

vector algebra-CBSE

1 Mark Questions

- 1. Find the position vector of a point which divides the join of points with position vectors $\vec{a} 2\vec{b}$ and $2\vec{a} + \vec{b}$ externally in the ratio 2:1.
- 2. If $\vec{a} = 4\hat{i} \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} 2\hat{j} + \hat{k}$, then find a unit vector parallel to the vector $\vec{a} + \vec{b}$.

- **3.** The two vectors $\hat{j} + \hat{k}$ and $3\hat{i} \hat{j} + 4\hat{k}$ represent the two sides AB and AC respectively of triangle ABC. Find the length of the median through A.
- **4.** Write the direction ratios of the vector $3\vec{a} + 2\vec{b}$, where $\vec{a} = \hat{i} + \hat{j} 2\hat{k}$ and $\vec{b} = 2\hat{i} 4\hat{j} + 5\hat{k}$.
- 5. Find the unit vector in the direction of the sum of the vectors $2\hat{i} + 3\hat{j} \hat{k}$ and $4\hat{i} 3\hat{j} + 2\hat{k}$.
- **6.** Find a vector in the direction of vector $2\hat{i} 3\hat{j} + 6\hat{k}$ which has magnitude 21 units.
- 7. Find a vector \overrightarrow{a} of magnitude $5\sqrt{2}$, making an angle of $\frac{\pi}{4}$ with X-axis, $\frac{\pi}{2}$ with Y-axis and an acute angle θ with Z-axis.
- **8.** Write a unit vector in the direction of the sum of the vectors $\vec{a} = 2\hat{i} + 2\hat{j} 5\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} 7\hat{k}$.
- **9.** Find the value of p for which the vectors $3\hat{i} 2\hat{j} + 9\hat{k}$ and $\hat{i} 2p\hat{j} + 3\hat{k}$ are parallel.
- **10.** Write the value of cosine of the angle which the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ makes with Y-axis.
- 11. Find the angle between X-axis and the vector $\hat{i} + \hat{j} + \hat{k}$.
- **12.** Write a vector in the direction of the vector $\hat{i} 2\hat{j} + 2\hat{k}$ that has magnitude 9 units.
- **13.** Write a unit vector in the direction of vector \overrightarrow{PQ} , where P and Q are the points (1, 3, 0) and (4, 5, 6), respectively.

- 14. If a unit vector \vec{a} makes angle $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then find the value of θ .
- **15.** Write a unit vector in the direction of the sum of vectors $\vec{a} = 2\hat{i} \hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} + \hat{j} + 3\hat{k}$.
- **16.** If $\vec{a} = x\hat{i} + 2\hat{j} z\hat{k}$ and $\vec{b} = 3\hat{i} y\hat{j} + \hat{k}$ are two equal vectors, then write the value of x + y + z.
- 17. P and Q are two points with position vectors $3\vec{a} 2\vec{b}$ and $\vec{a} + \vec{b}$, respectively. Write the position vector of a point R which divides the line segment PQ in the ratio 2:1 externally.
- **18.** L and M are two points with position vectors $2\overrightarrow{a} \overrightarrow{b}$ and $\overrightarrow{a} + 2\overrightarrow{b}$, respectively. Write the position vector of a point N which divides the line segment LM in the ratio 2:1 externally.
- 19. A and B are two points with position vectors $2\vec{a} 3\vec{b}$ and $6\vec{b} \vec{a}$, respectively. Write the position vector of a point P which divides the line segment AB internally in the ratio 1:2.
- **20.** Find the sum of the vectors $\vec{a} = \hat{i} 2\hat{j} + \hat{k}$, $\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{c} = \hat{i} 6\hat{j} 7\hat{k}$.
- **21.** Find the sum of the following vectors. $\vec{a} = \hat{i} 3\hat{k}, \vec{b} = 2\hat{j} \hat{k}, \vec{c} = 2\hat{i} 3\hat{j} + 2\hat{k}$
- **22.** Find the sum of the following vectors. $\vec{a} = \hat{i} 2\hat{j}$, $\vec{b} = 2\hat{i} 3\hat{j}$, $\vec{c} = 2\hat{i} + 3\hat{k}$
- **23.** Find the scalar components of \overrightarrow{AB} with initial point A(2,1) and terminal point B(-5,7).

- For what values of \vec{a} , the vectors $2\hat{i} 3\hat{j} + 4\hat{k}$ and $a\hat{i} + 6\hat{j} 8\hat{k}$ are collinear?
- Write the direction cosines of vector $-2\hat{i} + \hat{j} 5\hat{k}$.
- Write the position vector of mid-point of the vector joining points P(2, 3, 4) and Q(4, 1, -2).
- 7. Write a unit vector in the direction of vector $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$.
- 28. Find the magnitude of the vector $\vec{a} = 3\hat{i} 2\hat{j} + 6\hat{k}$
- 29. Find a unit vector in the direction of vector $\vec{a} = 2\hat{i} + 3\hat{j} + 6\hat{k}$.
- 30. If A, B and C are the vertices of a $\triangle ABC$, then what is the value of $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$?
- 31. Find a unit vector in the direction of $\vec{a} = 2\hat{i} 3\hat{j} + 6\hat{k}$.
- 32. Find a vector in the direction of $\vec{a} = 2\hat{i} \hat{j} + 2\hat{k}$, which has magnitude 6 units.
- 33. Find the position vector of mid-point of the line segment AB, where A is point (3, 4, -2) and B is point (1, 2, 4).
- 34. Write a vector of magnitude 9 units in the direction of vector $-2\hat{i} + \hat{j} + 2\hat{k}$.
- 35. Write a vector of magnitude 15 units in the direction of vector $\hat{i} 2\hat{j} + 2\hat{k}$. pelhi 2010
- 36. What is the cosine of angle which the vector $\sqrt{2} \hat{i} + \hat{j} + \hat{k}$ makes with Y-axis?

4 Marks Questions

- **37.** Find a vector of magnitude 5 units an parallel to the resultant of $\vec{a} = 2\hat{i} + 3\hat{j} \hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + \hat{k}$.
- **38.** Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} 2\hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} 2\hat{j} + \hat{k}$. Find a vector of magnitude 6 units, which is parallel to the vector $2\vec{a} \vec{b} + 3\vec{c}$.
- **39.** Find the position vector of a point R, which divides the line joining two points P and Q whose position vector are $2\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} 3\overrightarrow{b}$ respectively, externally in the ratio 1:2. Also, show that P is the mid-point of line segmet RQ.

$$\frac{2) \quad 6i - 3j + 2K}{7}$$

5)
$$\frac{6}{\sqrt{37}} \stackrel{?}{1} + \frac{1}{\sqrt{37}}$$

8)
$$\frac{1}{13}$$
 (41 + 3) - 1214)

$$p = -\frac{1}{3}$$

$$\frac{1}{7}(3i+2j+6k)$$

$$\frac{1}{\sqrt{26}}\left(\frac{1}{1+5}\right)$$

$$\frac{25}{\sqrt{30}}$$
, $\frac{1}{\sqrt{30}}$, $\frac{-5}{\sqrt{30}}$

29)
$$\frac{1}{7}(2i+3j+612)$$

37)
$$\frac{1}{\sqrt{50}} (15i + 5j)$$

1 Mark Questions

- 1. Find the magnitude of each of the two vectors \vec{a} and \vec{b} , having the same magnitude such that the angle between them is 60° and their scalar product is $\frac{9}{2}$.
- **2.** Find the value of $[\hat{i}, \hat{k}, \hat{j}]$.
- 3. Find λ and μ , if $(\hat{i} + 3\hat{j} + 9\hat{k}) \times (3\hat{i} - \lambda\hat{j} + \mu\hat{k}) = \vec{0}$.
- **4.** Write the number of vectors of unit length perpendicular to both the vectors $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k} \text{ and } \vec{b} = \hat{j} + \hat{k}$
- **5.** If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then write the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.
- **6.** If $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 400$ and $|\vec{a}| = 5$, then write the value of $|\vec{b}|$.
- 7. Find λ , if the vectors $\vec{a} = \hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} \hat{j} \hat{k}$ and $\vec{c} = \lambda\hat{j} + 3\hat{k}$ are coplanar.
- **8.** If $\vec{a} = 7\hat{i} + \hat{j} 4\hat{k}$ and $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$, then find the projection of \vec{a} on \vec{b} .
- **9.** If \hat{a} , \hat{b} and \hat{c} are mutually perpendicular unit vectors, then find the value of $|2\hat{a} + \hat{b} + \hat{c}|$.
- **10.** Write a unit vector perpendicular to both the vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$.

- Find the area of a parallelogram whose adjacent sides are represented by the vectors $2\hat{i} 3\hat{k}$ and $4\hat{j} + 2\hat{k}$.
- 12. If \vec{a} and \vec{b} are perpendicular vectors, $|\vec{a} + \vec{b}| = 13$ and $|\vec{a}| = 5$, then find the value of $|\vec{b}|$.
- 13. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + \vec{b}$ is also a unit vector, then find the angle between \vec{a} and \vec{b} .
- 14. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $2\hat{i} 3\hat{j} + 6\hat{k}$.
- 15. Write the projection of vector $\hat{i} + \hat{j} + \hat{k}$ along the vector \hat{j} .
- 16. Write the value of the following. $\hat{i} \times (\hat{j} + \hat{k}) + \hat{j} \times (\hat{k} + \hat{i}) + \hat{k} \times (\hat{i} + \hat{j})$
- 17. If vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 3$, $|\vec{b}| = 2/3$ and $\vec{a} \times \vec{b}$ is a unit vector, then write the angle between \vec{a} and \vec{b} .
- **18.** Find $\vec{a} \cdot (\vec{b} \times \vec{c})$, if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$.
- 19. If \vec{a} and \vec{b} are unit vectors, then find the angle between \vec{a} and \vec{b} , given that $(\sqrt{3}\vec{a} \vec{b})$ is a unit vector.
- **20.** If $|\vec{a}| = 8$, $|\vec{b}| = 3$ and $|\vec{a} \times \vec{b}| = 12$, find the angle between \vec{a} and \vec{b} .
- 21. Write the projection of the vector $\vec{a} = 2\hat{i} \hat{j} + \hat{k}$ on the vector $\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}$.
- Write the value of λ , so that the vectors $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + 3\hat{k}$ are perpendicular to each other.

- **23.** Write the projection of $(\vec{b} + \vec{c})$ on \vec{a} , where $\vec{a} = 2\hat{i} 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$.
- **24.** Write the projection of the vector $7\hat{i} + \hat{j} 4\hat{k}$ on the vector $2\hat{i} + 6\hat{j} + 3\hat{k}$.
- **25.** If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a}|$, then prove that vector $2\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to vector \overrightarrow{b} .
- **26.** Find $|\overrightarrow{x}|$, if for a unit vector \hat{a} , $(x-a) \cdot (x+a) = 15$.
- 27. Find λ , when projection of $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ on $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ is 4 units.
- **28.** Write the value of $(\hat{k} \times \hat{j}) \cdot \hat{i} + \hat{j} \cdot \hat{k}$.
- **29.** If $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$, then what can be concluded about the vector \vec{b} ?
- **30.** Write the projection of vector $\hat{i} \hat{j}$ on the vector $\hat{i} + \hat{j}$.
- **31.** Write the angle between vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively, having $\vec{a} \cdot \vec{b} = \sqrt{6}$.
- **32.** For what value of λ are the vectors $\hat{i} + 2\lambda \hat{j} + \hat{k}$ and $2\hat{i} + \hat{j} 3\hat{k}$ perpendicular?
- **33.** If $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and angle between \vec{a} and \vec{b} is 60°, then find $\vec{a} \cdot \vec{b}$.
- 34. Find the value of λ , if the vectors $2\hat{i} + \lambda\hat{j} + 3\hat{k}$ and $3\hat{i} + 2\hat{j} 4\hat{k}$ are perpendicular to each other.
- **35.** If $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 3$, then find the projection of \vec{b} on \vec{a} .

- **36.** If \vec{a} and \vec{b} are two vectors, such that $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$, then find the angle between \vec{a} and \vec{b} .
- **37.** Find λ , if $(2\hat{i} + 6\hat{j} + 14\hat{k}) \times (\hat{i} \lambda\hat{j} + 7\hat{k}) = \vec{0}$.

🔁 2 Marks Questions

- **38.** If the sum of two unit vectors \hat{a} and \hat{b} is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.
- **39.** If $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = \hat{i} 2\hat{j} + \hat{k}$ and $\vec{c} = -3\hat{i} + \hat{j} + 2\hat{k}$, find $[\vec{a}\ \vec{b}\ \vec{c}]$.
- **40.** If $|\vec{a}| = 2$, $|\vec{b}| = 7$ and $\vec{a} \times \vec{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}$, find the angle between \vec{a} and \vec{b} .
- **41.** Find the volume of cuboid whose edges are given by $-3\hat{i} + 7\hat{j} + 5\hat{k}$, $-5\hat{i} + 7\hat{j} 3\hat{k}$ and $7\hat{i} 5\hat{j} 3\hat{k}$.
- **42.** Show that the points $A(-2\hat{i} + 3\hat{j} + 5\hat{k})$, $B(\hat{i} + 2\hat{j} + 3\hat{k})$ and $C(7\hat{i} \hat{k})$ are collinear.
- **43.** Find $|\vec{a} \times \vec{b}|$, if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 5\hat{j} 2\hat{k}$.
- **44.** If θ is the angle between two vectors $\hat{i} 2\hat{j} + 3\hat{k}$ and $3\hat{i} 2\hat{j} + \hat{k}$, find $\sin \theta$.
- **45.** If $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 5$, $|\vec{b}| = 6$ and $|\vec{c}| = 9$, then find the angle between \vec{a} and \vec{b} .

☑ 4 Marks Questions

46. If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} - 3\hat{k}$ and $\hat{i} - 6\hat{j} - \hat{k}$ respectively, are the position vectors of points A, B, C and D, then find the angle between the straight lines AB and CD. Find whether \overrightarrow{AB} and \overrightarrow{CD} are collinear or not.

- 47. The scalar product of the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vectors $\vec{b} = 2\hat{i} + 4\hat{j} 5\hat{k}$ and $\vec{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value of λ and hence find the unit vector along $\vec{b} + \vec{c}$.
- **48.** Let $\vec{a} = 4\hat{i} + 5\hat{j} \hat{k}$, $\vec{b} = \hat{i} 4\hat{j} + 5\hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{c} and \vec{b} and $\vec{d} \cdot \vec{a} = 21$.
- **49.** Find x such that the four points A(4,4,4), B(5,x,8), C(5,4,1) and D(7,7,2) are coplanar.
- **50.** Find the value of x such that the points A(3,2,1), B(4,x,5), C(4,2,-2) and D(6,5,-1) are coplanar.
- **51.** If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular vectors of the same magnitude, then prove that $\vec{a} + \vec{b} + \vec{c}$ is equally inclined with the vectors \vec{a} , \vec{b} and \vec{c} .
- **52.** Using vectors, find the area of the $\triangle ABC$, whose vertices are A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1).
- **53.** Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$, then
 - (a) Let $c_1 = 1$ and $c_2 = 2$, find c_3 which makes \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} coplanar.
 - (b) If $c_2 = -1$ and $c_3 = 1$, show that no value of c_1 can make \vec{a} , \vec{b} and \vec{c} coplanar.
- **54.** Show that the points A, B, C with position vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} 3\hat{j} 5\hat{k}$ and $3\hat{i} 4\hat{j} 4\hat{k}$ respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle.

Show that the vectors \vec{a} , \vec{b} and \vec{c} are coplanar, if $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are coplanar.

Or

Prove that, for any three vectors \vec{a} , \vec{b} and \vec{c} , $[\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}] = 2 [\vec{a} \ \vec{b} \ \vec{c}]$.

56. Show that the four points A(4,5,1), B(0,-1,-1), C(3,9,4) and D(-4,4,4) are coplanar.

Or

Show that the four points A, B, C and D with position vectors $4\hat{i} + 5\hat{j} + \hat{k}$, $-\hat{j} - \hat{k}$, $3\hat{i} + 9\hat{j} + 4\hat{k}$ and $4(-\hat{i} + \hat{j} + \hat{k})$, respectively are coplanar.

- 57. The two adjacent sides of a parallelogram are $2\hat{i} 4\hat{j} 5\hat{k}$ and $2\hat{i} + 2\hat{j} + 3\hat{k}$. Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram.
- **58.** If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, then show that $\vec{a} \vec{d}$ is parallel to $\vec{b} \vec{c}$, where $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$.
- **59.** If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, find $(\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) + xy$.
- **60.** If $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{i} 4\hat{j} 5\hat{k}$, then find a unit vector perpendicular to both of the vectors $(\vec{a} \vec{b})$ and $(\vec{c} \vec{b})$.
- 61. Find the value of λ so that the four points A, B, C and D with position vectors $4\hat{i} + 5\hat{j} + \hat{k}$, $-\hat{j} \hat{k}$, $3\hat{i} + \lambda\hat{j} + 4\hat{k}$ and $-4\hat{i} + 4\hat{j} + 4\hat{k}$, respectively are coplanar.
- 62. Prove that $[\vec{a} \ \vec{b} + \vec{c} \ \vec{d}] = [\vec{a} \ \vec{b} \ \vec{d}] + [\vec{a} \ \vec{c} \ \vec{d}].$

- **63.** If $\vec{a} = 2\hat{i} 3\hat{j} + \hat{k}$, $\vec{b} = -\hat{i} + \hat{k}$, $\vec{c} = 2\hat{j} \hat{k}$ are three vectors, find the area of the parallelogram having diagonals $(\vec{a} + \vec{b})$ and $(\vec{b} + \vec{c})$.
- **64.** Vectors \vec{a} , \vec{b} and \vec{c} are such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$ and $|\vec{c}| = 7$. Find the angle between \vec{a} and \vec{b} .
- **65.** The scalar product of the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $\vec{b} = 2\hat{i} + 4\hat{j} 5\hat{k}$ and $\vec{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ and hence, find the unit vector along $\vec{b} + \vec{c}$.

O

The scalar product of vector $\hat{i} + \hat{j} + \hat{k}$ with the unit vector along the sum of vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ .

- **66.** Find the vector \vec{p} which is perpendicular to both $\vec{\alpha} = 4\hat{i} + 5\hat{j} \hat{k}$ and $\vec{\beta} = \hat{i} 4\hat{j} + 5\hat{k}$ and $\vec{p} \cdot \vec{q} = 21$, where $\vec{q} = 3\hat{i} + \hat{j} \hat{k}$.
- **67.** Find the unit vector perpendicular to both of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ where, $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.
- **68.** Find the unit vector perpendicular to the plane ABC where the position vectors of A, B and C are $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} + 3\hat{k}$, respectively.
- **69.** Dot product of a vector with vectors $\hat{i} \hat{j} + \hat{k}$, $2\hat{i} + \hat{j} 3\hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$ are respectively 4, 0 and 2. Find the vector.

- 70. Find the values of λ for which the angle between the vectors $\vec{a} = 2\lambda^2 \hat{i} + 4\lambda \hat{j} + \hat{k}$ and $\vec{b} = 7\hat{i} 2\hat{j} + \lambda \hat{k}$ is obtuse.
- 71. If \vec{a} , \vec{b} and \vec{c} are three vectors such that each one is perpendicular to the vector obtained by sum of the other two and $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 5$, then prove that $|\vec{a} + \vec{b} + \vec{c}| = 5\sqrt{2}$.

O

If \vec{a} , \vec{b} and \vec{c} are three vectors, such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 5$ and each one of these is perpendicular to the sum of other two, then find $|\vec{a} + \vec{b} + \vec{c}|$.

- 72. If $\vec{a} = 3\hat{i} \hat{j}$ and $\vec{b} = 2\hat{i} + \hat{j} 3\hat{k}$, then express \vec{b} in the form $\vec{b} = \vec{b}_1 + \vec{b}_2$, where $\vec{b}_1 \parallel \vec{a}$ and $\vec{b}_2 \perp \vec{a}$.
- 73. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} \hat{k}$, then find a vector \vec{c} , such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$.
- **74.** If $\vec{a} = \hat{i} \hat{j} + 7\hat{k}$ and $\vec{b} = 5\hat{i} \hat{j} + \lambda\hat{k}$, then find the value of λ , so that $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are perpendicular vectors.
- **75.** If $\vec{p} = 5\hat{i} + \lambda\hat{j} 3\hat{k}$ and $\vec{q} = \hat{i} + 3\hat{j} 5\hat{k}$, then find the value of λ , so that $\vec{p} + \vec{q}$ and $\vec{p} \vec{q}$ are perpendicular vectors.
- **76.** If \vec{a} , \vec{b} and \vec{c} are three vectors, such that $|\vec{a}| = 5$, $|\vec{b}| = 12$, $|\vec{c}| = 13$ and $\vec{a} + \vec{b} + \vec{c} = 0$, then find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.
- 77. Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$. Find a vector \vec{p} , which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c} = 18$.

- **78.** Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$
- **79.** If \vec{a} and \vec{b} are two vectors, such that $|\vec{a}| = 2$, $|\vec{b}| = 1$ and $\vec{a} \cdot \vec{b} = 1$, then find $(3\vec{a} 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})$.
- **80.** If vectors $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , then find the value of λ .
- **81.** Using vectors, find the area of triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).
- 82. Using vectors, find the area of triangle with vertices A(2, 3, 5), B(3, 5, 8) and C(2, 7, 8).

Answers

- 1) 3
- 2) -1
- 3) 14=27, 2=-9
- 4) +wo
- 5) -3/2
- 6) 4
- タン カニフ
- 8) 8/7
- 9) 56
- $\frac{10}{J_2} + \frac{1}{J_2}$

- 12) 12
- $(3) 0 = \frac{2\pi}{3}$
- 14) 5
- 15) 1
- 16) 0
- 17) 0 T/2
- 18) -10
- 19) -/6
- 20) 2/6
- 21) 2/3
- $22) \quad \lambda = \overline{5}_{2}$
- 23) 2
- 24) 8/7

- 31) 7/4
 - 32) 1/2
 - 337 53
 - 34) 3
 - 35) 3/,
 - 36) K/4
 - 37) -3
 - 38) 53
 - 39) -30
 - 40) 1/4
 - 41) 264
 - 42) (on be Peroud easily.
 - 43) -171 + 13i + 71x
 - 44) Sino = 2 J6
- 25) ja+5 pal => squaring both sides
 - 10+6) = 10,2
 - 2 1 2 1 1 1 1 + 1 1 1 1 1 1 = 0
 - (2b(1+b)).b=0

 - (2ā+b)b=0 1.e (2ā+b) 1 to b promd.
- 26) 4
- 27) 7=5
- 28) j
- 29) 0
- 30) 0

- 45) 0= (05-1(1/3)
- 46)
- 47) = (31+6)-2K)
- 48) -1 (i-16j-1314)

50) 5

51)

If three vectors \vec{a} , \vec{b} and \vec{c} are mutually perpendicular to each other, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c}$ = $\vec{c} \cdot \vec{a} = 0$ and if all three vectors \vec{a} , \vec{b} and \vec{c} are equally inclined with the vector $(\vec{a} + \vec{b} + \vec{c})$, that means each vector \vec{a} , \vec{b} and \vec{c} makes equal angle with $(\vec{a} + \vec{b} + \vec{c})$ by using formula $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$.

Given, $|\vec{a}| = |\vec{b}| = |\vec{c}| = \lambda$ (say) ...(i) and $\vec{a} \cdot \vec{b} = 0$, $\vec{b} \cdot \vec{c} = 0$ and $\vec{c} \cdot \vec{a} = 0$...(ii) (1/2)

Now, $|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2$

 $+2(\overrightarrow{a}\cdot\overrightarrow{b}+\overrightarrow{b}\cdot\overrightarrow{c}+\overrightarrow{c}\cdot\overrightarrow{a})$ $=\lambda^2+\lambda^2+\lambda^2+2(0+0+0)=3\lambda^2$

 $\Rightarrow |\vec{a} + \vec{b} + \vec{c}| = \sqrt{3}\lambda$

[length cannot be negative] (1)

Suppose $(\vec{a} + \vec{b} + \vec{c})$ is inclined at angles θ_1 , θ_2 and θ_3 respectively with vectors \vec{a} , \vec{b} and \vec{c} , then

 $(\vec{a} + \vec{b} + \vec{c}) \cdot \vec{a} = |\vec{a} + \vec{b} + \vec{c}| |\vec{a}| \cos \theta_1$ $[\because \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta]$

 $\Rightarrow |\vec{a}|^2 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = \sqrt{3} \lambda \times \lambda \cos \theta_1$

 $\lambda^2 + 0 + 0 = \sqrt{3} \lambda^2 \cos \theta_1$

[from Eqs. (i) and (ii)]

 $\cos \theta_1 = \frac{1}{\sqrt{3}}$

 $(\vec{a} + \vec{b} + \vec{c}) \cdot \vec{b} = |\vec{a} + \vec{b} + \vec{c}| |\vec{b}| \cos \theta_2$ (1)

 $\Rightarrow \vec{a} \cdot \vec{b} + |\vec{b}|^2 + \vec{c} \cdot \vec{b} = \sqrt{3} \lambda \cdot \lambda \cos \theta_2$

 $\Rightarrow 0 + \lambda^2 + 0 = \sqrt{3} \lambda^2 \cos \theta_2$

[from Eqs. (i) and (ii)]

 $\Rightarrow \qquad \cos\theta_2 = \frac{1}{\sqrt{3}}$

Similarly, $(\vec{a} + \vec{b} + \vec{c}) \cdot \vec{c} = |\vec{a} + \vec{b} + \vec{c}||\vec{c}|\cos\theta_3$

 $\Rightarrow \qquad \cos\theta_1 = \frac{1}{\sqrt{3}} \tag{1}$

Thus, $\cos \theta_1 = \cos \theta_2 = \cos \theta_3 = \frac{1}{\sqrt{3}}$

Hence, it is proved that $(\vec{a} + \vec{b} + \vec{c})$ is equally inclined with the vectors \vec{a} , \vec{b} and \vec{c} . (1/2)

 $52) \frac{1}{2} \sqrt{274}$

53) ^c3-2

 $54) \frac{1}{2} \sqrt{210}$

55) (onsider

 $\left[\left(\bar{a}+\bar{b}\right)\left(\bar{b}+\bar{i}\right)\left(\bar{c}+\bar{a}\right)\right]$

= (a+b). & (b+c) x (c+a)

~ (a+b). (b×c+bx&+cxc+cxa)

 $= (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a}) \quad [\because \vec{c} \times \vec{c} = \vec{0}]$ $= \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times \vec{a}) + \vec{a} \cdot (\vec{c} \times \vec{a}) \quad [\because \vec{c} \times \vec{c} = \vec{0}]$ $+ \vec{b} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{a}) + \vec{b} \cdot (\vec{c} \times \vec{a}) \quad (1)$ $= [\vec{a} \vec{b} \vec{c}] + [\vec{a} \vec{b} \vec{a}] + [\vec{a} \vec{c} \vec{a}] + [\vec{b} \vec{b} \vec{c}] \quad [\vec{b} \vec{b} \vec{a}] + [\vec{b} \vec{c} \vec{a}]$ $= [\vec{a} \vec{b} \vec{c}] + [\vec{b} \vec{c} \vec{a}] \quad [\because [\vec{a} \vec{b} \vec{a}] = [\vec{b} \vec{b} \vec{a}] = [\vec{a} \vec{c} \vec{a}] = 0]$ $= [\vec{a} \vec{b} \vec{c}] + [\vec{a} \vec{b} \vec{c}] = 2[\vec{a} \vec{b} \vec{c}] \quad ... (i)$ $[\because [\vec{b} \vec{c} \vec{a}] = -[\vec{b} \vec{a} \vec{c}] = -(-[\vec{a} \vec{b} \vec{c}]) = [\vec{a} \vec{b} \vec{c}]] \quad (1)$ Now, if \vec{a} , \vec{b} , \vec{c} are coplanar $\Rightarrow [\vec{a} \vec{b} \vec{c}] = 0$ $\Rightarrow 2[\vec{a} \vec{b} \vec{c}] = 0$ $\Rightarrow 2[\vec{a} \vec{b} \vec{c}] = 0$ $\Rightarrow [\vec{a} + \vec{b} \vec{b} + \vec{c} \vec{c} + \vec{a}] = 0 \quad \text{[from Eq. (i)]}$ $\Rightarrow \vec{a} + \vec{b}, \vec{b} + \vec{c} \text{ and } \vec{c} + \vec{a} \text{ are coplanar.} \quad (1)$

57) 2/101

58) \$59)

Use the result, if two vectors are parallel, then their cross-product will be a zero vector ...(i) $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$...(ii) (1) $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ On subtracting Eq. (ii) from Eq. (i), we get $(\vec{a} \times \vec{b}) - (\vec{a} \times \vec{c}) = (\vec{c} \times \vec{d}) - (\vec{b} \times \vec{d})$ $\Rightarrow (\vec{a} \times \vec{b}) - (\vec{a} \times \vec{c}) + (\vec{b} \times \vec{d}) - (\vec{c} \times \vec{d}) = \vec{0}$ $\vec{a} \times (\vec{b} - \vec{c}) + (\vec{b} - \vec{c}) \times \vec{d} = \vec{0}$ $\vec{a}\times(\vec{b}-\vec{c})-\vec{d}\times(\vec{b}-\vec{c})=\vec{0}$ $[:\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}] \quad (1)$ $(\vec{a} - \vec{d}) \times (\vec{b} - \vec{c}) = \vec{0}$ [: $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$, given] (1/2) Thus, we have that cross-product of vectors $\vec{a} - \vec{d}$ and $\vec{b} - \vec{c}$ is a zero vector, so $\vec{a} - \vec{d}$ is parallel to **59.** Given, $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ Now, $\vec{r} \times \hat{i} = (x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{i}$ $=x(\hat{i}\times\hat{i})+y(\hat{j}\times\hat{i})+z(\hat{k}\times\hat{i})$ $= x \cdot 0 + y(-\hat{k}) + z(\hat{j})$ $[\vec{a} \times \vec{a} = \vec{0}; \hat{j} \times \hat{i} = -\hat{k}, \hat{k} \times \hat{i} = \hat{j}]$ and $(\vec{r} \times \hat{j}) = (x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{j}$ $= x(\hat{i} \times \hat{j}) + y(\hat{j} \times \hat{j}) + z(\hat{k} \times \hat{j})$ $=x\hat{k}+y\cdot 0+z(-\hat{i})$ $=x\hat{k}-z\hat{i}$ $[\because \vec{a} \times \vec{a} = 0; \hat{i} \times \hat{j} = \hat{k} \text{ and } \hat{k} \times \hat{j} = -\hat{i}]$ (1) $(\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) = (-y\hat{k} + z\hat{j}) \cdot (x\hat{k} - z\hat{i})$ $= -yx + yz \cdot 0 + 0 \cdot zx - z^2 \cdot 0$ $[: \hat{k} \cdot \hat{k} = 1, \hat{k} \cdot \hat{i} = 0, \hat{j} \cdot \hat{k} = 0, \hat{j} \cdot \hat{i} = 0]$ $\therefore (\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) + xy = -xy + xy = 0$

$$\frac{60)}{\sqrt{J_2}} + \frac{K}{\sqrt{2}}$$

$$\lambda = 0$$

62)

62 To prove $[\vec{a} \ \vec{b} + \vec{c} \ \vec{d}] = [\vec{a} \ \vec{b} \ \vec{d}] + [\vec{a} \ \vec{c} \ \vec{d}]$ Let LHS = $[\vec{a} \ \vec{b} + \vec{c} \ \vec{d}] = \vec{a} \cdot \{ (\vec{b} + \vec{c}) \times \vec{d} \}$ [by definition of scalar triple product] (1) $= \vec{a} \cdot (\vec{b} \times \vec{d} + \vec{c} \times \vec{d}) \qquad (1)$ $= \vec{a} \cdot (\vec{b} \times \vec{d}) + \vec{a} \cdot (\vec{c} \times \vec{d}) = [\vec{a} \ \vec{b} \ \vec{d}] \qquad + [\vec{a} \ \vec{c} \ \vec{d}] \qquad (2)$ Hence proved.

(3)
$$\frac{1}{2} \sqrt{21}$$
(4) $\frac{1}{3}$
(5) $\frac{1}{4} (3i+6j-2k)$

67)
$$\frac{1}{\sqrt{6}} \left(-i + 2j - 1 \times \right)$$

$$\frac{1}{2}(3i-j)+\frac{1}{2}(j+2j-3k)$$

73)
$$\frac{1}{3}(5\hat{i}+2)+2k$$
)

Objectives Answers

Objective Questions

(For Complete Chapter)

1 Mark Questions

- 1. If $\lambda (3\hat{i} + 2\hat{j} 6\hat{k})$ is a unit vector, then the value of λ is
 - (a) $\pm \frac{1}{7}$
- (b) ± 7
- (c) $\pm \sqrt{43}$ (d) $\pm \frac{1}{\sqrt{43}}$
- **2.** The figure formed by four points $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 3\hat{j}, 3\hat{i} + 5\hat{j} - 2\hat{k}, \hat{k} - \hat{j}$ is a
 - (a) parallelogram (b) rectangle
 - (c) trapezium
- (d) square
- 3. If \vec{a} and \vec{b} are two unit vectors inclined at an angle π / 3, then the value of $|\vec{a} + \vec{b}|$ is
 - (a) equal to
- (b) greater than 1
- (c) equal to 0
- (d) less than 1
- **4.** If $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} + \vec{b}$ makes an angle of 60° with \vec{a} , then
 - (a) $|\vec{a}| = 2|\vec{b}|$
- (b) $2|\vec{a}| = |\vec{b}|$
- (c) $|\vec{a}| = \sqrt{3} |\vec{b}|$
- (d) $\sqrt{3} |\vec{a}| = |\vec{b}|$
- **5.** If $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}$ and \vec{b} is a vector such that $\vec{a} \cdot \vec{b} = |\vec{b}|^2$ and $|\vec{a} - \vec{b}| = \sqrt{7}$, then $|\vec{b}|$ is equal to (a) $\sqrt{7}$ (b) $\sqrt{3}$ (c) 7

- **6.** If $\vec{a} \cdot \vec{b} = -|\vec{a}||\vec{b}|$, then the angle between a and b is
 - (a) 45°
- (b) 180° (c) 90° (d) 60°
- 7. Suppose $\vec{a} = \lambda \hat{i} 7\hat{j} + 3\hat{k}$, $\vec{b} = \lambda \hat{i} + \hat{j} + 2\lambda \hat{k}$.

If the angle between \vec{a} and \vec{b} is greater than 90°, then λ satisfies the inequality

- (a) $-7 < \lambda < 1$
- (b) $\lambda > 1$
- (c) $1 < \lambda < 7$
- (d) $-5 < \lambda < 1$
- **8.** If \overrightarrow{x} and \overrightarrow{y} are unit vectors and $\overrightarrow{x} \cdot \overrightarrow{y} = 0$, then

- (a) $|\vec{x} + \vec{y}| = 1$ (b) $|\vec{x} + \vec{y}| = \sqrt{3}$ (c) $|\vec{x} + \vec{y}| = 2$ (d) $|\vec{x} + \vec{y}| = \sqrt{2}$

- **9.** The projection of $\vec{a} = 3\hat{i} \hat{j} + 5\hat{k}_{0n}$

$$\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$$
 is

- (a) $\frac{8}{\sqrt{35}}$ (b) $\frac{8}{\sqrt{39}}$ (c) $\frac{8}{\sqrt{14}}$ (d) $\sqrt{14}$

- **10.** If $|\vec{a}| = 1$, $|\vec{b}| = 4$, $|\vec{a}| \cdot |\vec{b}| = 2$ and

 $\vec{c} = 2\vec{a} \times \vec{b} - 3\vec{b}$, then the angle between

- \overrightarrow{b} and \overrightarrow{c} is
 (a) $\frac{\pi}{6}$ (b) $\frac{5\pi}{6}$ (c) $\frac{\pi}{3}$ (d) $\frac{2\pi}{3}$

- 11. If \hat{a} , \hat{b} and \hat{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$. Then, which one of the following is correct?
 - (a) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} = 0$
 - (b) $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a} \neq 0$ (c) $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c} = 0$

 - (d) $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$ are mutually perpendicular
- **12.** If $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 144$ and $|\vec{a}| = 4$, then $|\vec{b}|$ is equal to
 - (a) 16
- (b) 8
- (c) 3
- **13.** If a and b represent the adjacent sides of a parallelogram whose area is 15 units, then the area of the parallelogram whose adjacent sides are $3\vec{a} + 2\vec{b}$ and $\vec{a} + 3\vec{b}$ is
 - (a) 45 units
- (b) 75 units
- (c) 105 units
- (d) 165 units
- **14.** If $\overrightarrow{r} \cdot \overrightarrow{a} = \overrightarrow{r} \cdot \overrightarrow{b} = \overrightarrow{r} \cdot \overrightarrow{c} = 0$ for some non-zero vector \overrightarrow{r} , then the value of $[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]$ is
 - (a) 2
- (c) 0
- (d) None of these
- 15. If the volume of parallelopiped with coterminous edges $4\hat{i} + 5\hat{j} + \hat{k}$, $-\hat{j} + \hat{k}$ and $3\hat{i} + 9\hat{j} + p\hat{k}$ is 34 cu units, then p is equal to
 - (a) 4
- (b) -13
- (c) 13
- (d) 6