vector algebra-CBSE

Ø 1 Mark Questions

1. Find the position vector of a point which divides the join of points with position vectors $\vec{a}-2 \vec{b}$ and $2 \vec{a}+\vec{b}$ externally in the ratio 2:1.
2. If $\vec{a}=4 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-2 \hat{j}+\hat{k}$, then find a unit vector parallel to the vector $\vec{a}+\vec{b}$.
3. The two vectors $\hat{j}+\hat{k}$ and $3 \hat{i}-\hat{j}+4 \hat{k}$ represent the two sides $A B$ and $A C$ respectively of triangle $A B C$. Find the length of the median through A.
4. Write the direction ratios of the vector $3 \vec{a}+2 \vec{b}$, where $\vec{a}=\hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=2 \hat{i}-4 \hat{j}+5 \hat{k}$.
5. Find the unit vector in the direction of the sum of the vectors $2 \hat{i}+3 \hat{j}-\hat{k}$ and $4 \hat{i}-3 \hat{j}+2 \hat{k}$.
6. Find a vector in the direction of vector $2 \hat{i}-3 \hat{j}+6 \hat{k}$ which has magnitude 21 units.
7. Find a vector \vec{a} of magnitude $5 \sqrt{2}$, making an angle of $\frac{\pi}{4}$ with X-axis, $\frac{\pi}{2}$ with Y-axis and an acute angle θ with Z-axis.
8. Write a unit vector in the direction of the sum of the vectors $\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}-7 \hat{k}$.
9. Find the value of p for which the vectors $3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\hat{i}-2 p \hat{j}+3 \hat{k}$ are parallel.
10. Write the value of cosine of the angle which the vector $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ makes with Y-axis.
11. Find the angle between X-axis and the vector $\hat{i}+\hat{j}+\hat{k}$.
12. Write a vector in the direction of the vector $\hat{i}-2 \hat{j}+2 \hat{k}$ that has magnitude 9 units.
13. Write a unit vector in the direction of vector $\overrightarrow{P Q}$, where P and Q are the points $(1,3,0)$ and $(4,5,6)$, respectively.
14. If a unit vector \vec{a} makes angle $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k}, then find the value of θ.
15. Write a unit vector in the direction of the sum of vectors $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and
$\vec{b}=-\hat{i}+\hat{j}+3 \hat{k}$.
16. If $\vec{a}=x \hat{i}+2 \hat{j}-z \hat{k}$ and $\vec{b}=3 \hat{i}-y \hat{j}+\hat{k}$ are two equal vectors, then write the value of $x+y+z$.
17. P and Q are two points with position vectors $3 \vec{a}-2 \vec{b}$ and $\vec{a}+\vec{b}$, respectively. Write the position vector of a point R which divides the line segment $P Q$ in the ratio 2: 1 externally.
18. L and M are two points with position vectors $2 \vec{a}-\vec{b}$ and $\vec{a}+2 \vec{b}$, respectively. Write the position vector of a point N which divides the line segment $L M$ in the ratio 2:1 externally.
19. A and B are two points with position vectors $2 \vec{a}-3 \vec{b}$ and $6 \vec{b}-\vec{a}$, respectively. Write the position vector of a point P which divides the line segment $A B$ internally in the ratio $1: 2$.
20. Find the sum of the vectors $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}$, $\vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}$.
21. Find the sum of the following vectors.

$$
\vec{a}=\hat{i}-3 \hat{k}, \vec{b}=2 \hat{j}-\hat{k}, \vec{c}=2 \hat{i}-3 \hat{j}+2 \hat{k}
$$

22. Find the sum of the following vectors.

$$
\vec{a}=\hat{i}-2 \hat{j}, \vec{b}=2 \hat{i}-3 \hat{j}, \vec{c}=2 \hat{i}+3 \hat{k}
$$

23. Find the scalar components of $\overrightarrow{A B}$ with initial point $A(2,1)$ and terminal point
$B(-5,7)$.
24. For what values of \vec{a}, the vectors
$2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $a \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear?

Write the direction cosines of vector
$-2 \hat{i}+\hat{j}-5 \hat{k}$.
26. Write the position vector of mid-point of the vector joining points $P(2,3,4)$ and
27. Write a unit vector in the direction of vector $\vec{a}=2 \hat{i}+\hat{j}+2 \hat{k}$.
28. Find the magnitude of the vector $\vec{a}=3 \hat{i}-2 \hat{j}+6 \hat{k}$.
29. Find a unit vector in the direction of vector $\vec{a}=2 \hat{i}+3 \hat{j}+6 \hat{k}$.
30. If A, B and C are the vertices of a $\triangle A B C$, then what is the value of $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}$?
31. Find a arsit vector in the direction of $\vec{a}=2 \hat{i}-3 \hat{j}+6 \hat{k}$.
32. Find a vector in the direction of $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$, which has magnitude 6 units.
33. Find the position vector of mid-point of the line segment $A B$, where A is point $(3,4,-2)$ and B is point $(1,2,4)$.
34. Write a vector of magnitude 9 units in the direction of vector $-2 \hat{i}+\hat{j}+2 \hat{k}$.
35. Write a vector of magnitude 15 units in the direction of vector $\hat{i}-2 \hat{j}+2 \hat{k}$. Delhi 2010
36. What is the cosine of angle which the vector $\sqrt{2} \hat{i}+\hat{j}+\hat{k}$ makes with Y-axis?
ii) $\theta=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
32) 4i-2j+4k
12) $3 i-6 j+6 k$
33) $2 i+3 \hat{\jmath}+1<$
(3) $\frac{1}{7}(3 i+2 j+6 k)$
14) $\theta=\pi / 3$
34) $-6 i+3 j+6 i<$
35) $\quad 5 i-10 j+101<$
15) $\frac{1}{\sqrt{26}}(i+51<)$
36) 1/2
16) $=0$
17) $-\bar{a}+4 \bar{b}$
37) $\frac{1}{\sqrt{10}}(15 i+5 j)$
18) $5 \bar{b}$
19) \bar{a}
38) 2i-4j+4k
20) $-4 j-1<$
21) 3i-j-21<
22) 5i-5j+3i<
23) 6
24) $a=-4$
25) $\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}$
26) $3 i+2 j+12$
27) $\frac{1}{3}(21+j+212)$
28) 7
29) $\frac{1}{7}(2 i+3 j+612)$
30) 0
31) $\frac{1}{7}(2 i-3 i+6 k)$

Ø 1 Mark Questions

1. Find the magnitude of each of the two vectors \vec{a} and \vec{b}, having the same magnitude such that the angle between them is 60° and their scalar product is $\frac{9}{2}$.
2. Find the value of $[\hat{i}, \hat{k}, \hat{j}]$.
3. Find λ and μ, if $(\hat{i}+3 \hat{j}+9 \hat{k}) \times(3 \hat{i}-\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$.
4. Write the number of vectors of unit length perpendicular to both the vectors $\vec{a}=2 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{j}+\hat{k}$
5. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that", $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then write the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.
6. If $|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}=400$ and $|\vec{a}|=5$, then

- write the value of $|\vec{b}|$.

7. Find λ, if the vectors $\vec{a}=\hat{i}+3 \hat{j}+\hat{k}$, $\vec{b}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=\lambda \hat{j}+3 \hat{k}$ are coplanar.
8. If $\vec{a}=7 \hat{i}+\hat{j}-4 \hat{k}$ and $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$, then find the projection of \vec{a} on \vec{b}.
9. If \hat{a}, \hat{b} and \hat{c} are mutually perpendicular unit vectors, then find the value of $|2 \hat{a}+\hat{b}+\hat{c}|$.
10. Write a unit vector perpendicular to both the vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$.
11. Find the area of a parallelogram whose vectors $2 \hat{i}-3 \hat{k}$ and $4 \hat{j}+2 \hat{k}$.
12. If \vec{a} and \vec{b} are perpendicular vectors, $|\vec{a}+\vec{b}|=13$ and $|\vec{a}|=5$, then find the value of $|\vec{b}|$.
13. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+\vec{b}$ is also a unit vector, then find the angle between \vec{a} and \vec{b}.
14. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $2 \hat{i}-3 \hat{j}+6 \hat{k}$.
15. Write the projection of vector $\hat{i}+\hat{j}+\hat{k}$ along the vector \hat{j}.
16. Write the value of the following. $\hat{i} \times(\hat{j}+\hat{k})+\hat{j} \times(\hat{k}+\hat{i})+\hat{k} \times(\hat{i}+\hat{j})$
17. If vectors \vec{a} and \vec{b} are such that $|\vec{a}|=3$, $|\vec{b}|=2 / 3$ and $\vec{a} \times \vec{b}$ is a unit vector, then write the angle between \vec{a} and \vec{b}.
18. Find $\vec{a} \cdot(\vec{b} \times \vec{c})$, if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$, $\vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}+2 \hat{k}$.
19. If \vec{a} and \vec{b} are unit vectors, then find the angle between \vec{a} and \vec{b}, given that $(\sqrt{3} \vec{a}-\vec{b})$ is a unit vector.
20. If $|\vec{a}|=8,|\vec{b}|=3$ and $|\vec{a} \times \vec{b}|=12$, find the angle between \vec{a} and \vec{b}.
21. Write the projection of the vector $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ on the vector $\vec{b}=\hat{i}+2 \hat{j}+2 \hat{k}$.
22. Write the value of λ, so that the vectors $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$ are perpendicular to each other.
23. Write the projection of $(\vec{b}+\vec{c})$ on \vec{a}, where
$\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$.
24. Write the projection of the vector $7 \hat{i}+\hat{j}-4 \hat{k}$ on the vector $2 \hat{i}+6 \hat{j}+3 \hat{k}$.
25. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}+\vec{b}|=|\vec{a}|$, then prove that vector $2 \vec{a}+\vec{b}$ is perpendicular to vector \vec{b}.
26. Find $|\vec{x}|$, if for a unit vector \hat{a}, $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=15$.
27. Find λ, when projection of $\vec{a}=\lambda \hat{i}+\hat{j}+4 \hat{k}$ on $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$ is 4 units.
28. Write the value of $(\hat{k} \times \hat{j}) \cdot \hat{i}+\hat{j} \cdot \hat{k}$.
29. If $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b}=0$, then what can be concluded about the vector \vec{b} ?
30. Write the projection of vector $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$.
31. Write the angle between vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively, having $\vec{a} \cdot \vec{b}=\sqrt{6}$.
32. For what value of λ are the vectors $\hat{i}+2 \lambda \hat{j}+\hat{k}$ and $2 \hat{i}+\hat{j}-3 \hat{k}$ perpendicular?
33. If $|\vec{a}|=\sqrt{3},|\vec{b}|=2$ and angle between \vec{a} and \vec{b} is 60°, then find $\vec{a} \cdot \vec{b}$.
34. Find the value of λ, if the vectors $2 \hat{i}+\lambda \hat{j}+3 \hat{k}$ and $3 \hat{i}+2 \hat{j}-4 \hat{k}$ are perpendicular to each other.
35. If $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=3$, then find the projection of \vec{b} on \vec{a}.
36. If \vec{a} and \vec{b} are two vectors, such that $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$, then find the angle between \vec{a} and \vec{b}.
37. Find λ, if $(2 \hat{i}+6 \hat{j}+14 \hat{k}) \times(\hat{i}-\lambda \hat{j}+7 \hat{k})=\overrightarrow{0}$.

C 2 Marks Questions

38. If the sum of two unit vectors \hat{a} and \hat{b} is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.
39. If $\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ and $\vec{c}=-3 \hat{i}+\hat{j}+2 \hat{k}$, find $[\vec{a} \vec{b} \vec{c}]$.
40. If $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}$, find the angle between \vec{a} and \vec{b}.
41. Find the volume of cuboid whose edges are given by $-3 \hat{i}+7 \hat{j}+5 \hat{k},-5 \hat{i}+7 \hat{j}-3 \hat{k}$ and $7 \hat{i}-5 \hat{j}-3 \hat{k}$.
42. Show that the points $A(-2 \hat{i}+3 \hat{j}+5 \hat{k})$, $B(\hat{i}+2 \hat{j}+3 \hat{k})$ and $C(7 \hat{i}-\hat{k})$ are collinear.
43. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$.
44. If θ is the angle between two vectors $\hat{i}-2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$, find $\sin \theta$.
45. If $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=5,|\vec{b}|=6$ and $|\vec{c}|=9$, then find the angle between \vec{a} and \vec{b}.

ת 4 Marks Questions

46. If $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$ respectively, are the position vectors of points A, B, C and D, then find the angle between the straight lines $A B$ and $C D$. Find whether $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are collinear or not.
47. The scalar product of the vector $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of the vectors $\vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{c}=\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to 1 . Find the value of λ and hence find the unit vector along $\vec{b}+\vec{c}$.
48. Let $\vec{a}=4 \hat{i}+5 \hat{j}-\hat{k}, \vec{b}=\hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}-\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{c} and \vec{b} and $\vec{d} \cdot \vec{a}=21$.
49. Find x such that the four points $A(4,4,4)$, $B(5, x, 8), C(5,4,1)$ and $D(7,7,2)$ are coplanar.
50. Find the value of x such that the points $A(3,2,1), B(4, x, 5), C(4,2,-2)$ and $D(6,5,-1)$ are coplanar.
51. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular vectors of the same magnitude, then prove that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined with the vectors \vec{a}, \vec{b} and \vec{c}.
52. Using vectors, find the area of the $\triangle A B C$, whose vertices are $A(1,2,3)$, $B(2,-1,4)$ and $C(4,5,-1)$.
53. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$, then
(a) Let $c_{1}=1$ and $c_{2}=2$, find c_{3} which makes \vec{a}, \vec{b} and \vec{c} coplanar.
(b) If $c_{2}=-1$ and $c_{3}=1$, show that no value of c_{1} can make \vec{a}, \vec{b} and \vec{c} coplanar.
54. Show that the points A, B, C with position vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle.
55. Show that the vectors \vec{a}, \vec{b} and \vec{c} are coplanar, if $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are coplanar.

$$
O_{r}
$$

Prove that, for any three vectors \vec{a}, \vec{b} and $\vec{c},[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2\left[\begin{array}{ll}\vec{a} & \vec{b} \\ c\end{array}\right]$.
56. Show that the four points $A(4,5,1)$, $B(0,-1,-1), C(3,9,4)$ and $D(-4,4,4)$ are coplanar.

Or

Show that the four points A, B, C and D with position vectors $4 \hat{i}+5 \hat{j}+\hat{k},-\hat{j}-\hat{k}$, $3 \hat{i}+9 \hat{j}+4 \hat{k}$ and $4(-\hat{i}+\hat{j}+\hat{k})$, respectively are coplanar.
57. The two adjacent sides of a parallelogram are $2 \hat{i}-4 \hat{j}-5 \hat{k}$ and $2 \hat{i}+2 \hat{j}+3 \hat{k}$. Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram.
58. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, then show that $\vec{a}-\vec{d}$ is parallel to $\vec{b}-\vec{c}$, where $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$.
59. If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, find $(\vec{r} \times \hat{i}) \cdot(\vec{r} \times \hat{j})+x y$.
60. If $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{i}-4 \hat{j}-5 \hat{k}$, then find a unit vector perpendicular to both of the vectors $(\vec{a}-\vec{b})$ and $(\vec{c}-\vec{b})$.
61. Find the value of λ so that the four points A, B, C and D with position yectors $4 \hat{i}+5 \hat{j}+\hat{k}-\hat{j}-\hat{k}, 3 \hat{i}+\lambda \hat{j}+4 \hat{k}$ and $-4 \hat{i}+4 \hat{j}+4 \hat{k}$, respectively are coplanar.
62. Prove that $\left[\begin{array}{lll}\vec{a} & \vec{b}+\vec{c} & \vec{d}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{d}\end{array}\right]$ $+\left[\begin{array}{lll}\vec{a} & \vec{c} & \vec{d}\end{array}\right]$.
63. If $\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}, \vec{b}=-\hat{i}+\hat{k}, \vec{c}=2 \hat{j}-\hat{k}$ are three vectors, find the area of the parallelogram having diagonals $(\vec{a}+\vec{b})$ and $(\vec{b}+\vec{c})$.
64. Vectors \vec{a}, \vec{b} and \vec{c} are such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=\mathbf{5}$ and $|\vec{c}|=7$. Find the angle between \vec{a} and \vec{b}.
65. The scalar product of the vector $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors $\vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{c}=\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ and hence, find the unit vector along $\vec{b}+\vec{c}$.

Or

The scalar product of vector $\hat{i}+\hat{j}+\hat{k}$ with the unit vector along the sum of vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ.
66. Find the vector \vec{p} which is perpendicular to both $\vec{\alpha}=4 \hat{i}+5 \hat{j}-\hat{k}$ and $\vec{\beta}=\hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{p} \cdot \vec{q}=21$, where $\vec{q}=3 \hat{i}+\hat{j}-\hat{k}$.
67. Find the unit vector perpendicular to both of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ where, $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.
68. Find the unit vector perpendicular to the plane $A B C$ where the position vectors of A, B and C are $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+\hat{j}+2 \hat{k}$ and $2 \hat{i}+3 \hat{k}$, respectively.
69. Dot product of a vector with vectors $\hat{i}-\hat{j}+\hat{k}, 2 \hat{i}+\hat{j}-3 \hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$ are respectively 4,0 and 2 . Find the vector.
70. Find the values of λ for which the angle between the vectors $\vec{a}=2 \lambda^{2} \hat{i}+4 \lambda \hat{j}+\hat{k}$ and $\vec{b}=7 \hat{i}-2 \hat{j}+\lambda \hat{k}$ is obtuse.
71. If \vec{a}, \vec{b} and \vec{c} are three vectors such that each one is perpendicular to the vector obtained by sum of the other two and $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=5$, then prove that $|\vec{a}+\vec{b}+\vec{c}|=5 \sqrt{2}$.

Or

If \vec{a}, \vec{b} and \vec{c} are three vectors, such that $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=5$ and each one of these is perpendicular to the sum of other two, then find $|\vec{a}+\vec{b}+\vec{c}|$.
72. If $\vec{a}=3 \hat{i}-\hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}-3 \hat{k}$, then express \vec{b} in the form $\vec{b}=\vec{b}_{1}+\vec{b}_{2}$, where $\vec{b}_{1} \| \vec{a}$ and $\vec{b}_{2} \perp \vec{a}$.
73. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{j}-\hat{k}$, then find a vector \vec{c}, such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$.
74. If $\vec{a}=\hat{i}-\hat{j}+7 \hat{k}$ and $\vec{b}=5 \hat{i}-\hat{j}+\lambda \hat{k}$, then find the value of λ, so that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular vectors.
75. If $\vec{p}=5 \hat{i}+\lambda \hat{j}-3 \hat{k}$ and $\vec{q}=\hat{i}+3 \hat{j}-5 \hat{k}$, then find the value of λ, so that $\vec{p}+\vec{q}$ and $\vec{p}-\vec{q}$ are perpendicular vectors.
76. If \vec{a}, \vec{b} and \vec{c} are three vectors, such that $|\vec{a}|=5,|\vec{b}|=12,|\vec{c}|=13$ and $\vec{a}+\vec{b}+\vec{c}=0$, then find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.
77. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k} \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{p}, which is perpendicular to both \vec{a} and \vec{b} and $\overrightarrow{\boldsymbol{p}} \cdot \overrightarrow{\boldsymbol{c}}=18$.
78. Find a unit vector perpendicular to each
of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$.
79. If \vec{a} and \vec{b} are two vectors, such that $|\vec{a}|=2,|\vec{b}|=1$ and $\vec{a} \cdot \vec{b}=1$, then find $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$.
80. If vectors $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ.
81. Using vectors, find the area of triangle with vertices $A(1,1,2), B(2,3,5)$ and $C(1,5,5)$.
82. Using vectors, find the area of triangle with vertices $A(2,3,5), B(3,5,8)$ and $C(2,7,8)$.

1) 3
2) -1
3) $\mu=27, \lambda=-9$
4) two
5) $-3 / 2$
6) 4
7) $\lambda=7$
8) $8 / 7$
9) $\sqrt{6}$
10) $\frac{-1}{\sqrt{2}}+\frac{j}{\sqrt{2}}$

「1) $4 \sqrt{14}$
12) 12
13) $\theta=\frac{2 \pi}{3}$
14) 5
(5) 1
16) 0
17) $\theta=\pi / 6$
18) -10
19) $x^{-} / 6$
20) $\pi / 6$
21) $2 / 3$
22) $\lambda=5 / 2$
23) 2
24) $8 / 7$
3) $\pi / 4$
32) $1 / 2$
33) $\sqrt{3}$
34) 3
35) 3/2
36) $\pi / 4$
37) -3
38) $\sqrt{3}$
39) -30
40) $\pi / 6$
41) 264
42) (an be Proued easily.
43) $-17 i+13 j+7 k$
44) $\sin \theta=\frac{2 \sqrt{6}}{7}$
25) | $\bar{a}+\bar{b} k \bar{a} \mid \Rightarrow$ squaring both sides

$$
|\bar{a}+\bar{b}|^{2}=(\bar{a})^{2}
$$

$2|a|-|b|+|b| \cdot|b|=0$
$(2|a|+|b|) \cdot b=0$
$(2 \bar{a}+\bar{b}) \bar{b}=0$ i.e $(2 \bar{a}+\bar{b}) \perp$ to \bar{b} piourd.
26) 4
27) $\lambda=5$
28) -1
29) 0
30) 0
45) $v=\cos ^{-1}(1 / 3)$
46)

4-1) $\frac{1}{4}(3 \hat{i}+6 j-2 k)$
48) $\frac{-1}{3}(i-16 j-13$ に)
49) $x=7$

50) 5

Si)

51.

If three vectors \vec{a}, \vec{b} and \vec{c} are mutually
perpendicular to each other, then $\vec{a} \vec{b}=\vec{b} \vec{c}$ $-\vec{c} \cdot \vec{a}=0$ and if all three vectors \vec{a}, \vec{b} and \vec{c} are equally inclined with the vector $(\vec{a}+\vec{b}+\vec{c})$, that means each vector $\overrightarrow{\vec{a}}, \vec{b}$ and \vec{c} makes equal angle with $(\vec{a}+\vec{b}+\vec{c})$ by using formula

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

$$
\begin{equation*}
\text { Given. }|\vec{a}|=|\vec{b}|=|\vec{c}|=\lambda \quad \text { (say) } \tag{i}
\end{equation*}
$$

and $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0$ and $\vec{c} \cdot \vec{a}=0$
(ii) $(1 / 2)$

Now, $|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}$

$$
\begin{array}{r}
+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}) \\
=\lambda^{2}+\lambda^{2}+\lambda^{2}+2(0+0+0)=3 \lambda^{2}
\end{array}
$$

$$
\Rightarrow \quad|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3} \lambda
$$

[length cannot be negative] (1)
Suppose $(\vec{a}+\vec{b}+\vec{c})$ is inclined at angles θ_{1}, θ_{2} and θ_{3} respectively with vectors \vec{a}, \vec{b} and \vec{c}, then

$$
\begin{aligned}
(\vec{a}+\vec{b}+\vec{c}) \cdot \vec{a}= & |\vec{a}+\vec{b}+\vec{c}||\vec{a}| \cos \theta_{1} \\
& {[\because \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta] }
\end{aligned}
$$

$\Rightarrow \quad|\vec{a}|^{2}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=\sqrt{3} \lambda \times \lambda \cos \theta_{1}$
$\Rightarrow \quad \lambda^{2}+0+0=\sqrt{3} \lambda^{2} \cos \theta_{1}$
[from Eqs. (i) and (ii)]

$$
\cos \theta_{1}=\frac{1}{\sqrt{3}}
$$

$$
\begin{equation*}
(\vec{a}+\vec{b}+\vec{c}) \cdot \vec{b}=|\vec{a}+\vec{b}+\vec{c}||\vec{b}| \cos \theta_{2} \tag{1}
\end{equation*}
$$

$\Rightarrow \quad \vec{a} \cdot \vec{b}+|\vec{b}|^{2}+\vec{c} \cdot \vec{b}=\sqrt{3} \lambda \cdot \lambda \cos \theta_{2}$
$\Rightarrow \quad 0+\lambda^{2}+0=\sqrt{3} \lambda^{2} \cos \theta_{2}$
[from Eqs. (i) and (ii)]
$\Rightarrow \quad \cos \theta_{2}=\frac{1}{\sqrt{3}}$
Similarly, $(\vec{a}+\vec{b}+\vec{c}) \cdot \vec{c}=|\vec{a}+\vec{b}+\vec{c} \| \vec{c}| \cos \theta_{3}$
$\Rightarrow \quad \cos \theta_{1}=\frac{1}{\sqrt{3}}$
Thus, $\cos \theta_{1}=\cos \theta_{2}=\cos \theta_{3}=\frac{1}{\sqrt{3}}$
Hence, it is proved that $(\vec{a}+\vec{b}+\vec{c})$ is equally inclined with the vectors \vec{a}, \vec{b} and \vec{c}.
52) $\frac{1}{2} \sqrt{274}$

53) $c_{3}=2$

54) $\frac{1}{2} \sqrt{210}$
55) consider
$[(\bar{a}+\bar{b})(\bar{b}+\bar{c})(\bar{c}+\bar{a})]$
$=(\bar{a}+\bar{b}) \cdot\{(\bar{b}+\bar{c}) \times(\bar{c}+\bar{a})\}$
$=(\bar{a}+\bar{b}) \cdot(\bar{b} \times \bar{c}+\bar{b} \times \bar{a}+\bar{c} \times \bar{c}+\bar{c} \times \bar{a})$

$$
\begin{align*}
& =(\vec{a}+\vec{b}) \cdot(\vec{b} \times \vec{c}+\vec{b} \times \vec{a}+\vec{c} \times \vec{a}) \quad[\because \vec{c} \times \vec{c}=\overrightarrow{0}] \\
& =\vec{a} \cdot(\vec{b} \times \vec{c})+\vec{a} \cdot(\vec{b} \times \vec{a})+\vec{a} \cdot(\vec{c} \times \vec{a}) \\
& +\vec{b} \cdot(\vec{b} \times \vec{c})+\vec{b} \cdot(\vec{b} \times \vec{a})+\vec{b} \cdot(\vec{c} \times \vec{a}) \tag{1}\\
& =\left[\begin{array}{lll}
\vec{a} & \vec{b}
\end{array}\right]+\left[\begin{array}{ll}
\vec{a} & \vec{b} \\
\vec{a}
\end{array}\right]+\left[\begin{array}{lll}
\vec{a} & \vec{c} & \vec{a}
\end{array}\right]+\left[\begin{array}{ll}
\vec{b} & \vec{b} \\
\vec{c}
\end{array}\right] \\
& +[\vec{b} \vec{b} \vec{a}]+[\vec{b} \vec{c} \vec{a}] \\
& =[\vec{a} \vec{b} \vec{c}]+[\vec{b} \vec{c} \vec{a}]
\end{align*}
$$

$\left[\because\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{a}\end{array}\right]=\left[\begin{array}{lll}\vec{b} & \vec{b} & \vec{c}\end{array}\right]=\left[\begin{array}{lll}\vec{b} & \vec{b} & \vec{a}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{c} & \vec{a}\end{array}\right]=0\right]$ $=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]+\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
$\left[\because[\vec{b} \cdot \vec{c} \cdot \vec{a}]=-[\vec{b} \cdot \vec{a} \vec{c}]=-\left(-\left[\begin{array}{ll}\vec{a} & \vec{b} \\ \vec{c}\end{array}\right]\right)=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]\right](1)$
Now, if $\vec{a}, \vec{b}, \vec{c}$ are coplanar $\Rightarrow\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0$
$\Rightarrow \quad 2[\vec{a} \vec{b} \vec{c} \mid=0$
$\Rightarrow\left[\begin{array}{ll}\vec{a}+\vec{b} & \vec{b}+\vec{c} \quad \vec{c}+\vec{a}\end{array}\right]=0$
$\Rightarrow \vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are coplanar.
57) $2 \sqrt{101}$
58) $\$ 59$)
58. Use the result, if two vectors are parallel, then their cross-product will be a zero vector.

Given,

$$
\begin{align*}
& \vec{a} \times \vec{b}=\vec{c} \times \vec{d} \tag{i}\\
& \vec{a} \times \vec{c}=\vec{b} \times \vec{d} \tag{ii}
\end{align*}
$$

and
On subtracting Eq. (ii) from Eq. (i), we get

$$
\begin{array}{cc}
& (\vec{a} \times \vec{b})-(\vec{a} \times \vec{c})=(\vec{c} \times \vec{d})-(\vec{b} \times \vec{d}) \\
\Rightarrow & (\vec{a} \times \vec{b})-(\vec{a} \times \vec{c})+(\vec{b} \times \vec{d})-(\vec{c} \times \vec{d})=\overrightarrow{0} \\
\Rightarrow & \vec{a} \times(\vec{b}-\vec{c})+(\vec{b}-\vec{c}) \times \vec{d}=\overrightarrow{0} \\
\Rightarrow & \vec{a} \times(\vec{b}-\vec{c})-\vec{a} \times(\vec{b}-\vec{c})=\overrightarrow{0} \\
\therefore & \quad[\because \vec{a} \times \vec{b}=-\vec{b} \times \vec{a}] \\
& (\vec{a}-\vec{a}) \times(\vec{b}-\vec{c})=\overrightarrow{0} \\
& {[\because \vec{a} \neq \vec{a} \text { and } \vec{b} \neq \vec{c}, \text { given }](1 / 2)}
\end{array}
$$

Thus, we have that cross-product of vectors $\vec{a}-\vec{a}$ and $\vec{b}-\vec{c}$ is a zero vector, so $\vec{a}-\vec{d}$ is parallel to

$$
\vec{b}-\vec{c}
$$

($11 / 2$)
59. Given, $\quad \vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$

Now, $\vec{r} \times \hat{i}=(x \hat{i}+y \hat{j}+z \hat{k}) \times \hat{i}$

$$
\begin{align*}
& =x(\hat{i} \times \hat{i})+y(\hat{j} \times \hat{i})+z(\hat{k} \times \hat{i}) \\
& =x \cdot 0+y(-\hat{k})+z(\hat{j}) \\
& =-y \hat{k}+z \hat{j} \tag{1}\\
& \quad[\because \vec{a} \times \vec{a}=\overrightarrow{0} ; \hat{j} \times \hat{i}=-\hat{k}, \hat{k} \times \hat{i}=\hat{j}]
\end{align*}
$$

and $(\vec{r} \times \hat{j})=(x \hat{i}+y \hat{j}+z \hat{k}) \times \hat{j}$

$$
=x(\hat{i} \times \hat{j})+y(\hat{j} \times \hat{j})+z(\hat{k} \times \hat{j})
$$

$$
=x \hat{k}+y \cdot 0+z(-\hat{i})
$$

$$
=x \hat{k}-z \hat{i}
$$

$$
[\because \vec{a} \times \vec{a}=0 ; \hat{i} \times \hat{j}=\hat{k} \text { and } \hat{k} \times \hat{j}=-\hat{i}] \text { (1) }
$$

$$
\left.\begin{array}{l}
\begin{array}{rl}
\therefore \quad(\vec{r} \times \hat{i}) \cdot(\vec{r} \times \hat{j}) & =(-y \hat{k}+z \hat{j}) \cdot(x \hat{k}-z \hat{i}) \\
& =-y x+y z \cdot 0+0 \cdot z x-z^{2} \cdot 0 \\
{[\because \hat{k} \cdot \hat{k}} & =1, \hat{k} \cdot \hat{i}=0, \hat{j} \cdot \hat{k}=0, \hat{j} \cdot \hat{i}=0] \\
& =-x y
\end{array} \\
\therefore \quad(\vec{r} \times \hat{i}) \cdot(\vec{r} \times \hat{j})+x y
\end{array}\right)-x y+x y=0 \text { (2) }
$$

60) $-\frac{j}{\sqrt{2}}+\frac{k}{\sqrt{2}}$
61) $\lambda=9$
62)

a Toprove $\mid \vec{a} \vec{b}+\vec{c} \vec{a})=\vec{a} \vec{b} \vec{d}|+|\vec{a} \vec{c} \vec{d}|$
let LHS $=\left[\begin{array}{lll}\vec{a} & \vec{b}+\vec{c} & \vec{d}\end{array}\right]=\vec{a} \cdot\{(\vec{b}+\vec{c}) \times \vec{d}\}$
[by definition of scalar triple product] (1)

$$
\begin{align*}
& =\vec{a}-(\vec{b} \times \vec{d}+\vec{c} \times \vec{d}) \tag{0}\\
& =\vec{a}(\vec{b} \times \vec{d})+\vec{a}(\vec{c} \times \vec{d})=\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{d}
\end{array}\right] \tag{2}
\end{align*}
$$

Hence proved.
63) $\frac{1}{2} \sqrt{21}$
$645 \pi / 3$
65) $\frac{1}{4}(3 i+6 j-212)$
66) 7i-7j-7k
67) $\frac{1}{\sqrt{6}}(-i+2 j-k)$
68) $\frac{1}{\sqrt{14}}(3 i+2 \bar{j} k)$
69) 2i-j+k
70)

$$
0<\lambda<1 / 2
$$

71) $5 \sqrt{2}$
72) $\frac{1}{2}(3 i-j)+\frac{1}{2}(i+3 j-3 k)$
73) $\frac{1}{3}(5 i+$
74) $\lambda= \pm 5$
75) $\lambda= \pm 1$
76) -169
77) $64 i-2 j-28 k$
78) $\frac{1}{3}(2 i-2 j-k)$
79) 0
80) $\lambda=8$
81) $\frac{1}{2} \sqrt{61}$
82) $\frac{1}{2} \sqrt{61}$

Obiectives Answers

1) a 2) $($ 3) b 4) d 5) a
2) b 7) a 8) d 9) c 10) b
3) b (2) c 13) e 181 c
4) b

Objective Questions (For Complete Chapter)

〕 1 Mark Questions

1. If $\lambda(3 \hat{i}+2 \hat{j}-6 \hat{k})$ is a unit vector, then the value of λ is
(a) $\pm \frac{1}{7}$
(b) ± 7
(c) $\pm \sqrt{43}$
(d) $\pm \frac{1}{\sqrt{43}}$
2. The figure formed by four points $\hat{i}+\hat{j}+\hat{k}$, $2 \hat{i}+3 \hat{j}, 3 \hat{i}+5 \hat{j}-2 \hat{k}, \hat{k}-\hat{j}$ is a
(a) parallelogram
(b) rectangle
(c) trapezium
(d) square
3. If $\vec{a}: 2+\vec{b}$ are two unit vectors inclined at an angle $\pi / 3$, then the value of $|\vec{a}+\vec{b}|$ is
(a) equal to
(b) greater than 1
(c) equal to 0
(d) less than 1
4. If $\vec{a} \cdot \vec{b}=0$ and $\vec{a}+\vec{b}$ makes an angle of 60° with \vec{a}, then
(a) $|\vec{a}|=2|\vec{b}|$
(b) $2|\vec{a}|=|\vec{b}|$
(c) $|\vec{a}|=\sqrt{3}|\vec{b}|$
(d) $\sqrt{3}|\vec{a}|=|\vec{b}|$
5. If $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and \vec{b} is a vector such that $\vec{a} \cdot \vec{b}=|\vec{b}|^{2}$ and $|\vec{a}-\vec{b}|=\sqrt{7}$, then $|\vec{b}|$ is equal to
(a) $\sqrt{7}$
(b) $\sqrt{3}$
(c) 7
(d) 3
6. If $\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|$, then the angle between a and b is
(a) 45°
(b) 180°
(c) 90°
(d) 60°
7. Suppose $\vec{a}=\lambda \hat{i}-7 \hat{j}+3 \hat{k}, \vec{b}=\lambda \hat{i}+\hat{j}+2 \lambda \hat{k}$. If the angle between \vec{a} and \vec{b} is greater than 90°, then λ satisfies the inequality
(a) $-7<\lambda<1$
(b) $\lambda>1$
(c) $1<\lambda<7$
(d) $-5<\lambda<1$
8. If \vec{x} and \vec{y} are unit vectors and $\vec{x} \cdot \vec{y}=0$, then
(a) $|\vec{x}+\vec{y}|=1$
(b) $|\vec{x}+\vec{y}|=\sqrt{3}$
(c) $|\vec{x}+\vec{y}|=2$
(d) $|\vec{x}+\vec{y}|=\sqrt{2}$
9. The projection of $\vec{a}=3 \hat{i}-\hat{j}+5 \hat{k}$ on $\vec{b}=2 \hat{i}+3 \hat{j}+\hat{k}$ is
(a) $\frac{8}{\sqrt{35}}$
(b) $\frac{8}{\sqrt{39}}$
(c) $\frac{8}{\sqrt{14}}$
(d) $\sqrt{14}$
10. If $|\vec{a}|=1,|\vec{b}|=4, \vec{a} \cdot \vec{b}=2$ and $\vec{c}=2 \vec{a} \times \vec{b}-3 \vec{b}$, then the angle between \vec{b} and \vec{c} is
(a) $\frac{\pi}{6}$
(b) $\frac{5 \pi}{6}$
(c) $\frac{\pi}{3}$
(d) $\frac{2 \pi}{3}$
11. If \hat{a}, \hat{b} and \hat{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$. Then, which one of the following is correct?
(a) $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\underset{\vec{c}}{\vec{c}} \times \overrightarrow{\vec{a}}=0$
(b) $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} \neq 0$
(c) $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{a} \times \vec{c}=0$
(d) $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ are mutually perpendicular
12. If $|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}=144$ and $|\vec{a}|=4$, then $|\vec{b}|$ is equal to
(a) 16
(b) 8
(c) 3
(d) 12
13. If a and b represent the adjacent sides of a parallelogram whose area is 15 units, then the area of the parallelogram whose adjacent sides are $3 \vec{a}+2 \vec{b}$ and $\vec{a}+3 \vec{b}$ is
(a) 45 units
(b) 75 units
(c) 105 units
(d) 165 units
14. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ for some non-zero vector \vec{r}, then the value of $[\vec{a} \vec{b} \vec{c}]$ is
(a) 2
(b) 3
(c) 0
(d) None of these
15. If the volume of parallelopiped with coterminous edges $4 \hat{i}+5 \hat{j}+\hat{k},-\hat{j}+\hat{k}$ and $3 \hat{i}+9 \hat{j}+p \hat{k}$ is 34 cu units, then p is equal to
(a) 4
(b) -13
(c) 13
(d) 6
