

p block last group elements:CBSE

✓ 1 Mark Questions

- 1. Complete the following reaction. $XeF_6 + NaF \longrightarrow$
- 2. What happens when XeF₂ undergoes hydrolysis?
- 3. Out of noble gases only xenon is known to form established chemical compounds.
- **4.** Complete the following equation: $XeF_4 + O_2F_2 \xrightarrow{143 \text{ K}}$
- 5. Draw the structure of the following: XeF₄
- 6. Complete the following reaction:

 XeF₄ + SbF₀ →

- 7. Draw the structure of the following: XeOF₄
- 8. Complete the following reaction:

$$XeF_6 + 2H_2O \longrightarrow$$

- 9. (i) Draw the structures of the following molecules.
 - (a) XeOF₄
- (b) H₂SO₄
- 10. Draw the structure of XeF₂ molecule.
- 11. Helium is used in diving equipments.
 Why?
- 12. What inspired N Bartlett for carrying out reaction between Xe and PtF₆?
- 13. Draw the molecular structure of XeF6.
- 14. Predict the shape and the asked angle (90° or more or less) in the following case: XeF₂ and the angle F—Xe—F

15. Explain the following giving an appropriate reason:

Structures of xenon fluorides cannot be explained by valence bond approach.

- 16. Helium forms no real chemical compound.
- 17. Complete the following chemical equation: $XeF_4 + H_2O \longrightarrow$
- 18. Why do noble gases have very low boiling points?
- 19. Complete the following chemical equation: $XeF_6 + H_2O$ (Excess) \longrightarrow
- 20. Complete the following reaction equation: $XeF_2 + PF_5 \longrightarrow$
- 21. XeF2 is linear molecule without a bent. Explain.
- Or XeF2 has a straight linear structure and not a bent angular structure. Explain.
- 22. Noble gases are least reactive elements. Give reason.
- 23. What happens when XeF₆ is hydrolysed?

2 Marks Questions

- 24. Complete the following reactions:
 - (i) $Cl_2 + H_2O \longrightarrow$
 - (ii) $XeF_6 + 3H_2O \longrightarrow$
- 25. Draw the structures of the following:
 - (i) H₂S₂O₇
- (ii) XeF₆
- 26. Draw the structure of the following:
 - (i) XeF₄
- (ii) BrF₅
- 27. Write the structures of the following:
 - (i) BrF₃
- (ii) XeF4
- 28. What happens when
 - (i) SO₂ gas is passed through an aqueous solution of Fe3+ salt?
 - (ii) XeF₄ reacts with SbF₅?

- 29. Draw the structures of the following:
 - (i) H₂SO₄
- (ii) XeF₂
- 30. Account for the following
 - (i) Iron dissolves in HCl to form FeCl₂ and not FeCl_a
 - (ii) Draw the structures of the following:
 - (a) XeOF₄
- (b) HClO₄
- 31. Complete the following chemical reaction equation:
 - (i) $KClO_3 \xrightarrow{Heat} MnO_2$
 - (ii) $XeF_4 + H_2O \longrightarrow$
- 32. Draw the structures of the following:
 - (i) XeF_2
 - (ii) BrF₃
- 33. Complete the following equations:

(i)
$$C + H_2 SO_4 \longrightarrow$$
 (Conc.)

- (ii) $XeF_2 + H_2O \longrightarrow$
- 34. Draw the structures of the following:
 - (i) XeF_4
- (ii) HClO₄
- 35. Draw the structures of the following:
 - (i) XeO_3
- (ii) H₂SO₄
- 36. Write the balanced chemical equations for obtaining XeO₃ and XeOF₄ from XeF₆.
- 37. Write the formula and the structures of noble gas species (one each) which are isostructural with
 - (i) ICl₄
- (ii) BrO_{3}^{-}

7 3 Marks Questions

- (i) Account for the following.
 - (a) Ozone is thermodynamically unstable.
 - (b) Fluorine forms only one oxoacid HOF.
 - (ii) Draw the structures of
 - (a) BrF_5
- (b) XeF

- (i) Account for the following: 39.
 - (a) H₂S has lower boiling point than H₂O.
 - (b) Reducing character decreases from SO₂ to TeO₂.
 - (ii) Draw the structure of the following: XeF,
- (i) Draw the structures of the following:
 - (a) XeF

(b) H₂S₂O₇

- (ii) Account for the following:
 - (a) Iron on reaction with HCl forms FeCl₂ and not FeCl₃.
 - (b) HClO₄ is a stronger acid than HClO.
- (i) Account for the following:
 - (a) Acidic character increases from HF to HI.
 - (b) There is large difference between the melting and boiling points of oxygen and sulphur.
 - (ii) Draw the structure of the following:
 - (a) ClF₃

(b) XeF₄

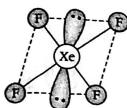
- 42. (i) Draw the structure of the following: H₂S₂O₈
 - (ii) Account for the following:
 - (a) Sulphur in vapour state exhibits paramagnetism.
 - (b) Unlike xenon, no distinct chemical compound of helium is known.

5 Marks Questions

- (i) Write the formula and describe the structure of a noble gas species which is isostructural with
 - (a) IBr₂
- (b) BrO₂
- (ii) Assign reasons for the following:
 - (a) SF₆ is kinetically inert
 - (b) HCl is a stronger acid than HF though flourine is more electronegative than chlorine.

- (i) Draw the structure of the following. (b) XeO₃
 - (ii) Answer the following:
 - (a) Why are halogens strong oxide
 - (b) Draw the structure of XeOF.
- (i) How the supersonic jet aeroplane, 45. are responsible for the depletion of ozone layers?
 - (ii) F2 has lower bond dissociation enthalpy than Cl₂. Why?
 - (iii) Which noble gas is used in filling balloons for meteorological observations?
 - (iv) Complete the equation: $XeF_2 + PF_5 \longrightarrow$
- (i) Complete the following chemical equations:

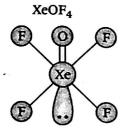
$$XeF_4 + O_2F_2 \longrightarrow$$


- (ii) How would you account for following situations?
 - (a) The acidic strength of these compounds increases in the following order $PH_3 < H_2S < HO$
 - (b) The oxidising power of oxoacids of chlorine follows the order $HClO_4 < HClO_3 < HClO_2 < HClO$
 - (c) In vapour state, sulphur exhibit paramagnetic behaviour.

Explanations

- 1. $XeF_6 + NaF \longrightarrow Na^+ [XeF_7]^-$
- 2. XeF₂ readily hydrolysed even by traces of water $2XeF_2(s) + 2H_2O(l) \longrightarrow 2Xe(g) + 4HF(aq) + 0_2U$
- Only xenon is well known to form chemical compounds because xenon is large in size and having higher atomic mass.

Due to larger atomic radius the force of attraction between the outer electron and the protons is weak hence they are easily available to form compounds.

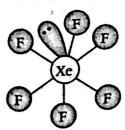

5. Structure of XeF₄ is as follows

XeF₄ (Square planar)

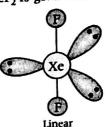
6.
$$XeF_4 + SbF_5 \longrightarrow [XeF_3]^+ [SbF_6]^-$$

7. Structure of XeOF₄ is as follows

Square planar


8.
$$XeF_6 + 2H_2O \longrightarrow XeO_2 F_2 + 4HF$$

- g, (i) (a) Refer to solution 7.
 - (b) Refer to solution 11 of Topic 1.
- 10. Structure of XeF₂ molecule is given below:


(Linear shape) XeF2

- 11. Helium is used as a diluent for oxygen in modern diving apparatus because of its very low solubility in blood.
- 12. Bartlett found the first ionisation enthalpy of molecular oxygen in O2 [Pt F6] to be almost similar with that of xenon. Thus, he got inspired for carrying out reaction between Xe and PtF6 and prepared Xe⁺[Pt F₆] by mixing Xe and PtF₆.
- 13. Structure of XeF6 is given below:

Distorted octahedral: XeF6

14. Structure of XeF₂ is given below:

Shape: Linear

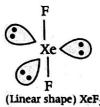
Angle: F -- Xe -- F: 180°

- 15. According to the valence bond approach, covalent bonds are formed by the overlapping of half-filled atomic orbitals. But xenon has fully-filled electronic configuration. Hence, the structure of xenon fluorides cannot be explained by VBT.
- 16. Due to its small size and high ionisation energy helium is chemically unreactive. That's why, it forms no real chemical compound.

17.
$$6XeF_4 + 12H_2O \longrightarrow 4Xe + 2XeO_3 + 24HF + 3O_2$$

- 18. Due to weak van der Waals' forces of attraction between atoms of noble gases (weak dispersion forces), these have very low boiling points.
- 19. $XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$ (Excess)

NOTE Partial hydrolysis of XeF₆ gives oxyfluorides,

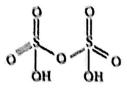

XeOF₄ and XeO₂F₂.

$$XeF_6 + H_2O \longrightarrow XeOF_4 + 2HF$$

$$XeF_6 + 2H_2O \longrightarrow XeO_2F_2 + 4HF$$

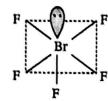
20.
$$XeF_2 + PF_5 \longrightarrow [XeF]^+ [PF_6]^-$$

21. XeF₂ is linear molecule. According to VSEPR theory, the three lone pairs will occupy the equatorial positions and two bond pairs will occupy axial positions to minimise lp - lp and lp - bp repulsions.



- 22. Least reactivity of the noble gases is due to the following reasons:
 - (i) The noble gases except helium 1s2 have completely filled ns 2np6 electronic configuration in their valence shell.

- (ii) They have high ionisation enthalpy and more positive electron gain enthalpy.
- Refer to solution 19.
- 24. (i) $Cl_2 + H_2O \longrightarrow HCl + HOCl$
 - (II) $XeP_A + 3H_2O \longrightarrow XeO_3 + 6HF$
- 28. Structures of


(i) H₂S₂O₇

(ii) XeF₆: Refer to solution 13.

Pyrosulphuric acid (Oleum)

- 26. Structures of
 - (i) XeF₄: Refer to solution 5. (ii) BrF₅

Square pyramidal

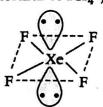
- 27. The structures of
 - (i) BrF₃: Bent T-shaped

- (ii) XeF4: Square planar (Refer to solution 5)
- 28. (i) When SO₂ gas is passed through an aqueous solution of Fe³⁺ salt, then SO₂ acts as a reducing agent and reduces Fe³⁺ ions present in the salt to Fe²⁺ ions.

$$2Fe^{3+} + SO_2 + 2H_2O \longrightarrow 2Fe^{2+} + SO_4^{2-} + 4H^+$$

- (ii) XeF₄ reacts with SbF₅ to form a ionic species.
 XeF₄ + SbF₅ → [XeF₃]⁺ [SbF₆]⁻
- 29. (i) Refer to solution 11 of Topic 1.
 - (ii) Refer to solution 10.
- 30. (i) Refer to solution 50(i) of Topic 2.
 - (ii) (a) Refer to solution 7.

21


(b) Refer to solution 21 of Topic 2.

- 31. (i) $2KClO_3 \xrightarrow{Heat} 2KCl + 3O_2$
 - (ii) $6XeF_4 + 12H_2O \longrightarrow 4Xe + 2XeO_3 + 24HF + 3O_3$
- 32. (i) Refer to solution 10.
 - (ii) Refer to solution 27.
- 33. (i) $C + 2H_2SO_4 \longrightarrow CO_2 + 2SO_2 + 2H_2O_3$
 - (ii) $2XeF_2 + 2H_2O \longrightarrow 2Xe + 4HF + 0$
- 34. (i) Refer to solution 5.
 - (ii) Refer to solution 21 of Topic 2.
- 35. (i) Structure of XeO₃ is as follows

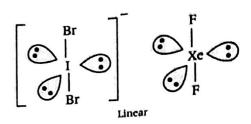
Pyramidal

- (ii) Refer to solution 11 of Topic 1.
- 36. Refer to solution 19.
- 37. (i) XeF₄ (isostructural to ICl₄)

(square planar)

(ii) XeO₃ (isostructural to BrO₃)

- 38. (i) (a) Ozone is thermodynamically unstable because its decomposition into oxygen results in the liberation of heat (ΔH is negative) and increase in entropy (ΔS is positive). These two effects reinforceach other resulting in large negative Gibbs energy change (ΔG) for its conversion into oxygen.
 - (b) Due to high electronegativity and small in fluorine forms only one oxoacid, HOF known as fluoric (I) acid or hypofluorous acid.
 - (ii) (a) Refer to solution 26(ii).
 - (b) Refer to solution 5.


(i)(a) Because of the small size and high electronegativity of oxygen molecules, water molecules are highly associated through hydrogen bonding resulting in higher boiling point of H2O than H2S.

- (b) Since, the stability of +6 oxidation state decreases or +4 oxidation state increases from S to Te due to inert pair effect, therefore, the reducing character of dioxides decreases from SO₂ to TeO₂.
- (ii) Refer to solution 10.
- 40. (i) (a) Refer to solution 5.
 - (b) Refer to solution 20 of Topic 1.
 - (ii) (a) Refer to solution 50(i) of Topic 2.
 - (b) In HClO₄, oxidation number of Cl is + 7 and in HClO oxidation number of Cl is +1, and acidic strength increases with increase in oxidation number. Thus, HClO₄ is a stronger acid than HClO.
- 41. (i)(a) The acidic strength of hydrogen halides increases from HF to HI. This is because the stability of these halides decreases down the group due to decrease in bond dissociation enthalpy of H-X bond from HF to HI.
 - (b) Refer to solution 8 of Topic 1.
 - (ii)(a) Structure of ClF3

- (b) Structure of XeF₄: Refer to solution 5.
- (i) Refer to solution 5 of Topic 1.
 - (ii) (a) Refer to solution 6 of Topic 1.
 - (b) Refer to solution 16.
- 43. (i) (a) IBr₂

Number of valence electron in this species is $7+(2\times7)+1=22$ The noble gas compound having 22 electrons is $XeF_2 = 8 + (2 \times 7) = 22$ IBr₂ is linear and so, is XeF₂.

(b) BrO₃ Number of valence electron in $BrO_3^- = 7 + (3 \times 6) + 1 = 26$. The noble gas compound having 26 electrons is $XeO_3 = 8 + (6 \times 3) = 26$. The structure of BrO₃ is pyramidal and the structure of XeO₃

is also pyramidal.

- (ii) (a) Refer to solution 21 of Topic 1. (b) Refer to solution 31 of Topic 2.
- **44.** (i) (a) Refer to solution 27.
 - (b) Refer to solution 35 (i).
 - (ii) (a) Refer to solution 38 of Topic 2.
 - (b) Refer to solution 7.
- 45. (i) Nitrogen oxide emitted from the exhausts of supersonic jet aeroplanes readily combine with ozone to form nitrogen dioxide and diatomic oxygen. Thereby depleting the concentration of ozone in the upper atmosphere. $NO(g) + O_3(g) \longrightarrow NO_2(g) + O_2(g)$

(ii) Due to smaller size, the lone pair of electrons on the F-atoms repel the bond pair of F -F bond. In contrast, due to the comparatively larger size of Cl atoms, the lone pairs, on the Cl-atoms do not repel the bond pair of Cl-Cl bond to such a extent. As a result, F-F bond energy is lower than that of Cl-Cl bond energy.

- (iii) Helium, being inert, non-inflammable and light gas, is used in filling balloons for meteorological observations.
- (iv) $XeF_2 + PF_5 \longrightarrow [XeF]^+ [PF_6]^-$
- **46.** (i) $XeF_4 + O_2F_2 \longrightarrow XeF_6 + O_2$
 - (ii) (a) Refer to solution 37 of Topic 2.
 - (b) Refer to solution 29 of Topic 2.
 - (c) Refer to solution 6 of Topic 1.

Objective Questions

(For Complete Chapter)

1 Mark Questions

- 1. Acidity of diprotic acids in aqueous solutions increases in the order (a) $H_2S < H_2Se < H_2Te$ (b) $H_2Se < H_2S < H_2Te$
 - (c) H2Te< H2S< H2Se
- (d) $H_2Se < H_2Te < H_2S$
- 2. Which among the following group 16 elements exists is more than two allotropic states?
 - (a) Polonium
- (b) Tellurium
- (c) Selenium
- (d) Oxygen
- 3. If the supply of oxygen is limited, H₂S reacts with O₂ to form
 - $(a) H_2O + SO_3$
- (b) $H_{2}O + S$
- $(c) H_2 SO_4 + S$
- $(d) H_2O + SO_2$
- 4. Catalyst used in making H₂SO₄ in contact process is
 - (a) V_2O_5

(b) Fe₂O₃

(c) Cr₂O₃

- (d) CrO₃
- 5. Number of non-bonding electron pair on Xe in XeF₆, XeF₄ and XeF₂ respectively will be
 - (a) 6, 4, 2
- (b) 1, 2, 3
- (c) 3, 2, 1
- (d) 0, 3, 2
- **6.** The geometry of $XeOF_2$ is
 - (a) pyramidal
- (b) T-shaped
- (c) octahedral
- (d) tetrahedral
- 7. The noble gas compound prepared by Bartlett was
 - (a) XeO₃
- (b) XePtF

(c) KrF,

- (d) XeF2
- 8. Which one of the following halogens has the highest bond dissociation energy?
 - $(a) F_2$

(b) Cl₂

(c) Br,

- (d) I,
- 9. The bleaching action of chlorine is due to the liberation of the following
 - (a) HOCl
- (b) HCl

(c)[0]

(d) O,

- 10. Least stable oxide of chlorine is
 - (a) Cl2O

(b) ClO₂

(c) Cl₂O₇

- (d) ClO₃
- 11. Which of the following is not obtained by direct reaction of constituent elements? (c) XeO₃ (b) XeF4 (d) XeF (a) XeF₂
- 12. Which of the following is anhydride of perchloric acid?
 - (a) Cl₂O₇ (b) Cl₂O₅
- (c) Cl₂O₃
- (d) HClO

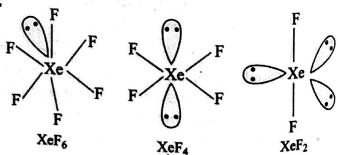
Explanations

1. Acidic strength of hydrides increases as the size of central atom increases which weakens the M bond. Since, the size increases from S to Te, thus acidic strength follows the order

$$H_2S < H_2Se < H_2Te$$

or as we go down the group, acidic strength of hydride increases.

Z.			
	Element	Allotropes	
(a)	Polonium	α - and β -polonium	
(b)	Tellurium	None	
(c)	Selenium	Trigonal, rhombohedral, three deep red monoclinic forms	
		$(\alpha, \beta \text{ and } \gamma\text{-amorphous red, black vitrous selenium}).$	
(d)	Oxygen	Dioxygen and ozone	


3. In limited supply of oxygen, H₂S burns with blue flame and S and H2O are the main products

$$2H_2S + O_2 \longrightarrow 2H_2O + 2S$$

Note In excess of oxygen, H₂S gives SO₂ and water as main product.

4. Even at 400-500°C, the rate of reaction is very low. Therefore, to increase the reaction velocity. a suitable catalyst is used. Now a days most of the sulphuric acid plants use V2O5 as a catalyst.

5.

Hence, number of non-bonding pair on Xe in XeF₆, XeF₄ and XeF₂ respectively will be 1, 2, 3.

XeOF₂

(The geometry is T-shaped).

 Bartlett reacted xenon and platinum hexafluoride in gas phase and an orange yellow solid of XePtF₆ was obtained.

$$Xe(g) + PtF_6(g) \longrightarrow Xe^+[PtF_6]^-(s)$$

Orange yellow

8. As the size increases bond length increases, thus bond dissociation energy decreases.

Malagula	Pond disseries
Molecule	Bond dissociation energy
F ₂	158.8
Cl ₂	242.6
Br ₂	192.8
I ₂	151.1

However, the dissociation energy of fluorine is lesser than that of chroline because of its small size. Hence, Cl₂ has the highest bond dissociation energy.

9. Chlorine reacts slowly with H₂O to form HCl and HOCl. The HOCl then decomposes into HCl and [0] radicals.

$$Cl_2 + H_2O \Longrightarrow HCl + HOCl$$

 $HOCl \longrightarrow HCl + [O]$

This nascent oxygen is very strong oxidising as well as effective bleaching agent in aqueous solution of Cl₂ or hypochlorite salt.

The stability of oxides increases with increase in oxidation state of halogen.

Oxide	Oxidation state of halogen
Cl ₂ O	+1
ClO ₂	+4
ClO ₃	+6
Cl ₂ O ₇	+7

Hence, Cl₂O is the least stable oxide of chlorine.

11. XeF₂, XeF₄ and XeF₆ can be directly prepared.

$$Xe + F_2 \xrightarrow{\text{Ni tube}} XeF_2$$
 $Xe + 2F_2 \xrightarrow{673 \text{ K}} XeF_4$
 $Xe + 3F_2 \xrightarrow{523-573 \text{ K}} XeF_4$
 $Xe + 3F_2 \xrightarrow{50-60 \text{ atm}} XeF_6$

 XeO_3 is obtained by the hydrolysis of XeF_6 : $XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$

Chlorine heptoxide (Cl₂O₇) is the anhydride of perchloric acid.

$$2HClO_4 \xrightarrow{\Delta} Cl_2O_7 + H_2O$$