Alternate Method

We have,

$$
\tan ^{-1}(-1)=-\tan ^{-1}(1)
$$

$$
\begin{align*}
& {\left[\because \tan ^{-1}(-x)=-\tan ^{-1} x ; x \in R\right]} \\
& =-\tan ^{-1}\left(\tan \frac{\pi}{4}\right) \quad\left[\because \tan \frac{\pi}{4}=1\right] \\
& =\frac{-\pi}{4}\left[\because \tan ^{-1}(\tan \theta)=\theta ; \forall \theta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\right] \tag{1}
\end{align*}
$$

which is the required principal value.
20. We have,

$$
\begin{aligned}
& \sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=\sin ^{-1}\left(-\sin \frac{\pi}{3}\right) \\
= & {\left[\because \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}\right] } \\
= & \sin ^{-1}\left[\sin \left(-\frac{\pi}{3}\right)\right] \quad[\because-\sin \theta=\sin (-\theta)] \\
= & \frac{\pi}{3} \quad\left[\because \sin ^{-1}(\sin \theta)=\theta ; \forall \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right]
\end{aligned}
$$

Hence, $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=-\frac{\pi}{3}$

Alternate Method

We have, $\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=-\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
$\left[\because \sin ^{-1}(-x)=-\sin ^{-1} x ; x \in[-1,1]\right]$
$\left.\sin \frac{\pi}{3}\right) \quad\left[\because \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}\right]$
$\left.\because \sin ^{-1}(\sin \theta)=\theta ; \forall \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right]$
which is the required principal value.
21. Do same as Q.No. 20.
$\left[\right.$ Ans. $\left.-\frac{\pi}{6}\right]$
22. We have, $\sec ^{-1}(-2)=\pi-\sec ^{-1}(2)$

$$
\begin{array}{r}
{\left[\because \sec ^{-1}(-x)=\pi-\sec ^{-1}(x) ;|x| \geq 1\right]} \\
=\pi-\sec ^{-1}\left(\sec \frac{\pi}{3}\right)=\pi-\frac{\pi}{3} \\
{\left[\because \sec \frac{\pi}{3}=2 \text { and } \sec ^{-1}(\sec \theta)=\theta ; \forall \theta \in[0, \pi]-\left\{\frac{\pi}{2}\right\}\right]}
\end{array}
$$

$$
=\frac{2 \pi}{3}
$$

which is the required principal value.
23. The domain of the function $\sin ^{-1} x$ is $[-1,1]$. (1)
24. Do same as Q.No. 17.

Ans. $\left.\frac{\pi}{6}\right]$
25. Given, $\tan ^{-1} \sqrt{3}+\cot ^{-1} x=\frac{\pi}{2}$
$\Rightarrow \tan ^{-1} \sqrt{3}=\frac{\pi}{2}-\cot ^{-1} x$
$\Rightarrow \tan ^{-1} \sqrt{3}=\tan ^{-1} x$

$$
\begin{equation*}
\left[\because \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2} ; x \in R\right] \tag{1}
\end{equation*}
$$

$\therefore \quad x=\sqrt{3}$
26. Consider, RHS $=\sin ^{-1}\left(3 x-4 x^{3}\right)$

Let $x=\sin \theta$,
then $\quad \theta=\sin ^{-1} x$
Now, from Eq. (i), we get

$$
\begin{aligned}
\text { RHS } & =\sin ^{-1}\left(3 \sin \theta-4 \sin ^{3} \theta\right) \\
& =\sin ^{-1}(\sin 3 \theta) \quad\left[\because \sin 3 A=3 \sin A-4 \sin ^{3} A\right] \\
& =3 \theta
\end{aligned}
$$

$$
\left[\because \sin ^{-1}(\sin \theta)=\theta, \forall \theta \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\right.
$$

$$
\text { and here }-\frac{1}{2} \leq x \leq \frac{1}{2} \Rightarrow-\frac{\pi}{6} \leq \sin ^{-1} x \leq \frac{\pi}{6} \text {] }
$$

$$
=3 \sin ^{-1} x \quad\left[\because \theta=\sin ^{-1} x\right]
$$

$$
=\text { LHS }
$$

Hence proved. (1)
27. Consider, RHS $=\cos ^{-1}\left(4 x^{3}-3 x\right)$

Let $x=\cos \theta \Rightarrow \theta=\cos ^{-1} x$
Now, from Eq. (i), we get
RHS $=\cos ^{-1}\left(4 \cos ^{3} \theta-3 \cos \theta\right)$
$=\cos ^{-1}(\cos 3 \theta) \quad\left[\because \cos 3 A=4 \cos ^{3} A-3 \cos A\right]$
$=3 \theta\left[\begin{array}{l}\because \cos ^{-1}(\cos \theta)=\theta \forall \theta \in[0, \pi] \\ \text { here, } \frac{1}{2} \leq x \leq 1 \Rightarrow 0 \leq \cos ^{-1} x \leq \frac{\pi}{3}\end{array}\right]$
$=3 \cos ^{-1} x=$ LHS \quad Hence proved. (1)
28.

First, use the formula
$\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; x y<1$, then
simplify it and get the values of x. Further, verify the given equation by obtained values of x.

Given, $\tan ^{-1}(x+1)+\tan ^{-1}(x-1)=\tan ^{-1} \frac{8}{31}$
$\Rightarrow \quad \tan ^{-1}\left[\frac{(x+1)+(x-1)}{1-(x+1)(x-1)}\right]=\tan ^{-1} \frac{8}{31}$

$$
\begin{equation*}
\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; x y<1\right] \tag{1}
\end{equation*}
$$

$\Rightarrow \quad \tan ^{-1}\left(\frac{2 x}{1-\left(x^{2}-1\right)}\right)=\tan ^{-1} \frac{8}{31}$
$\Rightarrow \quad \frac{2 x}{2-x^{2}}=\frac{8}{31}$
$\Rightarrow \quad 62 x=16-8 x^{2}$
$\Rightarrow \quad 8 x^{2}+62 x-16=0$
$\Rightarrow \quad 4 x^{2}+31 x-8=0 \quad$ [dividing by 2]
$\Rightarrow \quad 4 x^{2}+32 x-x-8=0$
$\Rightarrow \quad 4 x(x+8)-1(x+8)=0$
$\Rightarrow \quad(x+8)(4 x-1)=0$
$\therefore \quad x=-8$ or $x=1 / 4$
But $x=-8$ gives LHS $=\tan ^{-1}(-7)+\tan ^{-1}(-9)$

$$
=-\tan ^{-1}(7)-\tan ^{-1}(9)
$$

which is negative, while RHS is positive.
So, $x=-8$ is not possible.
Hence, $x=\frac{1}{4}$ is the only solution of the given equation.
(1)
29. Let $\cos ^{-1} \frac{4}{5}=x$, then

$$
\begin{align*}
& \Rightarrow \quad \cos x=\frac{4}{5} \\
& \Rightarrow \quad \sin x=\sqrt{1-\cos ^{2} x}=\sqrt{1-\left(\frac{4}{5}\right)^{2}} \\
& \Rightarrow \quad \sin x=\sqrt{1-\frac{16}{25}}=\sqrt{\frac{9}{25}}=\frac{3}{5} \\
& \Rightarrow \quad \tan x=\frac{3}{4} \\
& \Rightarrow \quad x=\tan ^{-1}\left(\frac{3}{4}\right)=\cos ^{-1}\left(\frac{4}{5}\right) \tag{1}
\end{align*}
$$

Now,

$$
\begin{aligned}
& \sin \left(\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}\right)=\sin \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right) \\
& =\sin \left(\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \times \frac{2}{3}}\right)\right)
\end{aligned}
$$

$$
\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right), x y<1\right]
$$

$$
=\sin \left(\tan ^{-1}\left(\frac{\frac{9+8}{12}}{\frac{12-6}{12}}\right)\right)=\sin \left(\tan ^{-1}\left(\frac{17}{6}\right)\right)
$$

Now, let $\tan ^{-1}\left(\frac{17}{6}\right)=y$
$\begin{array}{lr}\Rightarrow & \tan y=\frac{17}{6} \\ \Rightarrow \quad \sin y=\frac{17}{\sqrt{325}}=\frac{17}{5 \sqrt{13}}\end{array}$

$$
\begin{align*}
\Rightarrow \quad y & =\sin ^{-1}\left(\frac{17}{5 \sqrt{13}}\right) \tag{1}\\
& =\tan ^{-1}\left(\frac{17}{6}\right)
\end{align*}
$$

Hence,

$$
\begin{array}{r}
\sin \left(\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}\right)=\sin \left(\sin ^{-1} \frac{17}{5 \sqrt{13}}\right)=\frac{17}{5 \sqrt{13}} \\
{\left[\because \sin \left(\sin ^{-1} x\right)=x, x \in[-1,1]\right]}
\end{array}
$$

30. Given, $\tan ^{-1} 3 x+\tan ^{-1} 2 x=\frac{\pi}{4}$

$$
\begin{equation*}
\Rightarrow \quad \tan ^{-1}\left(\frac{3 x+2 x}{1-3 x \times 2 x}\right)=\frac{\pi}{4} \tag{1}
\end{equation*}
$$

$$
\left[\because \tan ^{-1} A+\tan ^{-1} B=\tan ^{-1}\left(\frac{A+B}{1-A B}\right) ; A B<1\right]
$$

$$
\begin{array}{rlrl}
& & \tan ^{-1}\left(\frac{5 x}{1-6 x^{2}}\right)=\frac{\pi}{4} & \Rightarrow \frac{5 x}{1-6 x^{2}}=\tan \frac{\pi}{4} \\
& \quad\left[\because \tan ^{-1} x=\theta \Rightarrow x=\tan \theta\right] \\
\Rightarrow & & \frac{5 x}{1-6 x^{2}} & =1 \\
\Rightarrow & 5 x & =1-6 x^{2} \\
\Rightarrow & & 6 x^{2}+5 x-1 & =0 \\
\Rightarrow & & 6 x^{2}+6 x-x-1 & =0 \\
\Rightarrow & 6 x(x+1)-1(x+1) & =0 \\
\Rightarrow & \quad 6 x-1=0 \text { or } x+1 & =0 \\
\Rightarrow & \quad x=1 / 6 \text { or } x & =-1
\end{array}
$$

But $x=-1$ does not satisfy the Eq. (i), as LHS becomes negative. So, $x=\frac{1}{6}$ is the only solution of the given equation.
31. $\tan ^{-1} 4 x+\tan ^{-1} 6 x=\frac{\pi}{4}$

$$
\begin{aligned}
\Rightarrow \tan ^{-1} & \left(\frac{4 x+6 x}{1-4 x \cdot 6 x}\right)=\frac{\pi}{4} \\
& {\left[\because \tan ^{-1} A+\tan ^{-1} B=\tan ^{-1}\left(\frac{A+B}{1-A B}\right)\right] }
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{4 x+6 x}{1-4 x \cdot 6 x}=\tan \frac{\pi}{4} \tag{1}
\end{equation*}
$$

$$
\Rightarrow \quad \frac{10 x}{1-24 x^{2}}=1
$$

or

$$
\Rightarrow \quad 10 x=1-24 x^{2}
$$

$$
\Rightarrow \quad 24 x^{2}+10 x-1=0
$$

$$
\begin{equation*}
\Rightarrow \quad 24 x^{2}+12 x-2 x-1=0 \tag{1}
\end{equation*}
$$

$$
\Rightarrow 12 x(2 x+1)-1(2 x+1)=0
$$

$$
\Rightarrow \quad(2 x+1)(12 x-1)=0
$$

$$
\Rightarrow \quad 2 x+1=0
$$

$$
x=-\frac{1}{2}
$$

$$
\begin{aligned}
12 x-1 & =0 \\
x & =\frac{1}{12}
\end{aligned}
$$

(1)

But $x=-\frac{1}{2}$ does not satisfy the given equation.
Hence, the required solution is $x=\frac{1}{12}$
32. Given,

$$
\tan ^{-1}\left[\frac{x-3}{x-4}\right]+\tan ^{-1}\left[\frac{x+3}{x+4}\right]=\frac{\pi}{4}
$$

33. To Prove

$$
\begin{aligned}
& \tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)+\tan \left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)=\frac{2 b}{a} \\
& \text { LHS }=\tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)+\tan \left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)
\end{aligned}
$$

$$
\text { Put } \cos ^{-1} \frac{a}{b}=\theta \Rightarrow \cos \theta=\frac{\dot{a}}{b}
$$

$$
\text { LHS }=\tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)+\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)
$$

$$
=\frac{\tan \frac{\pi}{4}+\tan \frac{\theta}{2}}{1-\tan \frac{\pi}{4} \tan \frac{\theta}{2}}+\frac{\tan \frac{\pi}{4}-\tan \frac{\theta}{2}}{1+\tan \frac{\pi}{4} \tan \frac{\theta}{2}}
$$

$$
=\frac{1+\tan \frac{\theta}{2}}{1-\tan \frac{\theta}{2}}+\frac{1-\tan \frac{\theta}{2}}{1+\tan \frac{\theta}{2}}
$$

$$
=\frac{\left(1+\tan \frac{\theta}{2}\right)^{2}+\left(1-\tan \frac{\theta}{2}\right)^{2}}{\left(1-\tan \frac{\theta}{2}\right)\left(1+\tan \frac{\theta}{2}\right)}
$$

$$
\begin{align*}
& \Rightarrow \tan ^{-1}\left[\frac{\frac{x-3}{x-4}+\frac{x+3}{x+4}}{1-\left(\frac{x-3}{x-4}\right)\left(\frac{x+3}{x+4}\right)}\right]=\frac{\pi}{4} \\
& {\left[\because \tan ^{-1} a+\tan ^{-1} b=\tan ^{-1}\left(\frac{a+b}{1-a b}\right) ; a b<1\right]} \\
& \Rightarrow\left[\frac{\frac{(x-3)(x+4)+(x+3)(x-4)}{(x-4)(x+4)}}{\frac{(x-4)(x+4)-(x-3)(x+3)}{(x-4)(x+4)}}\right]=\tan \left(\frac{\pi}{4}\right) \\
& \Rightarrow \quad \frac{x^{2}+4 x-3 x-12+x^{2}-4 x+3 x-12}{x^{2}-16-x^{2}+9}=1 \\
& {\left[\because \tan \left(\frac{\pi}{4}\right)=1\right]} \\
& \Rightarrow \quad \frac{2 x^{2}-24}{-7}=1 \tag{1}\\
& \Rightarrow \quad 2 x^{2}-24=-7 \\
& \Rightarrow \quad 2 x^{2}=-7+24 \\
& \Rightarrow \quad 2 x^{2}=17 \Rightarrow x^{2}=\frac{17}{2} \\
& \therefore \quad x= \pm \sqrt{\frac{17}{2}} \tag{1}
\end{align*}
$$

$=2\binom{1+\tan ^{2 \theta}}{1-\tan ^{2} \frac{2}{2}}=\frac{2}{\cos \theta}=\frac{2}{a / b}=\frac{2 b}{a}$

$$
\left[\because \cos \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} 2\right]
$$

- RHS

Hence proved. (1)
34. We have, $\cos \left(\tan ^{-1} x\right)=\sin \left(\cot ^{-1} \frac{3}{4}\right)$

Let $\tan ^{-1} x=\theta$ and $\cot ^{-1} \frac{3}{4}=\varphi ; \forall \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
and $\phi \in(0, \pi)$
$\Rightarrow \tan \theta=x$ and $\cot \phi=\frac{3}{4}$
$\Rightarrow \sec \theta=\sqrt{1+\tan ^{2} \theta}$ and $\operatorname{cosec} \phi=\sqrt{1+\cot ^{2} \phi}$
[taking positive square root as $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\left.\theta \in(\theta, \pi)\right]$ (1)
$\Rightarrow \quad \sec \theta=\sqrt{1+x^{2}}$
and $\operatorname{cosec} \phi=\sqrt{1+\left(\frac{3}{4}\right)^{2}}=\sqrt{\frac{16+9}{16}}=\sqrt{\frac{25}{16}}=\frac{5}{4}$
$\Rightarrow \quad \frac{1}{\cos \theta}=\sqrt{1+x^{2}}$ and $\frac{1}{\sin \phi}=\frac{5}{4}$
$\Rightarrow \quad \cos \theta=\frac{1}{\sqrt{1+x^{2}}}$ and $\sin \phi=\frac{4}{5}$
$\Rightarrow \quad \theta=\cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}$ and $\phi=\sin ^{-1} \frac{4}{5}$
$\Rightarrow \tan ^{-1} x=\cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}$ and $\cot ^{-1} \frac{3}{4}=\sin ^{-1} \frac{4}{5}$
On substituting these values in Eq. (i), we get

$$
\begin{aligned}
& \cos \left(\cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}\right)=\sin \left(\sin ^{-1} \frac{4}{5}\right) \\
& \Rightarrow \frac{1}{\sqrt{1+x^{2}}}=\frac{4}{5} \quad\left[\because \cos \left(\cos ^{-1} x\right)=x ; \forall x \in[-1,1]\right. \\
&\text { and } \left.\sin \left(\sin ^{-1} x\right)=x ; \forall x \in[-1,1]\right] \text { (1) }
\end{aligned}
$$

On squaring both sides, we get

$$
16\left(x^{2}+1\right)=25 \Rightarrow 16 x^{2}=9 \Rightarrow x^{2}=\frac{9}{16}
$$

$\Rightarrow \quad x= \pm \frac{3}{4}$ [taking square root both sides]
But $x=\frac{-3}{4}$ does not satisfy the given equation.
Hence, the required solution is $x=\frac{3}{4}$.
35. To prove,

$$
\begin{aligned}
& \tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4} \\
& \text { LHS }=\left(\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}\right)+\left(\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8}\right) \\
& =\tan ^{-1}\left(\frac{\frac{1}{5}+\frac{1}{7}}{1-\frac{1}{5} \times \frac{1}{7}}\right)+\tan ^{-1}\left(\frac{1 \times 1}{3+3} 1-\frac{1}{3} \times \frac{1}{8}\right) \\
& {\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; x y<1\right]} \\
& =\tan ^{-1}\left(\frac{\frac{7+5}{35}}{\frac{35-1}{35}}\right)+\tan ^{-1}\left(\frac{\frac{8+3}{24}}{\frac{24-1}{24}}\right) \\
& =\tan ^{-1}\left(\frac{12}{34}\right)+\tan ^{-1}\left(\frac{11}{23}\right) \\
& =\tan ^{-1}\left(\frac{6}{17}\right)+\tan ^{-1}\left(\frac{11}{23}\right) \\
& =\tan ^{-1}\left(\frac{\frac{6}{17}+\frac{11}{23}}{1-\frac{6}{17} \times \frac{11}{23}}\right)=\tan ^{-1}\left(\frac{\frac{138+187}{391}}{\frac{391-66}{391}}\right) \\
& =\tan ^{-1}\left(\frac{325}{325}\right)=\tan ^{-1} a=\tan ^{-1}\left(\tan \frac{\pi}{4}\right)=\frac{\pi}{4} \\
& =\text { RHS } \quad\left[\because \tan ^{-1}(\tan \theta)=\theta ; \forall \theta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\right]
\end{aligned}
$$

Hence proved. (1)
36. Given equation is

$$
\begin{align*}
& 2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x) \\
& \Rightarrow \quad \tan ^{-1}\left(\frac{2 \cos x}{1-\cos ^{2} x}\right)=\tan ^{-1}\left(\frac{2}{\sin x}\right) \\
& {\left[\because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) ;-1<x<1\right]} \tag{1}\\
& \Rightarrow \quad \frac{2 \cos x}{\sin ^{2} x}=\frac{2}{\sin x} \quad\left[\because 1-\cos ^{2} x=\sin ^{2} x\right] \text {. } \tag{i}\\
& \Rightarrow \quad \sin x \cos x-\sin ^{2} x=0 \\
& \Rightarrow \quad \sin x(\cos x-\sin x)=0 \tag{1}\\
& \Rightarrow \quad \sin x=0 \text { or } \cos x=\sin x \\
& \Rightarrow \quad \sin x=\sin 0 \\
& \text { or } \quad \cot x=1=\cot \pi / 4 \\
& \therefore \quad x=0 \text { or } \frac{\pi}{4}
\end{align*}
$$

(1)

But here at $x=0$, the given equation does not exist.
Hence, $x=\frac{\pi}{4}$ is the only solution.
(1)
37. Given,
$\tan ^{-1}(x-1)+\tan ^{-1} x+\tan ^{-1}(x+1)=\tan ^{-1} 3 x$ $\Rightarrow \tan ^{-1}(x-1)+\tan ^{-1}(x+1)=\tan ^{-1} 3 x-\tan ^{-1} x$ $\Rightarrow \tan ^{-1}\left(\frac{x-1+x+1}{1-(x-1)(x+1)}\right)=\tan ^{-1}\left(\frac{3 x-x}{1+3 x \times x}\right)$ $\left[\begin{array}{l}\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right), x y<1 \\ \text { and } \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right), x y>-1\end{array}\right]$
$\Rightarrow \tan ^{-1}\left(\frac{2 x}{1-\left(x^{2}-1\right)}\right)=\tan ^{-1}\left(\frac{2 x}{1+3 x^{2}}\right)$
$\Rightarrow \quad \frac{2 x}{2-x^{2}}=\frac{2 x}{1+3 x^{2}}$
(1)
$\Rightarrow \quad 2 x\left(1+3 x^{2}\right)=2 x\left(2-x^{2}\right)$
$\Rightarrow 2 x\left[1+3 x^{2}-\left(2-x^{2}\right)\right]=0$
$\Rightarrow \quad x\left(4 x^{2}-1\right)=0 \Rightarrow x=0$ or $4 x^{2}-1=0$
$\therefore \quad x=0$ or $x= \pm \frac{1}{2}$
38. To prove, $\tan ^{-1}\left(\frac{6 x-8 x^{3}}{1-12 x^{2}}\right)-\tan ^{-1}\left(\frac{4 x}{1-4 x^{2}}\right)$

We consider,

$$
=\tan ^{-1} 2 x ;|2 x|<\frac{1}{\sqrt{3}}
$$

LHS $=\tan ^{-1}\left(\frac{6 x-8 x^{3}}{1-12 x^{2}}\right)-\tan ^{-1}\left(\frac{4 x}{1-4 x^{2}}\right)$
$=\tan ^{-1}\left[\frac{\left(\frac{6 x-8 x^{3}}{1-12 x^{2}}\right)-\left(\frac{4 x}{1-4 x^{2}}\right)}{1+\left(\frac{6 x-8 x^{3}}{1-12 x^{2}}\right)\left(\frac{4 x}{1-4 x^{2}}\right)}\right]$
$\left[\because \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right) ; x y>-1\right]$ (1)
$=\tan ^{-1}\left[\frac{\frac{\left(6 x-8 x^{3}\right)\left(1-4 x^{2}\right)-4 x\left(1-12 x^{2}\right)}{\left(1-12 x^{2}\right)\left(1-4 x^{2}\right)}}{\frac{\left(1-12 x^{2}\right)\left(1-4 x^{2}\right)+\left(6 x-8 x^{3}\right)(4 x)}{\left(1-12 x^{2}\right)\left(1-4 x^{2}\right)}}\right]$
$=\tan ^{-1}\left(\frac{6 x-24 x^{3}-8 x^{3}+32 x^{5}-4 x+48 x^{3}}{1-4 x^{2}-12 x^{2}+48 x^{4}+24 x^{2}-32 x^{4}}\right)$
$=\tan ^{-1}\left(\frac{2 x+16 x^{3}+32 x^{5}}{16 x^{4}+8 x^{2}+1}\right)$
$=\tan ^{-1}\left[\frac{2 x\left(16 x^{4}+8 x^{2}+1\right)}{\left(16 x^{4}+8 x^{2}+1\right)}\right]=\tan ^{-1} 2 x=$ RHS (1)
Hence proved.
39. To prove, $\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}$;

LHS $=\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)$
$=\cot ^{-1}\left[\begin{array}{l}\sqrt{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}} \\ +\sqrt{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}-2 \sin \frac{x}{2} \cos \frac{x}{2}} \\ \sqrt{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}} \\ -\sqrt{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}-2 \sin \frac{x}{2} \cos \frac{x}{2}}\end{array}\right]$
(1/2)
$\left[\because 1=\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}\right.$ and $\left.\sin x=2 \sin \frac{x}{2} \cos \frac{x}{2}\right]$
$=\cot ^{-1}\left[\frac{\sqrt{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}}+\sqrt{\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)^{2}}}{\sqrt{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}}-\sqrt{\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)^{2}}}\right]$
$\left[\begin{array}{l}\because 0<x<\frac{\pi}{2} \Rightarrow 0<\frac{x}{2}<\frac{\pi}{4} \\ \text { so, } \cos \frac{x}{2}>\sin \frac{x}{2} \text { or } \cos \frac{x}{2}-\sin \frac{x}{2}>0\end{array}\right]$ (1
($11 / 2$)
$=\cot ^{-1}\left(\frac{\left|\cos \frac{x}{2}+\sin \frac{x}{2}\right|+\left|\cos \frac{x}{2}-\sin \frac{x}{2}\right|}{\left|\cos \frac{x}{2}+\sin \frac{x}{2}\right|-\left|\cos \frac{x}{2}-\sin \frac{x}{2}\right|}\right)$
$\left[\because \sqrt{x^{2}}=|x|\right]$
$=\cot ^{-1}\left(\frac{\cos \frac{x}{2}+\sin \frac{x}{2}+\cos \frac{x}{2}-\sin \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}-\cos \frac{x}{2}+\sin \frac{x}{2}}\right)$
$=\cot ^{-1}\left(\frac{2 \cos \frac{x}{2}}{2 \sin \frac{x}{2}}\right)=\cot ^{-1}\left(\cot \frac{x}{2}\right)$
$=\frac{x}{2}\left[\because 0<\frac{x}{2}<\frac{\pi}{4}\right.$ andcot $\left.^{-1}(\cot \theta)=\theta ; \forall \theta \in(0, \pi)\right](1)$
Hence, LHS = RHS
Hence proved.

Alternate Method

LHS $=\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)$

Hence proved.

40. Do same as Q.No. 32. Ans. $\sqrt{\frac{7}{2}},-\sqrt{\frac{7}{2}}$
41. Do same as Q.No. 34. Ans. $x=-\frac{1}{2}$
42. Given, $\left(\tan ^{-1} x\right)^{2}+\left(\cot ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8}$

$$
\begin{aligned}
\Rightarrow \quad\left(\tan ^{-1} x\right)^{2}+ & \left(\frac{\pi}{2}-\tan ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8} \\
& {\left[\because \cot ^{-1} x+\tan ^{-1} x=\frac{\pi}{2} ; x \in R\right] }
\end{aligned}
$$

$\Rightarrow \quad\left(\tan ^{-1} x\right)^{2}+\left(\frac{\pi}{2}\right)^{2}+\left(\tan ^{-1} x\right)^{2}$

$$
-2 \times \frac{\pi}{2} \times \tan ^{-1} x=\frac{5 \pi^{2}}{8}
$$

$$
\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right]
$$

$$
\begin{aligned}
& =\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right. \\
& \left.\times \frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}}\right) \\
& \text { [by rationalising denominator] (1) } \\
& =\cot ^{-1}\left[\frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})^{2}}{(\sqrt{1+\sin x})^{2}-(\sqrt{1-\sin x})^{2}}\right] \\
& {\left[\because(a-b)(a+b)=a^{2}-b^{2}\right]} \\
& =\cot ^{-1}\left(\frac{1+\sin x+1-\sin x+2 \sqrt{1-\sin ^{2} x}}{1+\sin x-1+\sin x}\right) \\
& {\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]} \\
& =\cot ^{-1}\left(\frac{2+2 \cos x}{2 \sin x}\right) \\
& {\left[\because \sqrt{1-\sin ^{2} x}=|\cos x|=\cos x ; \text { as } 0<x<\frac{\pi}{2}\right] \text { (1) }} \\
& =\cot ^{-1}\left(\frac{1+\cos x}{\sin x}\right)=\cot ^{-1}\left(\frac{2 \cos ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}}\right) \\
& {\left[\because 1+\cos \theta=2 \cos ^{2} \frac{\theta}{2} \text { and } \sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right]} \\
& =\cot ^{-1}\left(\cot \frac{x}{2}\right) \\
& =\frac{x}{2}=\text { RHS } \\
& {\left[\because 0<\frac{x}{2}<\frac{\pi}{4} \text { and }^{-1}(\cot \theta)=\theta ; \forall \theta \in(0, \pi)\right] \text { (l) }}
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & 2\left(\tan ^{-1} x\right)^{2}+\frac{\pi^{2}}{4}-\pi \tan ^{-1} x=\frac{5 \pi^{2}}{8} \\
\Rightarrow & 2\left(\tan ^{-1} x\right)^{2}-\pi \tan ^{-1} x=\frac{5 \pi^{2}}{8}-\frac{\pi^{2}}{4} \\
\Rightarrow & 2\left(\tan ^{-1} x\right)^{2}-\pi \tan ^{-1} x=\frac{3 \pi^{2}}{8}
\end{array}
$$

Let $\tan ^{-1} x=\theta$, where $\theta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
Then,

$$
\begin{equation*}
2 \theta^{2}-\pi \theta=\frac{3 \pi^{2}}{8} \tag{1}
\end{equation*}
$$

$$
\Rightarrow \quad 16 \theta^{2}-8 \pi \theta-3 \pi^{2}=0
$$

$$
\Rightarrow 16 \theta^{2}-12 \pi \theta+4 \pi \theta-3 \pi^{2}=0
$$

$$
\Rightarrow \quad 4 \theta(4 \theta-3 \pi)+\pi(4 \theta-3 \pi)=0
$$

$$
\Rightarrow \quad(4 \theta+\pi)(4 \theta-3 \pi)=0
$$

$$
\begin{equation*}
\therefore \quad \theta=-\frac{\pi}{4} \text { or } \theta=\frac{3 \pi}{4} \tag{1}
\end{equation*}
$$

But $\theta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, so $\theta \neq \frac{3 \pi}{4}$

$$
\text { Now, } \theta=\frac{-\pi}{4} \Rightarrow \tan ^{-1} x=-\frac{\pi}{4} \Rightarrow x=\tan \left(-\frac{\pi}{4}\right)
$$

$$
\Rightarrow \quad x=-\tan \frac{\pi}{4}[\because \tan (-\theta)=-\tan \theta ; x \in R]
$$

$$
\therefore \quad x=-1
$$

$$
\left[\because \tan \frac{\pi}{4}=1\right](1)
$$

43. To prove,

$$
\begin{aligned}
\cot ^{-1}\left(\frac{x y+1}{x-y}\right) & +\cot ^{-1}\left(\frac{y z+1}{y-z}\right) \\
& +\cot ^{-1}\left(\frac{z x+1}{z-x}\right)=0 ;[0<x y, y x, z x<1]
\end{aligned}
$$

$$
\text { Let LHS }=\cot ^{-1}\left(\frac{x y+1}{x-y}\right)+\cot ^{-1}\left(\frac{y z+1}{y-z}\right)
$$

$$
+\cot ^{-1}\left(\frac{z x+1}{z-x}\right)
$$

$$
=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)+\tan ^{-1}\left(\frac{y-z}{1+y z}\right)+\tan ^{-1}\left(\frac{z-x}{1+z x}\right)^{\prime}
$$

$$
\left[\because \cot ^{-1} x=\tan ^{-1} \frac{1}{x} ; x>0\right]
$$

$$
=\left(\tan ^{-1} x-\tan ^{-1} y\right)+\left(\tan ^{-1} y-\tan ^{-1} z\right)
$$

$$
\begin{equation*}
+\left(\tan ^{-1} z-\tan ^{-1} x\right) \tag{2}
\end{equation*}
$$

$[\because 0<x y, y z, z x<1$ and $\left[\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\right.$, if $\left.x y>-1\right]$

Hence proved. (1)

First, convert each inverse trigonometne functoon in the form of tan ${ }^{-1}\left(\frac{x-y}{1+x y}\right)$ and then use the formula $\tan ^{-1}\left(\frac{x-y}{1+x y}\right)=\tan ^{-1} x-\tan ^{-1} y, x y-1$ Further smplity t and again use the above formua
Given. $\tan ^{-1}\left(\frac{1}{1+1 \cdot 2}\right)+\tan ^{-1}\left(\frac{1}{1+23}\right)$

$$
+\ldots+\tan ^{-4}\left(\frac{1}{1+\operatorname{nan}(n+1)}\right)=\tan ^{-1} \theta
$$

$$
\Rightarrow \tan ^{-1}\left(\frac{2-1}{1+2 \cdot 1}\right)+\tan ^{-1}\left(\frac{3-2}{1+3 \cdot 2}\right)
$$

$$
+\ldots+\tan ^{-1}\left(\frac{(n+1)-n}{1+n(n+1)}\right)=\tan ^{-1} \theta(1)
$$

$$
\Rightarrow \tan ^{-1}(2)-\tan ^{-1}(1)+\tan ^{-1}(3)-\tan ^{-1}(2)
$$

$$
+\ldots+\tan ^{-1}(n+1)-\tan ^{-1}(n)=\tan ^{-1} \theta(1)
$$

$$
\left[\because \tan ^{-1}\left(\frac{x-y}{1+x \cdot y}\right)=\tan ^{-1} x-\tan ^{-1} y ; x>-1\right]
$$

$$
\begin{equation*}
\left.\Rightarrow \tan ^{-1}(n+1)-\tan ^{-1} a\right)=\tan ^{-1} \theta \tag{1}
\end{equation*}
$$

$\Rightarrow \quad \tan ^{-1}\left(\frac{n+1-1}{1+(n+1) \cdot 1}\right)=\tan ^{-1} \theta$

$$
\left[\because \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x \cdot y}\right), x y>-1\right]
$$

$\Rightarrow \quad \tan ^{-1}\left(\frac{n}{1+n+1}\right)=\tan ^{-1} \theta$
$\therefore \quad \theta=\frac{n}{2+n}$
45. First, use the retation,
$2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)-1<x<1$
and then use $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right), x y<1$
To prove.

$$
\begin{aligned}
& 2 \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\sin ^{-1}\left(\frac{31}{25 \sqrt{2}}\right) \\
& \begin{aligned}
& \text { LHS }=2 \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{7}\right) \\
&=\tan ^{-1}\left[\frac{2 \times(1 / 2)}{1-(1 / 2)^{2}}\right]+\tan ^{-1} \frac{1}{7} \\
& {\left[\because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) ;-1<x<1\right] }
\end{aligned}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
& =\tan ^{-1}\left(\frac{1}{1-\frac{1}{4}}\right)+\tan ^{-1}\left(\frac{1}{7}\right) \\
& =\tan ^{-1}\left(\frac{1}{3 / 4}\right)+\tan ^{-1}\left(\frac{1}{7}\right) \\
& =\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right) \\
& =\tan ^{-1}\left(\frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{1}{3}}\right) \\
{[} & \because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; x y<1
\end{array}\right] \quad \begin{cases} & =\tan ^{-1}\left(\frac{28+3}{21-4}\right)=\tan ^{-1} \frac{31}{17}\end{cases}
$$

Now, put $\tan ^{-1} \frac{31}{17}=\theta$
$\Rightarrow \quad \tan \theta=\frac{31}{17}$ and $\theta \epsilon\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
Clearly, $\sec ^{2} \theta=1+\tan ^{2} \theta=1+\left(\frac{31}{17}\right)^{2}=\frac{1250}{289}$
$\Rightarrow \quad \sec \theta=\frac{25 \sqrt{2}}{17}$
[taking positive square root as $\left.\theta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\right]$
$\Rightarrow \quad \frac{1}{\cos \theta}=\frac{25 \sqrt{2}}{17} \quad\left[\because \sec \theta=\frac{1}{\cos \theta}\right]$
$\Rightarrow \quad \cos \theta=\frac{17}{25 \sqrt{2}}$
$\Rightarrow \quad \sin \theta=\tan \theta \cdot \cos \theta=\frac{31}{17} \cdot \frac{17}{25 \sqrt{2}}=\frac{31}{25 \sqrt{2}}$
$\Rightarrow \quad \theta=\sin ^{-1}\left(\frac{31}{25 \sqrt{2}}\right)$
$\therefore \quad \tan ^{-1}\left(\frac{31}{17}\right)=\sin ^{-1}\left(\frac{31}{25 \sqrt{2}}\right)$
Thus, LHS $=\sin ^{-1}\left(\frac{31}{25 \sqrt{2}}\right)=$ RHS
Hence proved.
46. Given, $\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x ; x>0$
$\Rightarrow \quad 2 \tan ^{-1}\left(\frac{1-x}{1+x}\right)=\tan ^{-1} x$
[multiplying both sides by 2]

$$
\rightarrow \operatorname{san}\left[\frac{2(1-x)(1+x)}{(1+x)^{3}-(1-x)^{2}}\right]=\tan ^{-1} x
$$

$$
\Rightarrow \quad \tan ^{-1}\left(\frac{2\left(1-x^{2}\right)}{4 x}\right)=\tan ^{-1} x
$$

$$
\left[\because(a-b)(a+b)=a^{2}-b^{2}\right.
$$

$$
\text { and } \left.(a+b)^{2}-(a-b)^{2}=4 a b\right]
$$

$$
\Rightarrow \quad \frac{2\left(1-x^{2}\right)}{4 x}=x
$$

$$
\Rightarrow \quad \frac{1-x^{2}}{2 x}=x \Rightarrow 1-x^{2}=2 x^{2}
$$

$$
\begin{equation*}
\Rightarrow \quad 3 x^{2}=1 \Rightarrow x^{2}=\frac{1}{3} \tag{1/2}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow \quad x= \pm \frac{1}{\sqrt{3}} \tag{1}
\end{equation*}
$$

$\left[\because x>0\right.$ given, so we do not take $x=-\frac{1}{\sqrt{3}}$
$\therefore x=\frac{1}{\sqrt{3}}$ is the only solution of the given equation. $]$
47. Given equation is $\tan ^{-1} x+2 \cot ^{-1} x=\frac{2 \pi}{3}$.

Then, the given equation can be written as

$$
\begin{gathered}
\tan ^{-1} x+2 \tan ^{-1}\left(\frac{1}{x}\right)=\frac{2 \pi}{3} \\
\\
\Rightarrow \quad \tan ^{-1} x+\tan ^{-1}\left(\frac{2 x \frac{1}{x}}{1-\frac{1}{x^{2}}}\right)=\frac{2 \pi}{3} \\
\\
\Rightarrow \quad\left[\because 2 \cot ^{-1} x=\tan ^{-1} \frac{1}{x} ; x>0\right] \\
\Rightarrow \quad \tan ^{-1} x+\tan ^{-1}\left(\frac{\tan ^{-1}\left(\frac{2 x}{x}\right.}{\frac{x^{2}-1}{x^{2}}}\right)=\frac{2 \pi}{3} \\
\Rightarrow \\
\Rightarrow \\
\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{x^{2}-1}\right)=\frac{2 \pi}{3}
\end{gathered}
$$

$$
\begin{align*}
& \Rightarrow \quad \tan ^{1}\left(\begin{array}{cc}
x+ & 2 x \\
x^{2}-1 \\
1-2 x^{2} \\
x^{2}-1
\end{array}\right)=\frac{2 \pi}{3} \\
& {\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; x y<1\right]} \\
& \Leftrightarrow \quad \frac{x^{3}-x+2 x}{x^{2}-1-2 x^{2}}=\tan \frac{2 \pi}{3} \\
& \Rightarrow \frac{x^{3}+x}{-1-x^{2}}=\tan \left(\pi-\frac{\pi}{3}\right) \Rightarrow \frac{x^{3}+x}{-\left(1+x^{2}\right)}=\tan \frac{\pi}{3} \\
& {[\because \tan (\pi-\theta)=-\tan \theta]} \\
& \therefore \quad \frac{x\left(1+x^{2}\right)}{-\left(1+x^{2}\right)}=-\sqrt{3} \quad\left[\because \tan \frac{\pi}{3}=\sqrt{3}\right] \\
& \Rightarrow \quad x=\sqrt{3} \tag{1}
\end{align*}
$$

48. To prove,

$$
\begin{aligned}
& 2 \tan ^{-1}\left(\frac{1}{5}\right)+\sec ^{-1}\left(\frac{5 \sqrt{2}}{7}\right)+2 \tan ^{-1}\left(\frac{1}{8}\right)=\frac{\pi}{4} \\
& \text { LHS }=2 \tan ^{-1}\left(\frac{1}{5}\right)+\sec ^{-1}\left(\frac{5 \sqrt{2}}{7}\right)+2 \tan ^{-1}\left(\frac{1}{8}\right) \\
&=2\left\{\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8}\right\}+\sec ^{-1} \frac{5 \sqrt{2}}{7} \\
&=2 \tan ^{-1} \cdot\left\{\frac{\frac{1}{5}+\frac{1}{8}}{1-\frac{1}{5} \times \frac{1}{8}}\right\}+\tan ^{-1} \sqrt{\left(\frac{5 \sqrt{2}}{7}\right)^{2}-1} \\
&\left.\therefore \tan ^{-1} x+\tan ^{-1} y=\tan -1\left(\frac{x+y}{1-x y}\right) ; x y<1\right] \\
& \Rightarrow \sec ^{-1} \frac{5 \sqrt{2}}{7}=\theta \Rightarrow \sec \theta=\frac{5 \sqrt{2}}{7} \\
& \Rightarrow \theta=\tan ^{-1}=\sqrt{\frac{50}{49}-1} \\
&=2 \tan ^{-1} \frac{13}{39}+\tan ^{-1} \sqrt{\frac{50}{49}-1}=\sqrt{\left(\frac{5 \sqrt{2}}{7}\right)^{2}-1} \\
&=2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7} \\
&=\tan ^{-1}\left\{\frac{2 \times \frac{1}{3}}{1-\left(\frac{1}{3}\right)}\right\}+\tan -\frac{1}{7} \\
& {\left[\because 2 \tan ^{-1} x=\tan -1\left(\frac{2 x}{1-x^{2}}\right) ;-1<x<1\right](1) }
\end{aligned}
$$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{\frac{2}{3}}{\frac{9-1}{9}}\right)+\tan ^{-1} \frac{1}{7}=\tan ^{-3} \frac{3}{4}+\tan ^{-2} \frac{1}{7} \\
& =\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4} \times \frac{1}{7}}\right)=\tan ^{-1}\left(\frac{21-\frac{4}{28-3}}{48}\right) \\
& =\tan ^{-1}\left(\frac{25}{25}\right)=\tan ^{-1}(0) \\
& =\tan ^{-1}\left(\tan \frac{\pi}{4}\right)=\frac{\pi}{4}=\text { RHS } \\
& \quad\left[\because \tan ^{-1}\left(\tan \theta=\theta ; \sigma \theta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\right]\right.
\end{aligned}
$$

Hence proved.

49. To prove,

$$
\begin{gathered}
\tan ^{-1}\left[\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right]=\frac{x}{4}-\frac{1}{2} \cos ^{-1} x \\
\text { LHS }=\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)
\end{gathered}
$$

Put $x=\cos 2 \theta$ then $\theta=\frac{1}{2} \cos ^{-1} x$

$$
\begin{align*}
\therefore \text { LHS } & =\tan ^{-1}\left(\frac{\sqrt{1+\cos 2 \theta}-\sqrt{1-\cos 2 \theta}}{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}\right) \tag{1}\\
& =\tan ^{-1}\left(\frac{\sqrt{2} \cos \theta-\sqrt{2} \sin \theta}{\sqrt{2} \cos \theta+\sqrt{2} \sin \theta}\right)
\end{align*}
$$

$$
\left[\because 1+\cos 2 \theta=2 \cos ^{2} \theta, 1-\cos 2 \theta=2 \sin ^{2} \theta\right](0]
$$

$$
=\tan ^{-1}\left(\frac{1-\tan \theta}{1+\tan \theta}\right)
$$

[dividing numerator and denominator by $\sqrt{2} \cos \theta$]

$$
\begin{aligned}
& =\tan ^{-1}\left[\tan \left(\frac{\pi}{4}-\theta\right)\right] \\
& =\frac{\pi}{4}-\theta\left[\because \frac{1-\tan \theta}{1+\tan \theta}=\tan \left(\frac{\pi}{4}-\theta\right)\right] \\
& =\frac{\pi}{4}-\frac{1}{2} \operatorname{tas}^{-1} x \quad\left(\tan \theta=\theta ; \forall \theta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\right] \\
& =\text { RHS } \quad\left[\because \theta=\frac{1}{2} \cos ^{-1} x\right]
\end{aligned}
$$

50. Do same as Q. No. 32.
[Ans. $x= \pm \sqrt{2}$]
51. To prove,

$$
\cos ^{-1}(x)+\cos ^{-1}\left\{\frac{x}{2}+\frac{\sqrt{3-3 x^{2}}}{2}\right\}=\frac{\pi}{3}
$$

$\operatorname{Lec} \operatorname{LHS}=\cos ^{-6}(x)+\operatorname{cus}^{-1}\left\{\frac{x}{2}-\frac{\sqrt{3-5 x^{2}}}{2}\right\}$
Put $\cos ^{-2} x=\alpha$
then $x=\cos \alpha$ where $a \in[0, x]$
Now LAS $=\alpha+\cos ^{-5}\left[\frac{1}{2} \cdot \cos \alpha+\frac{\sqrt{3}}{2} \sqrt{1-\cos 2}\right]$
$=\alpha+\cos ^{-1}\left[\cos \frac{\pi}{3} \cos \alpha+\sin \frac{\pi}{3} \sin \alpha\right]$
$\left[\because \sqrt{1-\cos ^{2} \alpha}=\sqrt{\sin \alpha_{1}^{2}}=\sin \alpha ; \quad \sin \in[0, x]\right.$ $\operatorname{andsin} \frac{\pi}{3}=\frac{\sqrt{3}}{2}$.

$$
=\alpha+\cos ^{-1}\left[\cos \left(\frac{\pi}{3}-\alpha\right)\right]
$$

F: $\cos A \cos B+\sin A \sin B=\cos (A-3$ $=\alpha+\frac{\pi}{3}-\alpha=\frac{\pi}{3}=$ RHS

I: $\cdot \cos ^{-2}(\cos \theta=\theta ; \forall \theta \in[0$, xila
Hence proved
52 To prove, $\cot ^{-1} 7+\cot ^{-1} 8+\cot ^{-1} 18=\cot ^{-1} ;$

$$
\begin{aligned}
\text { LHS } & =\cot ^{-1} 7+\cot ^{-1} s+\cot ^{-1} 18 \\
& =\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{8}+\tan ^{-1} \frac{1}{18} \\
& {\left[\because \cot ^{-1} x=\tan ^{-1} \frac{1}{x} ; x>0\right] } \\
& =\tan ^{-1}\left(\frac{\frac{1}{7}+\frac{1}{8}}{1-\frac{1}{7} \times \frac{1}{8}}\right)+\tan ^{-1} \frac{1}{18}
\end{aligned}
$$

$$
\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; y<1\right] \mathbb{x}
$$

$$
=\tan ^{-1}\left(\frac{15}{55}\right)+\tan ^{-1} \frac{1}{18}
$$

$$
=\tan ^{-1}\left(\frac{3}{11}\right)+\tan ^{-1} \frac{1}{18}
$$

$$
=\tan ^{-1}\left(\frac{\frac{3}{11}+\frac{1}{18}}{1-\frac{3}{11} \times \frac{1}{18}}\right)=\tan ^{-1}\left(\frac{65}{195}\right)
$$

$$
=\tan ^{-1}\left(\frac{1}{3}\right)=\cot ^{-1} 3=\text { RHS }
$$

$$
\left[\because \tan ^{-1}\left(\frac{1}{x}\right)=\cot ^{-1} x ; x>0\right]
$$

Hence proved.
53. To prove, $\sin ^{-1}\left(\frac{8}{17}\right)+\sin ^{-1}\left(\frac{3}{5}\right)=\cos ^{-1}\left(\frac{36}{85}\right)$ Let $\quad \sin ^{-1}\left(\frac{8}{17}\right)=x$ and $\sin ^{-1}\left(\frac{3}{5}\right)=y ;$

$$
\begin{equation*}
\forall x, y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \tag{i}
\end{equation*}
$$

Then, $\sin x=\frac{8}{17}$ and $\sin y=\frac{3}{5}$
Now, $\cos ^{2} x=1-\sin ^{2} x$
$\Rightarrow \quad \cos ^{2} x=1-\frac{64}{289}=\frac{225}{289}$
$\Rightarrow \quad \cos x=\sqrt{\frac{225}{289}}$
$\left[\right.$ taking positive square root as $\left.x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right]$
$\therefore \quad \cos x=\frac{15}{17}$
Also, $\cos ^{2} y=1-\sin ^{2} y=1-\frac{9}{25}$
$\Rightarrow \quad \cos y=\sqrt{\frac{16}{25}}\left[\begin{array}{l}\text { taking positive square root } \\ \text { as } y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\end{array}\right]$
$\therefore \quad \cos y=\frac{4}{5}$
(1)

We know that,

$$
\cos (x+y)=\cos x \cos y-\sin x \sin y
$$

$\Rightarrow \quad \cos (x+y)=\left(\frac{15}{17} \times \frac{4}{5}\right)-\left(\frac{8}{17} \times \frac{3}{5}\right)$
$\Rightarrow \cos (x+y)=\frac{60}{85}-\frac{24}{85}=\frac{36}{85}$
$\Rightarrow \quad x+y=\cos ^{-1}\left(\frac{36}{85}\right)$
$\therefore \quad \sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\cos ^{-1} \frac{36}{85}$
[from Eq. (i)] (1)
Hence proved.
6. To prove, $\tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)=\frac{4-\sqrt{7}}{3}$

$$
\text { LHS }=\tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)
$$

Let $\frac{1}{2} \sin ^{-1}\left(\frac{3}{4}\right)=\theta$
Then, $\sin ^{-1}\left(\frac{3}{4}\right)=2 \theta \Rightarrow \sin 2 \theta=\frac{3}{4}$
Also, $2 \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Now, $\sin 2 \theta=\frac{3}{4}$
$\Rightarrow \quad \frac{2 \tan \theta}{1+\tan ^{2} \theta}=\frac{3}{4} \quad\left[\because \sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right]$
$\Rightarrow \quad 8 \tan \theta=3+3 \tan ^{2} \theta$
$\Rightarrow 3 \tan ^{2} \theta-8 \tan \theta+3=0$
Now, by quadratic formula

$$
\begin{aligned}
& \quad \tan \theta=\frac{-(-8) \pm \sqrt{(-8)^{2}-4 \times 3 \times 3}}{2 \times 3} \\
& \Rightarrow \tan \theta=\frac{8 \pm \sqrt{64-36}}{6}=\frac{8 \pm \sqrt{28}}{6} \\
& \Rightarrow \tan \theta=\frac{8 \pm 2 \sqrt{7}}{6}=\frac{4 \pm \sqrt{7}}{3} \\
& \text { As, }-\frac{\pi}{2} \leq 2 \theta \leq \frac{\pi}{2} \Rightarrow-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4} \\
& \Rightarrow \quad-1 \leq \tan \theta \leq 1 \\
& \therefore \quad \\
& \Rightarrow \quad \tan \theta=\frac{4-\sqrt{7}}{3} \quad\left[\because \frac{4+\sqrt{7}}{3}>1\right] \\
& \Rightarrow \quad \tan ^{-1}\left(\frac{4-\sqrt{7}}{3}\right) \quad[1)
\end{aligned}
$$

$$
\left[\because \tan \theta=x \Rightarrow \theta=\tan ^{-1} x\right]
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{1}{2} \sin ^{-1}\left(\frac{3}{4}\right)=\tan ^{-1}\left(\frac{4-\sqrt{7}}{3}\right) \tag{1}
\end{equation*}
$$

[from Eq. (ii)]
On taking tan both sides, we get

$$
\begin{array}{ll}
& \tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)=\tan \left\{\tan ^{-1}\left(\frac{4-\sqrt{7}}{3}\right)\right\} \\
\therefore \quad & \tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)=\frac{4-\sqrt{7}}{3}=\text { RHS }
\end{array}
$$

$$
\left[\because \tan \left(\tan ^{-1} x\right)=x ; x \in R\right](1)
$$

Hence proved.
55. Given equation is $\sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2}$

$$
\begin{array}{ll}
\Rightarrow & \sin ^{-1}(1-x)=\frac{\pi}{2}+2 \sin ^{-1} x \tag{1/2}\\
\Rightarrow & 1-x=\sin \left(\frac{\pi}{2}+2 \sin ^{-1} x\right) \\
\Rightarrow & 1-x=\cos \left(2 \sin ^{-1} x\right) \\
& \quad\left[\because \sin \left(\frac{\pi}{2}+\theta\right)=\cos \theta\right](1 / 2)
\end{array}
$$

Put $\sin ^{-1} x=\theta$, then $\Rightarrow 1-x=\cos 2 \theta$
$\Rightarrow \quad 1-x=1-2 \sin ^{2} \theta \quad\left[\because \cos 2 A=1-2 \sin ^{2} A\right]$

$$
\Rightarrow \quad 1-x=1-2 \sin ^{2} \theta \quad\left[\because \cos 2 A=1-2 \sin ^{2} A\right]
$$

$$
\begin{align*}
& \begin{array}{l}
\Rightarrow \quad 1-x=1-2 x^{2} \quad\left[\because \sin ^{-1} x=\theta \Rightarrow x=\sin \theta\right] \\
\begin{aligned}
& \Rightarrow 2 x^{2}-x= \\
& \therefore \quad x=0 \text { or } x=\frac{1}{2} \\
&\left.\begin{array}{rl}
\text { For } x=\frac{1}{2} & \text { LHS }
\end{array}=\sin ^{-1}\left(\frac{1}{2}\right)-2 x-1\right)=0 \\
&=\frac{\pi}{6}-\frac{2 \pi}{6}=\frac{-\pi}{6} \neq \frac{\pi}{2}
\end{aligned}
\end{array} \text { (1) }
\end{align*}
$$

$\therefore x=\frac{1}{2}$ is not a solution of given equation.
Hence, $x=0$ is the only solution.
(1)
56. To prove, $\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{77}{36}$

Let $\sin ^{-1} \frac{8}{17}=x$ and $\sin ^{-1} \frac{3}{5}=y ; \forall x, y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\Rightarrow \quad \sin x=\frac{8}{17}$ and $\sin y=\frac{3}{5}$
Now, $\cos ^{2} x=1-\sin ^{2} x=1-\frac{64}{289}=\frac{225}{289}$
$\Rightarrow \quad \cos x=\sqrt{\frac{225}{289}}=\frac{15}{17}$
[taking positive square root as $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$] and $\cos ^{2} y=1-\sin ^{2} y=$
$\Rightarrow \quad \cos y=\sqrt{\frac{16}{25}}=\frac{4}{5}$
[taking positive square root as $\left.x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right](1)$ Clearly, $\tan x=\frac{\sin x}{\cos x}=\frac{8}{15}$ and $\tan y=\frac{3}{4}$

$$
\Rightarrow \quad x=\tan ^{-1} \frac{8}{15} \text { and } y=\tan ^{-1} \frac{3}{4}
$$

Now, LHS $=x+y=\tan ^{-1} \frac{8}{15}+\tan ^{-1} \frac{3}{4}$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{\frac{8}{15}+\frac{3}{4}}{1-\frac{8}{15} \times \frac{3}{4}}\right)=\tan ^{-1}\left(\frac{32+45}{60-24}\right) \\
& =\tan ^{-1}\left(\frac{77}{36}\right)=\text { RHS Hence proved. (1) }
\end{aligned}
$$

57. Let $x=\tan \theta$ and $y=\tan \phi$, then

$$
\tan \frac{1}{2}\left[\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+\cos ^{-1}\left(\frac{1-y^{2}}{1+y^{2}}\right)\right]
$$

$$
\begin{aligned}
& =\tan \frac{1}{2}\left[\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)+\cos ^{-1}\left(\frac{1-\tan ^{2} \phi}{1+\tan ^{2} \phi}\right)\right] \\
& =\tan \frac{1}{2}\left[\sin ^{-1}(\sin 2 \theta)+\cos ^{-1}(\cos 2 \phi)\right]
\end{aligned}
$$

$$
\left[\because \sin 2 A=\frac{2 \tan A}{1+\tan ^{2} A} \text { and } \cos 2 A=\frac{1-\tan ^{2} A}{1+\tan ^{2} A}\right](0)
$$

$$
=\tan \frac{1}{2}[2 \theta+2 \phi]=\tan (\theta+\phi)
$$

$$
=\tan \left(\tan ^{-1} x+\tan ^{-1} y\right)
$$

$$
\begin{aligned}
& {\left[\because \sin ^{-1}(\sin x)=x ; \forall x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right.} \\
& \text { and } \cos ^{-1}(\cos x)=x ; \forall x \in[0, \pi] \\
& \left.x+\tan ^{-1} y\right)
\end{aligned}
$$

$\left[\because \theta=\tan ^{-1} x\right.$ and $\phi=\tan ^{-1} y$ $=\tan \left[\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right]$

$$
=\frac{x+y}{1-x y}
$$

$$
\begin{aligned}
& {\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; \text { if } x y<1\right]} \\
& \frac{+y}{-x y} \\
& {\left[\because \tan \left(\tan ^{-1} x\right)=x ; x \in R\right](1)}
\end{aligned}
$$

58. Do same as Q. No. 35.
59. To prove, $\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)=\frac{\pi}{4}-\frac{x}{2}, x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

$$
\begin{aligned}
\text { LHS } & =\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right) \\
& =\tan ^{-1}\left(\frac{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}{\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}\right)
\end{aligned}
$$

$$
\left[\begin{array}{l}
\because \cos x=\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2} ; 1=\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2} \\
\text { and } \sin x=2 \sin \frac{x}{2} \cos \frac{x}{2}
\end{array}\right]_{(1)}
$$

$$
=\tan ^{-1}\left[\frac{\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)}{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}}\right]
$$

$$
=\tan ^{-1}\left(\frac{\cos \frac{x}{2}-\sin \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}}\right)
$$

On dividing the numerator and denominator by
$\cos x / 2$, we get
LHS $=\tan ^{-1}\left(\frac{\cos \frac{x}{2}}{\cos \frac{x}{2}}-\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\left(\frac{\cos \frac{x}{2}}{\cos \frac{x}{2}}+\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right)=\tan ^{-1}\left(\frac{1-\tan \frac{x}{2}}{1+\tan \frac{x}{2}}\right)\right.$
$=\tan ^{-1}\left[\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right]\left[\because \frac{1-\tan A}{1+\tan A}=\tan \left(\frac{\pi}{4}-A\right)\right]$
$=\frac{\pi}{4}-\frac{x}{2} \quad\left[\because \tan ^{-1}(\tan \theta)=\theta ; \forall \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right]$
Hence proved. (1)
$=$ RHS
60. To prove, $\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right)$

$$
\begin{equation*}
\text { Let } \cos ^{-1} \frac{4}{5}=x \text { and } \cos ^{-1}\left(\frac{12}{13}\right)=y: \forall x, y \in[0, \pi] \tag{i}
\end{equation*}
$$

$\Rightarrow \quad \cos x=\frac{4}{5}$ and $\cos y=\frac{12}{13}$
$\Rightarrow \quad \sin x=\sqrt{1-\cos ^{2} x}$ and $\sin y=\sqrt{1-\cos ^{2} y}$ (1)
[taking positive sign as $x, y \in[0, \pi]$]
$\Rightarrow \quad \sin x=\sqrt{1-\left(\frac{4}{5}\right)^{2}}$ and $\sin y=\sqrt{1-\left(\frac{12}{13}\right)^{2}}$
$\Rightarrow \quad \sin x=\sqrt{1-\frac{16}{25}}$ and $\sin y=\sqrt{1-\frac{144}{169}}$
$\Rightarrow \quad \sin x=\sqrt{\frac{25-16}{25}}=\sqrt{\frac{9}{25}}$
and $\sin y=\sqrt{\frac{169-144}{169}}=\sqrt{\frac{25}{169}}$
$\Rightarrow \quad \sin x=\frac{3}{5}$ and $\sin y=\frac{5}{13}$
We know that,

$$
\begin{aligned}
& \cos (x+y)=\cos x \cos y-\sin x \sin y \\
\Rightarrow & \cos (x+y)=\left(\frac{4}{5} \times \frac{12}{13}\right)-\left(\frac{3}{5} \times \frac{5}{13}\right) \\
\Rightarrow \quad & \cos (x+y)=\frac{48}{65}-\frac{15}{65} \\
\Rightarrow \quad & \cos (x+y)=\frac{33}{65} \\
\Rightarrow \quad & x+y=\cos ^{-1} \frac{33}{65} \\
\therefore \quad & \cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65} \quad[\text { from Eq. (i)] }
\end{aligned}
$$

Hence proved. (1)
61. To prove, $\cos \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)=\frac{6}{5 \sqrt{13}}$

Let $\sin ^{-1} \frac{3}{5}=x$ and $\cot ^{-1}\left(\frac{3}{2}\right)=y ; \forall x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\quad y \in(0, \pi)$
$\Rightarrow \quad \sin x=\frac{3}{5}$ and $\cot y=\frac{3}{2}$
$\Rightarrow \quad \cos x=\sqrt{1-\sin ^{2} x}$ and $\operatorname{cosec} y=\sqrt{1+\cot ^{2} y}$
$\left[\right.$ taking positive sign as $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $y \in(0, \pi)$
$\Rightarrow \quad \cos x=\sqrt{1-\left(\frac{3}{5}\right)^{2}}$ and $\operatorname{cosec} y=\sqrt{1+\left(\frac{3}{2}\right)^{2}}$ (1)
$\Rightarrow \quad \cos x=\sqrt{1-\frac{9}{25}}$ and $\operatorname{cosec} y=\sqrt{1+\frac{9}{4}}$
$\Rightarrow \quad \cos x=\sqrt{\frac{25-9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$
and $\operatorname{cosec} y=\sqrt{\frac{4+9}{4}}=\sqrt{\frac{13}{4}}=\frac{\sqrt{13}}{2}$
$\Rightarrow \quad \cos x=\frac{4}{5}$ and $\frac{1}{\sin y}=\frac{\sqrt{13}}{2}$
$\Rightarrow \quad \cos x=\frac{4}{5}$ and $\sin y=\frac{2}{\sqrt{13}}$
Also, $\cos y=\sin y \cdot \cot y=\frac{2}{\sqrt{13}} \times \frac{3}{2}=\frac{3}{\sqrt{13}}$
Now, $\cos (x+y)=\cos x \cos y-\sin x \sin y$

$$
\begin{aligned}
& =\frac{4}{5} \times \frac{3}{\sqrt{13}}-\frac{3}{5} \times \frac{2}{\sqrt{13}} \\
& =\frac{12}{5 \sqrt{13}}-\frac{6}{5 \sqrt{13}}=\frac{6}{5 \sqrt{13}}=\text { RHS }
\end{aligned}
$$

Hence proved. (1)
62. To prove, $\sin ^{-1}\left(\frac{63}{65}\right)=\sin ^{-1}\left(\frac{5}{13}\right)+\cos ^{-1}\left(\frac{3}{5}\right)$

Let $\sin ^{-1} \frac{5}{13}=x$ and $\cos ^{-1} \frac{3}{5}=y, \forall x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\quad y \in[0, \pi]$
$\Rightarrow \quad \sin x=\frac{5}{13}$ and $\cos y=\frac{3}{5}$
$\Rightarrow \quad \cos x=\sqrt{1-\sin ^{2} x}$ and $\sin y=\sqrt{1-\cos ^{2} y}$
[taking positive sign as $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $y \in[0, \pi]$]
$\Rightarrow \quad \cos x=\sqrt{1-\left(\frac{5}{13}\right)^{2}}$ and $\sin y=\sqrt{1-\left(\frac{3}{5}\right)^{2}}$
$\Rightarrow \quad \cos x=\sqrt{1-\frac{25}{169}}=\sqrt{\frac{169-25}{169}}=\sqrt{\frac{144}{169}}=\frac{12}{13}$
and $\sin y=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{25-9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$
Now, $\sin (x+y)=\sin x \cos y+\cos x \sin y$
$\therefore \quad \sin (x+y)=\frac{5}{13} \cdot \frac{3}{5}+\frac{12}{13} \cdot \frac{4}{5}=\frac{15}{65}+\frac{48}{65}=\frac{63}{65}$
$\Rightarrow \quad x+y=\sin ^{-1}\left(\frac{63}{65}\right)$
$\therefore \sin ^{-1}\left(\frac{5}{13}\right)+\cos ^{-1}\left(\frac{3}{5}\right)=\sin ^{-1}\left(\frac{63}{65}\right)$ [from Eq. (i)]
Hence proved. (1)
63. Do same as Q. No. 36.
64. We have, $\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1}\left(\frac{x-y}{x+y}\right)$

$$
=\tan ^{-1}\left(\frac{\frac{x}{y}-\frac{x-y}{x+y}}{1+\frac{x}{y} \cdot \frac{x-y}{x+y}}\right)
$$

$$
\left[\because \tan ^{-1} a-\tan ^{-1} b=\tan ^{-1}\left(\frac{a-b}{1+a b}\right)\right]
$$

$$
=\tan ^{-1}\left[\frac{x(x+y)-y(x-y)}{y(x+y)+x(x-y)}\right]
$$

$$
\begin{equation*}
=\tan ^{-1}\left(\frac{x^{2}+x y-x y+y^{2}}{x y+y^{2}+x^{2}-x y}\right) \tag{11/2}
\end{equation*}
$$

$$
=\tan ^{-1}\left(\frac{x^{2}+y^{2}}{y^{2}+x^{2}}\right)=\tan ^{-1}(1)
$$

65. Do same as Q. No. 45.

$$
=\tan ^{-1}\left(\tan \frac{\pi}{4}\right)=\frac{\pi}{4}
$$

$$
\begin{equation*}
\left[\because \tan ^{-1}(\tan \theta)=\theta, \theta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\right](1) \tag{1}
\end{equation*}
$$

66. To prove, $\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right)=\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$
and $\sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)=y ; \forall x, y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Then, $\quad \sin x=\frac{1}{3}$ and $\sin y=\frac{2 \sqrt{2}}{3}$

$$
\text { Let } \sin ^{-1}\left(\frac{1}{3}\right)=x
$$

$$
\text { and } \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)=y ; \forall x, y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

Now, $\cos ^{2} x=1-\sin ^{2} x \equiv 1-\frac{1}{9}=\frac{8}{9}$
$\Rightarrow \quad \cos x=\sqrt{\frac{8}{9}}=\frac{2 \sqrt{2}}{3}$
Ltaking positive square root as $\left.x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \right\rvert\,$ (1) Similarly, $\cos ^{2} y=1-\sin ^{2} y=1-\frac{8}{9}=\frac{1}{9}$

$$
\begin{equation*}
\Rightarrow \quad \cos y=\sqrt{\frac{1}{9}}=\frac{1}{3} \tag{1}
\end{equation*}
$$

[raking positive square root as $\left.x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \right\rvert\,(1 / 2)$ Now, $\sin (x+y)=\sin x \cos y+\cos x \sin y$

$$
\begin{gathered}
=\frac{1}{3} \times \frac{1}{3}+\frac{2 \sqrt{2}}{3} \times \frac{2 \sqrt{2}}{3} \\
=\frac{1}{9}+\frac{8}{9}=\frac{9}{9}=1 \\
\Rightarrow x+y=\sin ^{-1}(1)=\sin ^{-1}\left(\sin \frac{\pi}{2}\right) \\
\Rightarrow \quad x+y=\frac{\pi}{2}\left[\because \sin ^{-1}(\sin \theta)=\theta ; \forall \theta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\right] \\
\Rightarrow \quad \sin ^{-1}\left(\frac{1}{3}\right)+\sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)=\frac{\pi}{2} \\
{\left[\because x=\sin ^{-1}\left(\frac{1}{3}\right) \text { and } y=\sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)\right]} \\
\Rightarrow \quad \frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right)+\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)=\frac{9 \pi}{8}
\end{gathered}
$$

[multiplying both sides by 9/4]

$$
\therefore \quad \frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right)=\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)
$$

Alternate Method

Hence proved.

$$
\begin{aligned}
\text { LHS } & =\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right) \\
& =\frac{9}{4}\left[\frac{\pi}{2}-\sin ^{-1}\left(\frac{1}{3}\right)\right]=\frac{9}{4}\left[\cos ^{-1}\left(\frac{1}{3}\right)\right] \\
& {\left[\because \cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x ; x \in[-1,1]\right](1) } \\
& =\frac{9}{4} \sin ^{-1}\left(\sqrt{1-\frac{1}{9}}\right) \\
& {\left[\begin{array}{l}
\text { let } \cos ^{-1} \frac{1}{3}=y \Rightarrow \cos y=\frac{1}{3}, \text { then } \\
\sin y=\sqrt{1-\cos ^{2} y} \Rightarrow y=\sin ^{-1} \sqrt{1-\left(\frac{1}{3}\right)^{2}} \\
\Rightarrow \cos ^{-1} \frac{1}{3}=\sin ^{-1} \sqrt{1-\left(\frac{1}{9}\right)} .
\end{array}\right.}
\end{aligned}
$$

$$
=\frac{9}{4} \sin ^{-1}\left(\sqrt{\frac{8}{9}}\right)=\frac{9}{4} \sin ^{-1} \cdot\left(\frac{2 \sqrt{2}}{3}\right)
$$

$$
=\text { RHS }
$$

Hence proved. (1)
67. To prove,

$$
\begin{equation*}
\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\frac{1}{2} \tan ^{-1}\left(\frac{4}{3}\right) \tag{i}
\end{equation*}
$$

Eq. (i) can be rewritten as

$$
2\left[\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)\right]=\tan ^{-1}\left(\frac{4}{3}\right) \ldots(\text { ii })
$$

$$
\text { LHS }=2\left[\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)\right]
$$

(1/2)

$$
=2\left[\tan ^{-1}\left(\frac{\frac{1}{4}+\frac{2}{9}}{1-\frac{1}{4} \times \frac{2}{9}}\right)\right]
$$

$$
\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; x y<1\right]
$$

$$
=2 \tan ^{-1}\left(\frac{\frac{9+8}{36}}{\frac{36-2}{36}}\right)=2 \tan ^{-1}\left(\frac{17}{34}\right)
$$

$$
=2 \tan ^{-1}\left(\frac{1}{2}\right)=\tan ^{-1}\left[\frac{2 \times \frac{1}{2}}{1-\left(\frac{1}{2}\right)^{2}}\right]
$$

$$
\left[\because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) ;-1<x<1\right]
$$

$$
=\tan ^{-1}\left(\frac{1}{1-\frac{1}{4}}\right)=\tan ^{-1}\left(\frac{4}{3}\right)=\text { RHS }(11 / 2)
$$

Hence proved.
68. Given equation is

$$
\begin{equation*}
\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}, x>0 \tag{i}
\end{equation*}
$$

Put

$$
\begin{align*}
\sin ^{-1} x & =y \\
x & =\sin y \tag{1/2}
\end{align*}
$$

Then, Eq. (i) becomes, $\cos 2 y=\frac{1}{9}$

$$
\begin{aligned}
& \Rightarrow \quad 1-2 \sin ^{2} y=\frac{1}{9} \quad\left[\because \cos 2 \theta=1-2 \sin ^{2} \theta\right](1) \\
& \Rightarrow \quad 2 \sin ^{2} y=1-\frac{1}{9}=\frac{8}{9} \\
& \Rightarrow \quad \sin ^{2} y=\frac{4}{9}
\end{aligned}
$$

$$
\begin{array}{llr}
\Rightarrow & x^{2}=\frac{4}{9} & {[\because \sin y=x]} \\
\therefore & x= \pm \frac{2}{3} & \text { [taking square root] }
\end{array}
$$

$$
\text { But it is given that, } x>0 \text {. }
$$

$$
\begin{equation*}
\therefore \quad x=\frac{2}{3} \tag{1}
\end{equation*}
$$

69.

First, use the relation
$2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)-1<x<1$ and then use the relation $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)$.
$x y>-1$ and get the required result.
To prove, $2 \tan ^{-1}\left(\frac{3}{4}\right)-\tan ^{-1}\left(\frac{17}{31}\right)=\frac{\pi}{4}$
LHS $=2 \tan ^{-1}\left(\frac{3}{4}\right)-\tan ^{-1}\left(\frac{17}{31}\right)$
$=\tan ^{-1}\left(\frac{2 \times \frac{3}{4}}{1-\frac{9}{16}}\right)-\tan ^{-1}\left(\frac{17}{31}\right)$
$\left[\because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) ;-1<x<1\right]$
$=\tan ^{-1}\left(\frac{3 / 2}{7 / 16}\right)-\tan ^{-1}\left(\frac{17}{31}\right)$
$=\tan ^{-1}\left(\frac{24}{7}\right)-\tan ^{-1}\left(\frac{17}{31}\right)$
$=\tan ^{-1}\left(\frac{\frac{24}{7}-\frac{17}{31}}{1+\frac{24}{7} \times \frac{17}{31}}\right)$.
$\left[\because \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right) ; x y>-1\right]$
$=\tan ^{-1}\left(\frac{24 \times 31-17 \times 7}{7 \times 31+24 \times 17}\right)$
$=\tan ^{-1}\left(\frac{744-119}{217+408}\right)$
$=\tan ^{-1}\left(\frac{625}{625}\right)=\tan ^{-1}(1)$
$=\tan ^{-1}\left(\tan \frac{\pi}{4}\right) \quad\left[\because 1=\tan \frac{\pi}{4}\right]$
$=\frac{\pi}{4}=$ RHS
$\left[\because \tan ^{-1}(\tan \theta)=\theta, \theta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\right]$
70. Given equation is

$$
\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{\pi}{3} ;-1<x<1
$$ We know that, $\cot ^{-1} x=\tan ^{-1} \frac{1}{x} ; \forall x>0$, so by using this result, we may write

$$
\begin{equation*}
\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \tag{1/2}
\end{equation*}
$$

Then, given equation becomes

$$
\begin{array}{ll}
& \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{3} \\
\Rightarrow & \quad 2 \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{3} \\
\Rightarrow & \quad \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{6} \\
\Rightarrow & \quad \frac{2 x}{1-x^{2}}=\tan \frac{\pi}{6} \\
\Rightarrow & \quad \frac{2 x}{1-x^{2}}=\frac{1}{\sqrt{3}} \\
\Rightarrow & \quad\left[\because \tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}\right] \\
\Rightarrow & x^{2}+2 \sqrt{3} x-1=0 \\
\therefore & x=\frac{-2 \sqrt{3} \pm \sqrt{12+4}}{2} \quad[\text { by quadratic formula }] \\
\Rightarrow & x=\frac{-2 \sqrt{3} \pm 4}{2}=\frac{4-2 \sqrt{3}}{2}, \frac{-4-2 \sqrt{3}}{2} \\
\therefore & x=2-\sqrt{3} \text { or }-(2+\sqrt{3})
\end{array}
$$

But it is given that $-1<x<1$, so $x=-(2+\sqrt{3})$ is
rejected, hence $x=2-\sqrt{3}$.
71.

First, put $\sqrt{x}=\tan \theta \Rightarrow \theta=\tan ^{-1} \sqrt{x}$
and then use $\cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$.
To prove, $\tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right), x \in(0,1)$.

$$
\text { RHS }=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \cos ^{-1}\left[\frac{1-(\sqrt{x})^{2}}{1+(\sqrt{x})^{2}}\right]
$$

(1)

On substituting $\sqrt{x}=\tan \theta$, we get

$$
\begin{aligned}
\text { RHS } & =\frac{1}{2} \cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right) \\
& =\frac{1}{2} \cos ^{-1}(\cos 2 \theta)\left[\because \frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos 2 A\right]
\end{aligned}
$$

$$
\left.\left.\left.\begin{array}{lrl}
= & \frac{1}{2}(2 \theta)=\theta & {\left[\because \cos ^{-1}(\cos \theta)\right.}
\end{array}\right)=\theta ; \forall \theta \in[0, \pi]\right] \text { 却-1 } \sqrt{x} \quad\left[\because \theta=\tan ^{-1} \sqrt{x}\right](1)\right] .
$$

72. Do same as Q. No. 62.
73. To prove,

$$
\begin{aligned}
& \tan ^{-1}(1)+\tan ^{-1}(2)+\tan ^{-1}(3)=\pi \\
& \text { LHS }=\tan ^{-1}(1)+\tan ^{-1}(2)+\tan ^{-1}(3) \\
& \quad=\tan ^{-1}\left(\tan \frac{\pi}{4}\right)+\frac{\pi}{2}-\cot ^{-1}(2)+\frac{\pi}{2}-\cot ^{-1}(3)(1) \\
& \quad\left[\because \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}, x \in R\right]
\end{aligned}
$$

$$
=\frac{\pi}{4}+\pi-\left[\cot ^{-1}(2)+\cot ^{-1}(3)\right]
$$

$$
\left[\because \tan ^{-1}(\tan \theta)=\theta ; \forall \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right](1 / 2)
$$

$$
=\frac{5 \pi}{4}-\left[\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)\right]
$$

$$
\left[\because \cot ^{-1} x=\tan ^{-1} \frac{1}{x}, x>0\right](1)
$$

$$
=\frac{5 \pi}{4}-\left[\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2} \cdot \frac{1}{3}}\right)\right]
$$

$$
\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right), \text { if } x y<1\right]
$$

$$
\begin{equation*}
=\frac{5 \pi}{4}-\tan ^{-1}\left(\frac{5 / 6}{5 / 6}\right) \tag{i}
\end{equation*}
$$

$$
=\frac{5 \pi}{4}-\tan ^{-1}(1)=\frac{5 \pi}{4}-\frac{\pi}{4}=\frac{4 \pi}{4}=\pi=\text { RHS }
$$

Hence proved. (1/2)

74. To prove,

$$
\begin{aligned}
& \begin{aligned}
\tan ^{-1} x & +\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right) \\
\text { LHS } & =\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \\
& =\tan ^{-1}\left[\frac{x+\frac{2 x}{1-x^{2}}}{1-x\left(\frac{2 x}{1-x^{2}}\right)}\right]
\end{aligned}
\end{aligned}
$$

$$
\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; x y<1\right]
$$

$$
\begin{align*}
& =\tan ^{-1}\left(\frac{x-x^{3}+2 x}{1-x^{2}-2 x^{2}}\right) \tag{11/2}\\
& =\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right) \tag{1}\\
& =\text { RHS }
\end{align*}
$$

Hence proved.

Alternate Method

Let $\tan ^{-1} x=\theta \Rightarrow x=\tan \theta$
(1/2)
Then, RHS $=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$
$=\tan ^{-1}\left(\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right)$
$[\because x=\tan \theta](11 / 2)$
$=\tan ^{-1}(\tan 3 \theta) \quad\left[\because \frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}=\tan 3 \theta\right]$
$=38=3 \tan ^{-1} x \quad\left[\because \theta=\tan ^{-1} x\right]$ (1)
$=\tan ^{-1} x+2 \tan ^{-1} x$
$=\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=$ LHS

$$
\left[\because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) ;-1<x<1\right]
$$

Hence proved.
75. To prove, $\cos \left[\tan ^{-1}\left\{\sin \left(\cot ^{-1} x\right)\right\}\right]=\sqrt{\frac{1+x^{2}}{2+x^{2}}}$ LHS $=\cos \left[\tan ^{-1}\left\{\sin \left(\cot ^{-1} x\right)\right\}\right]$
Put $\cot ^{-1} x=\theta \Rightarrow x=\cot \theta$
Then, LHS $=\cos \left[\tan ^{-1}(\sin \theta)\right]$

$$
\begin{equation*}
=\cos \left[\tan ^{-1}\left(\frac{1}{\operatorname{cosec} \theta}\right)\right] \tag{1/2}
\end{equation*}
$$

$$
\left[\because \sin \theta=\frac{1}{\operatorname{cosec} \theta}\right]
$$

$=\cos \left[\tan ^{-1}\left(\frac{1}{\sqrt{1+\cot ^{2} \theta}}\right)\right]$
$\left[\because \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta\right]$
$=\cos \left[\tan ^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)\right] \quad[\because \cot \theta=x]$
where, $\tan ^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)=\phi$ or $\tan \phi=\frac{1}{\sqrt{1+x^{2}}}$
Now, LHS $=\cos \phi=\frac{1}{\sec \phi} \quad\left[\because \cos \theta=\frac{1}{\sec \theta}\right]$

$$
\begin{align*}
& =\frac{1}{\sqrt{1+\tan ^{2} \phi}} \quad\left[\because \tan ^{2} \theta+1=\sec ^{2} \theta\right] \\
& =\frac{1}{\sqrt{1+\frac{1}{1+x^{2}}}} \quad\left[\because \tan \phi=\frac{1}{\sqrt{1+x^{2}}}\right] \\
& =\frac{1}{\sqrt{\frac{1+x^{2}+1}{1+x^{2}}}}=\sqrt{\frac{1+x^{2}}{2+x^{2}}}=\text { RHS } \tag{1}
\end{align*}
$$

76. Given, $\cos ^{-1} x+\sin ^{-1}\left(\frac{x}{2}\right)=\frac{\pi}{6}$

$$
\begin{aligned}
& \Rightarrow \quad \cos ^{-1} x=\frac{\pi}{6}-\sin ^{-1} \frac{x}{2} \\
& \Rightarrow \quad x=\cos \left(\frac{\pi}{6}-\sin ^{-1} \frac{x}{2}\right) \\
& \Rightarrow \quad x=\cos \frac{\pi}{6} \cos \left(\sin ^{-1} \frac{x}{2}\right) \\
& \\
& \quad+\sin \frac{\pi}{6} \sin \left(\sin ^{-1} \frac{x}{2}\right)(1)
\end{aligned}
$$

$$
[\because \cos (x-y)=\cos x \cos y+\sin x \sin y]
$$

$$
\Rightarrow \quad x=\frac{\sqrt{3}}{2} \cos \left(\sin ^{-1} \frac{x}{2}\right)+\frac{1}{2} \cdot \frac{x}{2}
$$

$$
\left[\because \sin \left(\sin ^{-1} x\right)=x ; \forall x \in[-1,1]\right]
$$

$$
\Rightarrow \quad x=\frac{\sqrt{3}}{2} \cos \left(\cos ^{-1} \sqrt{1-\frac{x^{2}}{4}}\right)+\frac{x}{4}
$$

$$
\left[\begin{array}{l}
\text { let } \sin ^{-1} y=\theta \Rightarrow \sin \theta=y \\
\text { Now, } \cos \theta=\sqrt{1-\sin ^{2} \theta} \\
\Rightarrow \sin ^{-1} y=\cos ^{-1} \sqrt{1-y^{2}}
\end{array}\right]
$$

$$
\Rightarrow \quad x=\frac{\sqrt{3}}{2}\left(\sqrt{1-\frac{x^{2}}{4}}\right)+\frac{x}{4}
$$

$$
\left[\because \cos \left(\cos ^{-1} x\right)=x ; \forall x \in[-1,1]\right]
$$

$$
\Rightarrow \quad x-\frac{x}{4}=\frac{\sqrt{3}}{2}\left(\sqrt{1-\frac{x^{2}}{4}}\right)
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{3 x}{4}=\frac{\sqrt{3}}{2}\left(\sqrt{1-\frac{x^{2}}{4}}\right) \tag{1}
\end{equation*}
$$

On squaring both sides, we get

$$
\frac{9 x^{2}}{16}=\frac{3}{4}\left(1-\frac{x^{2}}{4}\right)
$$

$$
\Rightarrow \quad \frac{3}{4} x^{2}=1-\frac{x^{2}}{4}
$$

$$
\Rightarrow \quad \frac{3}{4} x^{2}+\frac{x^{2}}{4}=1
$$

$\Rightarrow \quad \frac{4 x^{2}}{4}=1$
$\therefore \quad x^{2}=1 \Rightarrow x= \pm 1$
(1)

But $x=-1$, does not satisfy the given
equation.
Hence, $x=1$ satisfy the given equation. (I)
77. Do same as Q. No. 69.
78. Given, $\tan ^{-1} \frac{x}{2}+\tan ^{-1} \frac{x}{3}=\frac{\pi}{4}, \sqrt{6}>x>0$

$$
\Rightarrow \quad \tan ^{-1}\left(\frac{\frac{x}{2}+\frac{x}{3}}{1-\frac{x^{2}}{6}}\right)=\frac{\pi}{4}
$$

$$
\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; x y<1\right](11 / 2)
$$

$$
\Rightarrow \quad \frac{\frac{3 x+2 x}{6}}{\frac{6-x^{2}}{6}}=\tan \frac{\pi}{4}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{5 x}{6-x^{2}}=1 \\
& \Rightarrow \quad\left[\because \tan \frac{\pi}{4}=1\right]
\end{aligned}
$$

$$
\Rightarrow \quad 5 x=6-x^{2}
$$

$$
\Rightarrow \quad x^{2}+5 x-6=0
$$

$$
\Rightarrow \quad x^{2}+6 x-x-6=0
$$

$$
\Rightarrow x(x+6)-1(x+6)=0
$$

$$
\Rightarrow \quad(x-1)(x+6)=0
$$

$\therefore \quad x=1$ or -6
But it is given that, $\sqrt{6}>x>0 \Rightarrow x>0$
$\therefore x=-6$ is rejected.
Hence, $x=1$ is the only solution of the given
equation equation.
79. Do same as Q. No. 28.

亿 Solutions objectives

1. (c) We know that,

$$
\begin{aligned}
& \sin ^{-1} x+\cos ^{-1} x=\pi / 2, \forall x \in[-1,1] \\
& \therefore \cos ^{-1} x>\sin ^{-1} x \Rightarrow \frac{\pi}{2}-\sin ^{-1} x>\sin ^{-1} x \\
& \Rightarrow \frac{\pi}{2}>2 \sin ^{-1} x \Rightarrow \sin ^{-1} x<\frac{\pi}{4} \Rightarrow x<\frac{1}{\sqrt{2}} \\
& \therefore \quad-1 \leq x<\frac{1}{\sqrt{2}}
\end{aligned}
$$

2. (a) Given, $\tan ^{-1}\left(\frac{a}{x}\right)+\tan ^{-1}\left(\frac{b}{x}\right)=\frac{\pi}{2}$

$$
\begin{aligned}
\Rightarrow \tan ^{-1} & {\left[\frac{\left(\frac{a}{x}+\frac{b}{x}\right)}{1-\frac{a b}{x^{2}}}\right]=\frac{\pi}{2} \Rightarrow \frac{\frac{a+b}{x}}{\frac{x^{2}-a b}{x^{2}}}=\tan \frac{\pi}{2}=\infty } \\
& {\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right), x y<1\right] }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{a+b}{x} \times \frac{x^{2}}{x^{2}-a b}=\frac{1}{0} \Rightarrow x^{2}=a b \\
& \therefore \quad x=\sqrt{a b}
\end{aligned}
$$

3. (d) Let $E=\sin \left(2 \sin ^{-1} 0.8\right)$

Put $\sin ^{-1} 0.8=\theta \Rightarrow \sin \theta=0.8$
$\therefore \cos \theta=\sqrt{1-\sin ^{2} \theta}=\sqrt{1-0.64}=\sqrt{0.36}=0.6$
$\therefore \quad E=\sin (2 \theta)=2 \sin \theta \cos \theta$
$=2 \times 0.8 \times 0.6=0.96$
4. (d) $\sin ^{-1}\left[\left(\sin \frac{2 \pi}{3}\right)\right]=\sin ^{-1}\left[\sin \left(\pi-\frac{\pi}{3}\right)\right]$

$$
=\sin ^{-1}\left(\sin \frac{\pi}{3}\right)=\frac{\pi}{3}
$$

$$
\left[\because \sin ^{-1}(\sin \theta)=\theta, \theta \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\right]
$$

5. (d) $\sin \left(2 \tan ^{-1} x\right)=\sin \left(\sin ^{-1} \frac{2 x}{1+x^{2}}\right)$

$$
\begin{gathered}
{\left[\because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right),-1<x<1\right]} \\
=\frac{2 x}{1+x^{2}},-1 \leq x \leq 1
\end{gathered}
$$

$$
\left[\because \sin \left(\sin ^{-1} x\right)=x, x \in[-11]\right]
$$

6. (b) We have, $\tan ^{-1} x=\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{3}\right)$

$$
\Rightarrow \quad \tan ^{-1} x+\tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{4}
$$

$$
\left.\left.\begin{array}{rl}
\Rightarrow \quad & \tan ^{-1}\left[\frac{x+\frac{1}{3}}{1-x\left(\frac{1}{3}\right)}\right]
\end{array}\right)=\frac{\pi}{4} \Rightarrow \frac{3 x+1}{3-x}=1\right]
$$

$$
\Rightarrow \quad 3 x+1=3-x \Rightarrow 4 x=2
$$

$$
\therefore \quad x=1 / 2
$$

7. (a) Consider,
$\sin \left[\tan ^{-1}\left(\frac{1-x^{2}}{2 x}\right)+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right]$
Now, substitute $x=\tan \theta$, we get

$$
\begin{array}{r}
\sin \left[\tan ^{-1}\left(\frac{1-\tan ^{2} \theta}{2 \tan \theta}\right)+\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)\right] \\
=\sin \left[\tan ^{-1}(\cot 2 \theta)+\cos ^{-1}(\cos 2 \theta)\right]
\end{array}
$$

$$
\begin{aligned}
& =\sin \left[\tan ^{-1}\left\{\tan \left(\frac{\pi}{2}-2 \theta\right)\right\}+2 \theta\right] \\
& \quad\left[\because \cos ^{-1}(\cos \theta)=\theta, \theta \in[0, \pi]\right] \\
& =\sin \left(\frac{\pi}{2}-2 \theta+2 \theta\right)=1 \\
& \quad\left[\because \tan ^{-1}(\tan \theta)=\theta, \theta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\right]
\end{aligned}
$$

8. (:) Given that, $\sin ^{-1} \frac{1}{3}+\sin ^{-1} \frac{2}{3}=\sin ^{-1} x$

$$
\begin{aligned}
\Rightarrow & \sin ^{-1}\left(\frac{1}{3} \sqrt{1-\frac{4}{9}}+\frac{2}{3} \sqrt{1-\frac{1}{9}}\right)=\sin ^{-1} x \\
& {\left[\begin{array}{c}
\because \sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left(x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right) \\
\text { if }|x|,|y| \leq 1 \text { and } x^{2}+y^{2} \leq 1
\end{array}\right] }
\end{aligned}
$$

$$
\Rightarrow \quad \sin ^{-1}\left(\frac{1}{3} \cdot \frac{\sqrt{5}}{3}+\frac{2}{3} \cdot \frac{\sqrt{8}}{3}\right)=\sin ^{-1} x
$$

$$
\Rightarrow \quad \sin ^{-1}\left(\frac{\sqrt{5}+4 \sqrt{2}}{9}\right)=\sin ^{-1} x
$$

$$
\therefore \quad x=\left(\frac{\sqrt{5}+4 \sqrt{2}}{9}\right)
$$

2. (a) Let $x=-y, y>0$

$$
\begin{aligned}
\therefore \sin ^{-1} x & =\sin ^{-1}(-y) \\
& =-\sin ^{-1} y \\
& =-\cos ^{-1} \sqrt{1-y^{2}}=-\cos ^{-1} \sqrt{1-x^{2}}
\end{aligned}
$$

0. $(c) \tan \left(\sin ^{-1} x\right)=\tan \left(\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}\right), x \in(-1,1)$

$$
=\frac{x}{\sqrt{1-x^{2}}}
$$

$\left[\because \tan \left(\tan ^{-1} x\right)=x, x \in R\right]$
11. (b) $\cot \left(\operatorname{cosec}^{-1} \frac{5}{3}+\tan ^{-1} \frac{2}{3}\right)$
$=\cot \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right)$
$=\cot \left[\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{1}{2}}\right)\right]=\cot \left[\tan ^{-1}\left(\frac{17}{6}\right)\right]=\frac{6}{17}$

$$
\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right.
$$

$$
x y<1, \tan ^{-1} \frac{1}{x}=\cot ^{-1}, x>0
$$

12. (a) Given, $\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}$

$$
\begin{aligned}
& \therefore \frac{\pi}{2}-\cos ^{-1} x+\frac{\pi}{2}-\cos ^{-1} y=\frac{\pi}{2} \\
& \Rightarrow \quad \cos ^{-1} x+\cos ^{-1} y=\frac{\pi}{2}
\end{aligned}
$$

13. (b) Given, $\sin ^{-1} x-\cos ^{-1} x=\frac{\pi}{6}$

$$
\begin{aligned}
& \Rightarrow\left(\frac{\pi}{2}-\cos ^{-1} x\right)-\cos ^{-1} x=\frac{\pi}{6} \Rightarrow \cos ^{-1} x=\frac{\pi}{6} \\
& \therefore \quad x=\frac{\sqrt{3}}{2}
\end{aligned}
$$

14. (a) $\tan \left\{\cos ^{-1}\left(-\frac{2}{7}\right)-\frac{\pi}{2}\right\}$

$$
=\tan \left\{\pi-\cos ^{-1}\left(\frac{2}{7}\right)-\frac{\pi}{2}\right\}
$$

$$
=\tan \left\{\frac{\pi}{2}-\cos ^{-1}\left(\frac{2}{7}\right)\right\}=\tan \left\{\sin ^{-1}\left(\frac{2}{7}\right)\right\}
$$

$$
\left[\because \cos ^{-1}(-x)=\pi-\cos ^{-1} x, x \in[-1,1,1]\right.
$$

$$
=\tan \left\{\tan ^{-1}\left(\frac{2}{3 \sqrt{5}}\right)\right\}=\frac{2}{3 \sqrt{5}}
$$

$\left[\because \tan \left(\tan ^{-1} x\right)=x, x \in \mathbb{R}\right]$

