

limits, continuity and differentiability-CBSE

1 Mark Questions

1. Determine the value of 'k' for which the following function is continuous at x = 3:

$$f(x) = \begin{cases} \frac{(x+3)^2 - 36}{x-3}, & x \neq 3 \\ k, & x = 3 \end{cases}$$

2. Determine the value of the constant 'k' so that the function $f(x) = \begin{cases} \frac{kx}{|x|}, & \text{if } x < 0 \\ 3, & \text{if } x \ge 0 \end{cases}$ continuous at x = 0.

4 Marks Questions

3. Find the values of p and q for which

$$f(x) = \begin{cases} \frac{1 - \sin^3 x}{3\cos^2 x}, & \text{if } x < \frac{\pi}{2} \\ p, & \text{if } x = \frac{\pi}{2} \\ \frac{q(1 - \sin x)}{(\pi - 2x)^2}, & \text{if } x > \frac{\pi}{2} \end{cases}$$

is continuous at $x = \frac{\pi}{2}$.

4. If
$$f(x) = \begin{cases} \frac{\sin{(a+1)x} + 2\sin{x}}{x}, & x < 0 \\ \frac{2}{x}, & x = 0 \\ \frac{\sqrt{1+bx}-1}{x}, & x > 0 \end{cases}$$

is continuous at x = 0, then find the values of a and b.

5. Find the value of k, so that the function

$$f(x) = \begin{cases} \left(\frac{1 - \cos 4x}{8x^2}\right), & \text{if } x \neq 0\\ k, & \text{if } x = 0 \end{cases}$$

is continuous at x = 0

6. If
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2}, & \text{when } x < 0 \\ a, & \text{when } x = 0 \\ \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x} - 4}}, & \text{when } x > 0 \end{cases}$$

and f is continuous at x = 0, then find the value of a.

7. Find the value of k, for which

$$f(x) = \begin{cases} \frac{\sqrt{1 + kx} - \sqrt{1 - kx}}{x}, & \text{if } -1 \le x < 0\\ \frac{2x + 1}{x - 1}, & \text{if } 0 \le x < 1 \end{cases}$$

is continuous at x = 0

8. Find the value of k, so that the following function is continuous at x = 2.

$$f(x) = \begin{cases} \frac{x^3 + x^2 - 16x + 20}{(x - 2)^2}, & x \neq 2\\ k, & x = 2 \end{cases}$$

9. Find the value of k, so that the function f defined by

$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 3, & \text{if } x = \frac{\pi}{2} \end{cases}$$

is continuous at $x = \frac{\pi}{2}$.

10. Find the value of a for which the function f is defined as

$$f(x) = \begin{cases} a \sin \frac{\pi}{2} (x+1), & x \le 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0 \end{cases}$$

is continuous at x = 0

11. If the function f(x) given by

$$f(x) = \begin{cases} 3ax + b, & \text{if } x > 1 \\ 11, & \text{if } x = 1 \\ 5ax - 2b, & \text{if } x < 1 \end{cases}$$

is continuous at x = 1, then find the values of a and b.

12. Find the values of a and b such that the following function f(x) is a continuous function.

$$f(x) = \begin{cases} 5, & x \le 2 \\ ax + b, & 2 < x < 10 \\ 21, & x \ge 10 \end{cases}$$

13. Find the relationship between a and b, so that the function f defined by

$$f(x) = \begin{cases} ax + 1, & \text{if } x \le 3 \\ bx + 3, & \text{if } x > 3 \end{cases}$$

is continuous at x = 3.

14. Find the value of k, so that the function f defined by $f(x) = \begin{cases} kx + 1, & \text{if } x \le \pi \\ \cos x, & \text{if } x > \pi \end{cases}$

is continuous at $x = \pi$.

15. For what values of λ , is the function

$$f(x) = \begin{cases} \lambda & (x^2 - 2x), \text{ if } x \le 0\\ 4x + 1, \text{ if } x > 0 \end{cases}$$

is continuous at x = 0?

16. Discuss the continuity of the function f(x) at x = 1/2, when f(x) is defined as follows.

$$f(x) = \begin{cases} 1/2 + x, & 0 \le x < 1/2 \\ 1, & x = 1/2 \\ 3/2 + x, & 1/2 < x \le 1 \end{cases}$$

17. Find the value of a, if the function f(x) defined by

$$f(x) = \begin{cases} 2x - 1, & x < 2 \\ a, & x = 2 \\ x + 1, & x > 2 \end{cases}$$

is continuous at x = 2. Also, discuss the continuity of f(x) at x = 3.

18. Find the values of a and b such that the function defined as follows is continuous.

$$f(x) = \begin{cases} x+2, & x \le 2 \\ ax+b, & 2 < x < 6 \\ 3x-2, & x \ge 6 \end{cases}$$

- 19. For what value of k, is the function defined by $f(x) = \begin{cases} k(x^2 + 2), & \text{if } x \le 0 \\ 3x + 1, & \text{if } x > 0 \end{cases}$ continuous at x = 0?

 Also, find whether the function is continuous at x = 1.
- 20. Find all points of discontinuity of f, where f is defined as follows.

$$f(x) = \begin{cases} |x| + 3, & x \le -3 \\ -2x, & -3 < x < 3 \\ 6x + 2, & x \ge 3 \end{cases}$$

☑ 1 Mark Questions

- **1.** Differentiate $e^{\sqrt{3x}}$, with respect to x.
- **2.** If $y = \cos(\sqrt{3x})$, then find $\frac{dy}{dx}$.
- **3.** If f(x) = x + 1, find $\frac{d}{dx} (f \circ f)(x)$.
- **4.** If f(x) = x + 7 and g(x) = x 7, $x \in R$, then find the values of $\frac{d}{dx}(f \circ g) x$.
- **5.** If y = x | x|, find $\frac{dy}{dx}$ for x < 0.

2 Marks Questions

- **6.** Differentiate $\tan^{-1}\left(\frac{1+\cos x}{\sin x}\right)$ with respect to x.
- 7. Differentiate $\tan^{-1}\left(\frac{\cos x \sin x}{\cos x + \sin x}\right)$ with respect to x.
- **8.** Find the value of c in Rolle's theorem for the function $f(x) = x^3 3x$ in $[-\sqrt{3}, 0]$.
- 9. Find $\frac{dy}{dx}$ at x = 1, $y = \frac{\pi}{4}$ if $\sin^2 y + \cos xy = K$.
- **10.** If $y = \sin^{-1}(6x\sqrt{1 9x^2})$, $-\frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}$, then find $\frac{dy}{dx}$.

4 Marks Questions

11. If $(\cos x)^y = (\cos y)^x$, then find $\frac{dy}{dx}$.

- 12. If $x\sqrt{1+y} + y\sqrt{1+x} = 0$, $(x \neq y)$, then prove that $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$.
- **13.** If $y = (\sin^{-1} x)^2$, prove that $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} 2 = 0$
- 14. If $(x-a)^2 + (y-b)^2 = c^2$, for some c > 0,

 prove that $\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}}$ is a constant

independent of a and b.

- **15.** If $x = ae^{t}(\sin t + \cos t)$ and $y = ae^{t}(\sin t \cos t)$, then prove that $\frac{dy}{dx} = \frac{x+y}{x-y}$
- **16.** Differentiate $x^{\sin x} + (\sin x)^{\cos x}$ with respect to x.
- 17. If $\log (x^2 + y^2) = 2 \tan^{-1} \left(\frac{y}{x}\right)$, show that $\frac{dy}{dx} = \frac{x+y}{x-y}.$
- **18.** If $x^y y^x = a^b$, find $\frac{dy}{dx}$.
- 19. If $x = \cos t + \log \tan \left(\frac{t}{2}\right)$, $y = \sin t$, then find the values of $\frac{d^2y}{dt^2}$ and $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{4}$.
- 20. If $y = \sin(\sin x)$, prove that $\frac{d^2y}{dx^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0.$
- **21.** If $(x^2 + y^2)^2 = xy$, find $\frac{dy}{dx}$.
- 22. If $x = a (2\theta \sin 2\theta)$ and $y = a (1 \cos 2\theta)$, find $\frac{dy}{dx}$ when $\theta = \frac{\pi}{3}$.

3. If
$$\sin y = x \cos(a + y)$$
, then show that
$$\frac{dy}{dx} = \frac{\cos^2(a + y)}{\cos a}.$$

Also, show that $\frac{dy}{dx} = \cos \alpha$, when x = 0.

4. If
$$x = a \sec^3 \theta$$
 and $y = a \tan^3 \theta$, find $\frac{d^2 y}{dx^2}$ at $\theta = \frac{\pi}{3}$.

25. If
$$y = e^{\tan^{-1} x}$$
, prove that
$$(1+x^2)\frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} = 0.$$

26. If
$$x^y + y^x = a^b$$
, then find $\frac{dy}{dx}$.

27. If
$$e^y(x+1) = 1$$
, then show that
$$\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2.$$

28. If
$$y = x^x$$
, then prove that

$$\frac{d^2y}{dx^2} - \frac{1}{y} \left(\frac{dy}{dx}\right)^2 - \frac{y}{x} = 0.$$

29. Differentiate
$$\tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right)$$

w.r.t. $\sin^{-1} \left(\frac{2x}{1+x^2} \right)$, when $x \neq 0$.

30. If
$$x = a \sin 2t (1 + \cos 2t)$$
 and $y = b \cos 2t (1 - \cos 2t)$, then find the values of $\frac{dy}{dx}$ at $t = \frac{\pi}{4}$ and $t = \frac{\pi}{3}$.

Or If
$$x = a \sin 2t (1 + \cos 2t)$$
 and $y = b \cos 2t (1 - \cos 2t)$, then show that at $t = \frac{\pi}{4}$, $\frac{dy}{dx} = \frac{b}{a}$

31. If
$$x \cos(a + y) = \cos y$$
, then prove that
$$\frac{dy}{dx} = \frac{\cos^2(a + y)}{\sin a}$$
. Hence, show that

$$\sin a \frac{d^2y}{dx^2} + \sin 2 (a + y) \frac{dy}{dx} = 0.$$

Or If
$$\cos y = x \cos(a + y)$$
, where $\cos a \neq \pm 1$, prove that $\frac{dy}{dx} = \frac{\cos^2(a + y)}{\sin a}$.

32. Find
$$\frac{dy}{dx}$$
, if $y = \sin^{-1} \left[\frac{6x - 4\sqrt{1 - 4x^2}}{5} \right]$.

33. Find the values of a and b, if the function f defined by

$$f(x) = \begin{cases} x^2 + 3x + a, & x \le 1 \\ bx + 2, & x > 1 \end{cases}$$

is differentiable at x = 1.

34. If $x = \sin t$ and $y = \sin pt$, then prove that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + p^2 y = 0.$

35. If
$$y = \tan^{-1} \left(\frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right)$$
, $x^2 \le 1$, then find dy/dx .

36. If $x = a\cos\theta + b\sin\theta$, $y = a\sin\theta - b\cos\theta$, then show that $y^2 \frac{d^2y}{dx^2} - x\frac{dy}{dx} + y = 0$.

37. Show that the function f(x) = |x+1| + |x-1|, for all $x \in R$, is not differentiable at the points x = -1 and x = 1.

38. If $y = e^{m \sin^{-1} x}$, then show that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - m^2 y = 0.$

39. If
$$f(x) = \sqrt{x^2 + 1}$$
; $g(x) = \frac{x + 1}{x^2 + 1}$ and $h(x) = 2x - 3$, then find $f'[h'\{g'(x)\}]$.

40. If
$$y = (x + \sqrt{1 + x^2})^n$$
, then show that
$$(1 + x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} = n^2y.$$

41. Find whether the following function is differentiable at x = 1 and x = 2 or not.

$$f(x) = \begin{cases} x, & x < 1 \\ 2 - x, & 1 \le x \le 2 \\ -2 + 3x - x^2, & x > 2 \end{cases}$$

42. For what value of λ , the function defined by $f(x) = \begin{cases} \lambda(x^2 + 2), & \text{if } x \le 0 \\ 4x + 6, & \text{if } x > 0 \end{cases}$ is continuous at x = 0? Hence, check the differentiability of f(x) at x = 0

- **43.** If $y = (\sin x)^x + \sin^{-1} \sqrt{x}$, then find $\frac{dy}{dx}$
- **44.** If $y = \frac{x \cos^{-1} x}{\sqrt{1 x^2}} \log \sqrt{1 x^2}$, then prove that $\frac{dy}{dx} = \frac{\cos^{-1} x}{(1 x^2)^{3/2}}$.
- **45.** Write the derivative of $\sin x$ with respect to $\cos x$.
- **46.** If $y = \sin^{-1} \{x\sqrt{1-x} \sqrt{x} \sqrt{1-x^2}\}$ and 0 < x < 1, then find $\frac{dy}{dx}$.
- **47.** If $e^x + e^y = e^{x+y}$, prove that $\frac{dy}{dx} + e^{y-x} = 0$.
- **48.** Find the value of $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$, if $x = ae^{\theta} (\sin \theta \cos \theta)$ and $y = ae^{\theta} (\sin \theta + \cos \theta)$
- **49.** If $x = a \left(\cos t + \log \tan \frac{t}{2} \right)$, $y = a \sin t$, then evaluate $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{3}$.
- **50.** If $x^m y^n = (x + y)^{m+n}$, prove that $\frac{dy}{dx} = \frac{y}{x}$.

51. Differentiate $\tan^{-1} \left(\frac{\sqrt{1-x^2}}{x} \right)$ w.r.t. $\cos^{-1}(2x\sqrt{1-x^2})$, when $x \neq 0$.

52. Differentiate $\tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$ w.r.t. $\sin^{-1}\left(2x\sqrt{1-x^2}\right)$.

53. If $y = Pe^{ax} + Qe^{bx}$, then show that $\frac{d^2y}{dx^2} - (a+b)\frac{dy}{dx} + aby = 0.$

54. If $x = \cos t (3 - 2\cos^2 t)$ and $y = \sin t (3 - 2\sin^2 t)$, then find the value of $\frac{dy}{dx}$ at $t = \frac{\pi}{4}$.

55. If $(x - y) e^{\frac{x}{x - y}} = a$, prove that $y \frac{dy}{dx} + x = 2y.$

56. If $x = a(\cos t + t \sin t)$ and $y = a (\sin t - t \cos t)$, then find the value $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{4}$.

57. If $y = \tan^{-1}\left(\frac{a}{x}\right) + \log\sqrt{\frac{x-a}{x+a}}$, prove that $\frac{dy}{dx} = \frac{2a^3}{x^4 - a^4}.$

58. If $(\tan^{-1} x)^y + y^{\cot x} = 1$, then find dy/dx

59. If $x = 2\cos\theta - \cos 2\theta$ and $y = 2\sin\theta - \sin 2\theta$, then prove that $\frac{dy}{dx} = \tan\left(\frac{3\theta}{2}\right)$.

60. If $y = x \log \left(\frac{x}{a + bx}\right)$, then prove that $x^3 \frac{d^2 y}{dx^2} = \left(x \frac{dy}{dx} - y\right)^2.$

61. If $x = \cos\theta$ and $y = \sin^3\theta$, then prove that $y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 3\sin^2\theta(5\cos^2\theta - 1).$

32. Differentiate the following function with respect to x.

$$(\log x)^x + x^{\log x}$$

53. If
$$y = \log [x + \sqrt{x^2 + a^2}]$$
, then show that
$$(x^2 + a^2) \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = 0.$$

- 34. Show that the function f(x)=|x-3|, $x \in R$, is continuous but not differentiable at x=3.
- 65. If $x = a \sin t$ and $y = a [\cos t + \log \tan (t/2)]$, then find $\frac{d^2y}{dx^2}$.
- **66.** Differentiate the following with respect to x.

$$\sin^{-1}\left[\frac{2^{x+1} \cdot 3^x}{1 + (36)^x}\right]$$

- 67. If $x = a \cos^3 \theta$ and $y = a \sin^3 \theta$, then find the value of $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{6}$.
- 68. If $x \sin(a + y) + \sin a \cos(a + y) = 0$, then prove that $\frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}$.
- 69. If $x^y = e^{x-y}$, then prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$
- Or If $x^y = e^{x-y}$, then prove that $\frac{dy}{dx} = \frac{\log x}{\{\log(xe)\}^2}.$
- 70. If $y^x = e^{y-x}$, then prove that $\frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y}.$
- 71. If $\sin y = x \sin(a + y)$, then prove that $\frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}.$
- 72. If $y = \sin^{-1} x$, show that $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} = 0.$

- **73.** If $x = \sqrt{a^{\sin^{-1} t}}$ and $y = \sqrt{a^{\cos^{-1} t}}$, then show that $\frac{dy}{dx} = \frac{-y}{x}$.
- **74.** Differentiate $\tan^{-1}\left[\frac{\sqrt{1+x^2}-1}{x}\right]$ w.r.t. x.
- **75.** If $y = (\tan^{-1} x)^2$, then show that $(x^2 + 1)^2 \frac{d^2 y}{dx^2} + 2x(x^2 + 1) \frac{dy}{dx} = 2.$
- **76.** If $y = x^{\sin x \cos x} + \frac{x^2 1}{x^2 + 1}$, then find $\frac{dy}{dx}$.
- 77. If $x = a(\cos t + t \sin t)$ and $y = a(\sin t t \cos t)$, then find $\frac{d^2x}{dt^2}$, $\frac{d^2y}{dt^2}$ and $\frac{d^2y}{dx^2}$.
- **78.** If $x = a \left(\cos t + \log \tan \frac{t}{2} \right)$ and $y = a \sin t$, find $\frac{d^2y}{dt^2}$ and $\frac{d^2y}{dx^2}$.
- **79.** Find $\frac{dy}{dx}$, when $y = x^{\cot x} + \frac{2x^2 3}{x^2 + x + 2}$.
- **80.** If $x = \tan\left(\frac{1}{a}\log y\right)$, then show that $(1+x^2)\frac{d^2y}{dx^2} + (2x-a)\frac{dy}{dx} = 0.$
- **81.** Differentiate $x^{x \cos x} + \frac{x^2 + 1}{x^2 1}$ w.r.t. x.
- **82.** If $x = a (\theta \sin \theta)$, $y = a (1 + \cos \theta)$, then find $\frac{d^2y}{dx^2}$.
- **83.** Prove that $\frac{d}{dx}\left[\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right)\right]=\sqrt{a^2-x^2}.$

84. If
$$y = \log [x + \sqrt{x^2 + 1}]$$
, then prove that $(x^2 + 1) \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = 0$.

85. If
$$\log (\sqrt{1+x^2} - x) = y \sqrt{1+x^2}$$
, then show that $(1+x^2) \frac{dy}{dx} + xy + 1 = 0$.

86. If
$$x = a (\theta + \sin \theta)$$
 and $y = a (1 - \cos \theta)$, then find $\frac{d^2y}{dx^2}$.

87. If
$$y = a \sin x + b \cos x$$
, then prove that
$$y^2 + \left(\frac{dy}{dx}\right)^2 = a^2 + b^2.$$

88. If
$$x = a (\cos \theta + \theta \sin \theta)$$

and $y = a(\sin \theta - \theta \cos \theta)$, then find $\frac{d^2y}{dx^2}$

89. If
$$x = a (\theta - \sin \theta)$$
 and $y = a (1 + \cos \theta)$, then find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{3}$.

90. If
$$y = (\sin x - \cos x)^{(\sin x - \cos x)}$$
, $\frac{\pi}{4} < x < \frac{3\pi}{4}$, then find $\frac{dy}{dx}$.

91. If
$$y = \cos^{-1} \left[\frac{2x - 3\sqrt{1 - x^2}}{\sqrt{13}} \right]$$
, then find $\frac{dy}{dx}$.

92. If
$$y = (\cot^{-1} x)^2$$
, then show that
$$(x^2 + 1)^2 \frac{d^2 y}{dx^2} + 2x (x^2 + 1) \frac{dy}{dx} = 2.$$

93. If
$$y = \csc^{-1}x$$
, $x > 1$, then show that
$$x(x^2 - 1)\frac{d^2y}{dx^2} + (2x^2 - 1)\frac{dy}{dx} = 0.$$

94. If
$$y = \cos^{-1}\left(\frac{3x + 4\sqrt{1 - x^2}}{5}\right)$$
, then find $\frac{dy}{dx}$.

95. Show that the function defined as follows, is continuous at
$$x = 1$$
, $x = 2$ but not

differentiable at
$$x = 2$$
.

$$f(x) = \begin{cases} 3x - 2, & 0 < x \le 1 \\ 2x^2 - x, & 1 < x \le 2 \\ 5x - 4, & x > 2 \end{cases}$$

96. If
$$y = e^{a \cos^{-1} x}$$
, $-1 \le x \le 1$, then show that
$$(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0.$$

97. Find
$$\frac{dy}{dx}$$
, if $y = (\cos x)^x + (\sin x)^{1/x}$.

98. If
$$y = e^x \sin x$$
, then prove that
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0.$$

99. If
$$y = (x)^x + (\sin x)^x$$
, then find $\frac{dy}{dx}$.