vectors:CBSE(Solutions)

$\boxed{\int}$ Solutions

1. Let given position vectors are $\overrightarrow{O A}=\vec{a}-2 \vec{b}$ and $\overrightarrow{O B}=2 \vec{a}+\vec{b}$. Let $\overrightarrow{O C}$ be the position vector of a point C whph divides the join of points, with position vecto $\overrightarrow{O A}$ and $\overrightarrow{O B}$, externally in the ratio 2 : 1 . $\therefore \quad \overrightarrow{O C}=\frac{2 \overrightarrow{O B}-1 \overrightarrow{O A}}{2-1}=\frac{2(2 \vec{a}+\vec{b})-1 \cdot(\vec{a}-2 \vec{b})}{1}$
[by external section fornala]

$$
=4 \vec{a}+2 \vec{b}-\vec{a}+2 \vec{b}=3 \vec{a}+4 \vec{b}
$$

2. Given vectors are

$$
\begin{aligned}
\vec{a} & =4 \hat{i}-\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-2 \hat{j}+\hat{k} . \\
\text { Now, } \quad \vec{a}+\vec{b} & =(4 \hat{i}-\hat{j}+\hat{k})+(2 \hat{i}-2 \hat{j}+\hat{k}) \\
& =6 \hat{i}-3 \hat{j}+2 \hat{k} \\
\text { and } \quad|\vec{a}+\vec{b}| & =\sqrt{\left.(6)^{2}+(-3)^{2}+(2)\right)^{2}} \\
& =\sqrt{36+9+4}=\sqrt{49}=7 \text { uni }
\end{aligned}
$$

The unit vector parallel to the vector $\vec{a}+\vec{b}$ is

$$
\begin{equation*}
\frac{\vec{a}+\vec{b}}{|\vec{a}+\vec{b}|}=\frac{6 \hat{i}-3 \hat{j}+2 \hat{k}}{7} \tag{1/2}
\end{equation*}
$$

3. Gen, $\overrightarrow{A B}=\hat{j}+\hat{k}$ and $\overrightarrow{A C}=3 \hat{i}-\hat{j}+4 \hat{k}$.

flearly, median vector, $\overrightarrow{A D}=\frac{\overrightarrow{A B}+\overrightarrow{A C}}{2}$

$$
\begin{equation*}
=\frac{(\hat{j}+\hat{k})+(3 \hat{i}-\hat{j}+4 \hat{k})}{2}=\frac{3 \hat{i}+5 \hat{k}}{2} \tag{1/2}
\end{equation*}
$$

Now, length of median $=|\overrightarrow{A D}|$

$$
\begin{aligned}
& =\sqrt{\left(\frac{3}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}}=\frac{1}{2} \sqrt{9+25}=\frac{\sqrt{34}}{2} \\
& =\frac{\sqrt{17} \times \sqrt{2}}{2}=\sqrt{\frac{17}{2}} \text { units }
\end{aligned}
$$

(1/2)

Alternate Method

fiven $\overrightarrow{A B}=\hat{j}+\hat{k}$ and $\overrightarrow{A C}=3 \hat{i}-\hat{j}+4 \hat{k}$

$$
\text { row, } \overrightarrow{B C}=\overrightarrow{B A}+\overrightarrow{A C}
$$

$$
\begin{aligned}
& =-\overrightarrow{A B}+\overrightarrow{A C} \\
& =-(\hat{j}+\hat{k})+(3 \hat{i}-\hat{j}+4 \hat{k})=3 \hat{i}-2 \hat{j}+3 \hat{k}
\end{aligned}
$$

Sace, $A D$ is median.
$\therefore \quad \overrightarrow{B D}=\frac{1}{2} \overrightarrow{B C}=\frac{1}{2}(3 \hat{i}-2 \hat{j}+3 \hat{k})$

$$
=\frac{3}{2} \hat{i}-\hat{j}+\frac{3}{2} \hat{k}
$$

NW, $\quad \overrightarrow{A D}=\overrightarrow{A B}+\overrightarrow{B D}$

$$
=\hat{j}+\hat{k}+\frac{3}{2} \hat{i}-\hat{j}+\frac{3}{2} \hat{k}=\frac{3}{2} \hat{i}+\frac{5}{2} \hat{k}
$$

\therefore Length of $\overrightarrow{A D}=\sqrt{\left(\frac{3}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}}$

$$
\begin{aligned}
& =\frac{1}{2} \sqrt{9+25}=\frac{\sqrt{34}}{2} \\
& =\frac{\sqrt{17} \times \sqrt{2}}{2}=\sqrt{\frac{17}{2}} \text { units }
\end{aligned}
$$

4. Clearly, $3 \vec{a}+2 \vec{b}=3(\hat{i}+\hat{j}-2 \hat{k})+2(2 \hat{i}-4 \hat{j}+5$

$$
\begin{aligned}
& =(3 \hat{i}+3 \hat{j}-6 \hat{k})+(4 \hat{i}-8 \hat{j}+10 \hat{h} \\
& =7 \hat{i}-5 \hat{j}+4 \hat{k}
\end{aligned}
$$

Hence, direction ratios of vectors $3 \vec{a}+2 \vec{b}$ are -5 and 4.
5. Let $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=4 \hat{i}-3 \hat{j}+2 \hat{k}$ Now, sum of two vectors,
$\vec{a}+\vec{b}=(2 \hat{i}+3 \hat{j}-\hat{k})+(4 \hat{i}-3 \hat{j}+2 \hat{k})=6 \hat{i}+\hat{k}$
\therefore Required unit vector $=\frac{\vec{a}+\vec{b}}{|\vec{a}+\vec{b}|}$
$=\frac{6 \hat{i}+\hat{k}}{\sqrt{6^{2}+1^{2}}}=\frac{6 \hat{i}+\hat{k}}{\sqrt{36+1}}=\frac{6 \hat{i}+\hat{k}}{\sqrt{37}}=\frac{\hat{1}}{\sqrt{37}} \hat{i}+\frac{\hat{k}}{\sqrt{37}}$
6.

To find a vector in the directiorrof given vector, first of all we find unit vector in the direction of given vector and then multiply it with given magnitude.

Let $\vec{a}=2 \hat{i}-3 \hat{j}+6 \hat{k}$
Then, $\quad|\vec{a}|=\sqrt{(2)^{2}+(-3)^{2}+(6)^{2}}$.

$$
=\sqrt{4+9+36}=\sqrt{49}=7 \text { units (1) }
$$

The unit vector in the direction of the given vector \vec{a} is

$$
\begin{aligned}
\hat{a} & =\frac{\vec{a}}{|\vec{a}|}=\frac{1}{7}(2 \hat{i}-3 \hat{j}+6 \hat{k}) \\
& =\frac{2}{7} \hat{i}-\frac{3}{7} \hat{j}+\frac{6}{7} \hat{k}
\end{aligned}
$$

Now, the vector of magnitude equal to 21 units and in the direction of \vec{a} is given by
$21 \hat{a}=21\left(\frac{2}{7} \hat{i}-\frac{3}{7} \hat{j}+\frac{6}{7} \hat{k}\right)=6 \hat{i}-9 \hat{j}+18 \hat{k}$
7. Here, we have $l=\cos \frac{\pi}{4}, m=\cos \frac{\pi}{2}$ and $n=\cos \oint$
$\Rightarrow l=\frac{1}{\sqrt{2}}, m=0$ and $n=\cos \theta$

We know that, $l^{2}+m^{2}+n^{2}=1$

$$
\begin{aligned}
& \Rightarrow \quad\left(\frac{1}{\sqrt{2}}\right)^{2}+(0)^{2}+n^{2}=1 \Rightarrow \frac{1}{2}+n^{2}=1 \\
& \Rightarrow \quad n^{2}=1-\frac{1}{2}=\frac{1}{2} \\
& \Rightarrow \quad n= \pm \frac{1}{\sqrt{2}} \Rightarrow n=\frac{1}{\sqrt{2}}
\end{aligned}
$$

[$\because \theta$ is an acute angle with Z-axis]
$\therefore \quad \cos \theta=\frac{1}{\sqrt{2}} \Rightarrow \theta=\frac{\pi}{4}$
Thus, direction cosines of a line are $\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}$. (1/2) \therefore Vector $\vec{a}=|\vec{a}|(\hat{i}+m \hat{j}+n \hat{k})$

$$
\begin{array}{r}
=5 \sqrt{2}\left(\frac{1}{\sqrt{2}} \hat{i}+(0) \hat{j}+\frac{1}{\sqrt{2}} \hat{k}\right)=5 \hat{i}+5 \hat{k} \text { (1/2) } \\
{[\because|\vec{a}|=5 \sqrt{2} \text { given }]}
\end{array}
$$

8. Do same as Q. No. 5. \quad Ans. $\left.\frac{1}{13}(4 \hat{i}+3 \hat{j}-12 \hat{k})\right]$
9. Given, $3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\hat{i}-2 \hat{p}+3 \hat{k}$ are two
parallel vectors, so their direction ratios will be proportional.
$\therefore \quad \frac{3}{1}=\frac{2}{-2 p}=\frac{9}{3} \Rightarrow \frac{2}{-2 p}=\frac{3}{1}$
$\Rightarrow-6 p=2 \Rightarrow p=\frac{2}{-6} \Rightarrow p=-\frac{1}{3}$
10. Given, $\vec{a}=\hat{i}+\hat{j}+\hat{k}$

Now, unit vector in the direction of \vec{a} is

$$
\begin{aligned}
\hat{a} & =\frac{\vec{a}}{|\vec{a}|}=\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{(1)^{2}+(1)^{2}+(1)^{2}}} \\
& =\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}
\end{aligned}
$$

\therefore Cosine of the angle which given vector makes
with Y-axis is $\frac{1}{\sqrt{3}}$.
(1)
11. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}$

Now, unit vector in the direction of \vec{a} is

$$
\begin{aligned}
\hat{a} & =\frac{\vec{a}}{|\vec{a}|}=\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{1^{2}+1^{2}+1^{2}}} \Rightarrow \hat{a}=\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}} \\
\Rightarrow \quad \hat{a} & =\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}
\end{aligned}
$$

So, angle between X-axis and the vector
$\hat{i}+\hat{j}+\hat{k}$ is $\cos \alpha=\frac{1}{\sqrt{3}} \Rightarrow \alpha=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
$[\because \hat{a}=l \hat{i}+m \hat{j}+n \hat{k}$ and $\cos \alpha=l$

$$
\left.\Rightarrow \alpha=\cos ^{-1} l\right] \text { (1) }
$$

12. Do same as Q. No. 6 .
[Ans. $3 \hat{i}-6 \hat{j}+6 \hat{k}$]
13.

First, find the vector $\overrightarrow{P Q}$ by using the formula
$\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j}+\left(z_{2}-z_{1}\right) \hat{k}$,
then required unit vector is given by $\frac{\overrightarrow{P Q}}{|\overrightarrow{P Q}|}$.
Given points are $P(1,3,0)$ and $Q(4,5,6)$.
Here, $\quad x_{1}=1, y_{1}=3, z_{1}=0$
and $\quad x_{2}=4, y_{2}=5, z_{2}=6$
So, vector $\overrightarrow{P Q}=\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j}+\left(z_{2}-z_{1}\right) \hat{k}$

$$
\begin{align*}
& =(4-1) \hat{i}+(5-3) \hat{j}+(6-0) \hat{k} \\
& =3 \hat{i}+2 \hat{j}+6 \hat{k} \tag{1/2}
\end{align*}
$$

\therefore Magnitude of given vector

$$
\begin{aligned}
|\overrightarrow{P Q}| & =\sqrt{3^{2}+2^{2}+6^{2}}=\sqrt{9+4+36} \\
& =\sqrt{49}=7 \text { units }
\end{aligned}
$$

Hence, the unit vector in the direction of $\overrightarrow{P Q}$ is

$$
\begin{equation*}
\frac{\overrightarrow{P Q}}{|\overrightarrow{P Q}|}=\frac{3 \hat{i}+2 \hat{j}+6 \hat{k}}{7}=\frac{3}{7} \hat{i}+\frac{2}{7} \hat{j}+\frac{6}{7} \hat{k} \tag{1/2}
\end{equation*}
$$

14. Here, we have

$$
\begin{aligned}
\quad l & =\cos \frac{\pi}{3}, m=\cos \frac{\pi}{4} \text { and } n=\cos \theta \\
\Rightarrow \quad l & =\frac{1}{2}, m=\frac{1}{\sqrt{2}} \text { and } n=\cos \theta
\end{aligned}
$$

We know that, $l^{2}+m^{2}+n^{2}=1$
$\Rightarrow \quad\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+n^{2}=1$
$\Rightarrow \quad n^{2}=1-\frac{1}{4}-\frac{1}{2}$.
$\Rightarrow \quad n^{2}=\frac{4-1-2}{4}=\frac{1}{4} \Rightarrow n= \pm \frac{1}{2}$
(1/2)
$\Rightarrow \quad \cos \theta= \pm \frac{1}{2}$
But θ is an acute angle, therefore $\cos \theta=\frac{1}{2}$
$\Rightarrow \quad \theta=\frac{\pi}{3}$
(1/2)
15. Do same as Q. No. 5 . $\left[\right.$ Ans. $\left.\frac{1}{\sqrt{26}} \hat{i}+\frac{5}{\sqrt{26}} \hat{k}\right]$
16. Two vectors are equal, if coefficients of their components are equal.

Given, $\vec{a}=\vec{b} \Rightarrow x \hat{i}+2 \hat{j}-z \hat{k}=3 \hat{i}-y \hat{j}+\hat{k}$
On comparing the coefficient of components, we
get

$$
\text { Now, } \begin{align*}
x & =3, y=-2, z=-1 \tag{1}\\
x+y+z & =3-2-1=0
\end{align*}
$$

17. Do same as Q. No. 1.
[Ans. $-\vec{a}+4 \vec{b}$]
18. Do same as Q. No. 1 .
[Ans. $5 \vec{b}$]
19. Given, A and B are two points with position vectors $2 \vec{a}-3 \vec{b}$ and $6 \vec{b}-\vec{a}$, respectively. Also, point P divides the line segment $A B$ in the ratio $1: 2$ internally.

\therefore Position vector of a point P

$$
=\frac{1 \times(6 \vec{b}-\vec{a})+2 \times(2 \vec{a}-3 \vec{b})}{1+2}
$$

[by internal section formula]

$$
\begin{equation*}
=\frac{6 \vec{b}-\vec{a}+4 \vec{a}-6 \vec{b}}{3}=\frac{3 \vec{a}}{3}=\vec{a} \tag{1}
\end{equation*}
$$

20. Given vectors are $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}$,
$\vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}$.
Sum of the vectors \vec{a}, \vec{b} and \vec{c} is

$$
\begin{align*}
\vec{a}+\vec{b}+\vec{c} & =(\hat{i}-2 \hat{j}+\hat{k})+(-2 \hat{i}+4 \hat{j}+5 \hat{k}) \\
& =-4 \hat{j}-\hat{k}
\end{align*}
$$

21. Do same as Q. No. 20.
[Ans. $3 \hat{i}-\hat{j}-2 \hat{k}$]
22. Do same as Q. No. 20.
[Ans. $5 \hat{i}-5 \hat{j}+3 \hat{k}$]
23. Given initial point is $A(2,1)$ and terminal point is
$B(-5,7)$, then scalar component of $\overrightarrow{A B}$ are $x_{2}-x_{1}=-5-2=-7$ and $y_{2}-y_{1}=7-1=6$.
24. If \vec{a} and \vec{b} are collinear, then use the condition $\vec{a}=\lambda \vec{b}$, where λ is some scalar.

Let given vectors are $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}$
and

$$
\vec{b}=a \hat{i}+6 \hat{j}-8 \hat{k}
$$

We know that, vectors \vec{a} and \vec{b} are said to be collinear, if

$$
\vec{a}=k \cdot \vec{b}, \text { where } k \text { is a scalar. }
$$

$\therefore \quad 2 \hat{i}-3 \hat{j}+4 \hat{k}=k(a \hat{i}+6 \hat{j}-8 \hat{k})$
On comparing the coefficients of \hat{i} and \hat{j}, we get

$$
\begin{aligned}
2=k a \text { and }-3 & =6 k \Rightarrow k=-\frac{1}{2} \\
\therefore & 2
\end{aligned}
$$

Alternate Method

Do same as Q. No. 9.
[Ans. $a=-4$]
25.

$$
\begin{aligned}
& \text { Direction cosines of the vector } a \hat{i}+b \hat{j}+c \hat{k} \text { are } \\
& \frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& \text { Let } \quad \vec{a}=-2 \hat{i}+\hat{j}-5 \hat{k}
\end{aligned}
$$

\therefore Direction cosines of \vec{a} are

$$
\begin{aligned}
\frac{-2}{\sqrt{(-2)^{2}+(1)^{2}+(-5)^{2}}}, \frac{1}{\sqrt{(-2)^{2}+(1)^{2}+(-5)^{2}}} \\
\text { and } \frac{-5}{\sqrt{(-2)^{2}+(1)^{2}+(-5)^{2}}}
\end{aligned}
$$

i.e. $\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}$
26.

$$
\begin{aligned}
& \text { Mid-point of the position vectors } \\
& \vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} \text { and } \\
& \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} \text { is } \frac{\vec{a}+\vec{b}}{2} \\
& \text { or } \frac{\left(a_{1}+b_{1}\right) \hat{i}+\left(a_{2}+b_{2}\right) \hat{j}+\left(a_{3}+b_{3}\right) \hat{k}}{2}
\end{aligned}
$$

Given points are $P(2,3,4)$ and $Q(4,1,-2)$ whose position vectors are $\overrightarrow{O P}=2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\overrightarrow{O Q}=4 \hat{i}+\hat{j}-2 \hat{k}$.
Now, position vector of mid-point of vector
joining points $P(2,3,4)$ and $Q(4,1,-2)$ is

$$
\begin{aligned}
& \overrightarrow{O R}=\frac{\overrightarrow{O P}+\overrightarrow{O Q}}{2}=\frac{(2 \hat{i}+3 \hat{j}+4 \hat{k})+(4 \hat{i}+\hat{j}-2 \hat{k})}{2} \\
\therefore & \overrightarrow{O R}=\frac{6 \hat{i}+4 \hat{j}+2 \hat{k}}{2}=3 \hat{i}+2 \hat{j}+\hat{k}
\end{aligned}
$$

27. We know that, unit vector in the direction of \vec{a} is $\hat{a}=\frac{\vec{a}}{|\vec{a}|}$.
\therefore Required unit vector in the direction of vector

$$
\begin{align*}
& \vec{a}=2 \hat{i}+\hat{j}+2 \hat{k} \text { is } \\
& \begin{aligned}
\hat{a}=\frac{\vec{a}}{|\vec{a}|}= & \frac{2 \hat{i}+\hat{j}+2 \hat{k}}{\sqrt{(2)^{2}+(1)^{2}+(2)^{2}}}=\frac{2 \hat{i}+\hat{j}+2 \hat{k}}{\sqrt{9}} \\
& =\frac{2}{3} \hat{i}+\frac{1}{3} \hat{j}+\frac{2}{3} \hat{k}
\end{aligned}
\end{align*}
$$

28. Magnitude of a vector $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ is $|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$.

Given vector is $\vec{a}=3 \hat{i}-2 \hat{j}+6 \hat{k}$.
\therefore Magnitude of $\vec{a}=|\vec{a}|=\sqrt{(3)^{2}+(-2)^{2}+(6)^{2}}$
$=\sqrt{9+4+36}=\sqrt{49}=7$ units
29. Do same as Q. No. 27. [Ans. $\left.\frac{2}{7} \hat{i}+\frac{3}{7} \hat{j}+\frac{6}{7} \hat{k}\right]$
30. Let $\triangle A B C$ be the given triangle.

Now, by triangle law of vector addition,
we have $\quad \overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$

$$
\Rightarrow \quad \overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{C A}+\overrightarrow{A C}
$$

[adding $\overrightarrow{C A}$ on both sides]

$$
\Rightarrow \quad \overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{C A}-\overrightarrow{C A}[\because \overrightarrow{A C}=-\overrightarrow{C A}]
$$

$$
\begin{equation*}
\therefore \quad \overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{0} \tag{1}
\end{equation*}
$$

31. Do same as \mathbf{Q}. No. 27 .
[Ans. $\left.\frac{2}{7} \hat{i}-\frac{3}{7} \hat{j}+\frac{6}{7} \hat{k}\right]$
32. Do same as Q. No. 6.
[Ans. $4 \hat{i}-2 \hat{j}+4 \hat{k}$]
33. Do same as Q. No. 26.
34. Do same as Q. No. 6.
[Ans. $-6 \hat{i}+3 \hat{j}+6 \hat{k}$]
35. Do same as Q. No. 6 .
[Ans. $5 \hat{i}-10 \hat{j}+10 \hat{k}$]
36. Do same as Q. No. 10 .
37.

First, find resultant of the vectors \vec{a} and \vec{b}, which is $\vec{a}+\vec{b}$. Then, find a unit vector in the direction of $\vec{a}+\vec{b}$. After this, the unit vector is multiplying by 5 .

Given, $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$.
Now, resultant of above vectors $=\vec{a}+\vec{b}$

$$
\begin{equation*}
=(2 \hat{i}+3 \hat{j}-\hat{k})+(\hat{i}-2 \hat{j}+\hat{k})=3 \hat{i}+\hat{j} \tag{1}
\end{equation*}
$$

Let

$$
\begin{aligned}
\vec{a}+\vec{b} & =\vec{c} \\
\vec{c} & =3 \hat{i}+\hat{j}
\end{aligned}
$$

Now, unit vector \hat{c} in the direction of \vec{c} is $\frac{\vec{c}}{|\vec{c}|}$

$$
\begin{align*}
& =\frac{3 \hat{i}+\hat{j}}{\sqrt{(3)^{2}+(1)^{2}}} \tag{1}\\
& =\frac{3 \hat{i}+\hat{j}}{\sqrt{10}}=\frac{3}{\sqrt{10}} \hat{i}+\frac{1}{\sqrt{10}} \hat{j} \tag{1}
\end{align*}
$$

Hence, vector of magnitude 5 units and parallel to resultant of \vec{a} and \vec{b} is

$$
\begin{equation*}
5\left(\frac{3}{\sqrt{10}} \hat{i}+\frac{1}{\sqrt{10}} \hat{j}\right)=\frac{15}{\sqrt{10}} \hat{i}+\frac{5}{\sqrt{10}} \hat{j} \tag{1}
\end{equation*}
$$

38.

First, find the vector $2 \vec{a}-\vec{b}+3 \vec{c}$, then find
a unit vector in the direction of $2 \vec{a}-\vec{b}+3 \vec{c}$. After this, the unit vector is multiplyingby 6.

Given, $\quad \vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k}$
and $\quad \vec{c}=\hat{i}-2 \hat{j}+\hat{k}$

$$
\begin{align*}
\therefore 2 \vec{a}- & \vec{b}+3 \vec{c} \\
& =2(\hat{i}+\hat{j}+\hat{k})-(4 \hat{i}-2 \hat{j}+3 \hat{k})+3(\hat{i}-2 \hat{j}+\hat{k}) \\
& =2 \hat{i}+2 \hat{j}+2 \hat{k}-4 \hat{i}+2 \hat{j}-3 \hat{k}+3 \hat{i}-6 \hat{j}+3 \hat{k} \\
\Rightarrow \quad & 2 \vec{a}-\vec{b}+3 \vec{c}=\hat{i}-2 \hat{j}+2 \hat{k} \tag{1/2}
\end{align*}
$$

Now, a unit vector in the direction of vector

$$
\begin{aligned}
2 \vec{a}-\vec{b}+3 \vec{c} & =\frac{2 \vec{a}-\vec{b}+3 \vec{c}}{|2 \vec{a}-\vec{b}+3 \vec{c}|} \\
& =\frac{\hat{i}-2 \hat{j}+2 \hat{k}}{\sqrt{()^{2}+(-2)^{2}+(2)^{2}}}=\frac{\hat{i}-2 \hat{j}+2 \hat{k}}{\sqrt{9}} \\
& =\frac{\hat{i}-2 \hat{j}+2 \hat{k}}{3}=\frac{1}{3} \hat{i}-\frac{2}{3} \hat{j}+\frac{2}{3} \hat{k} \quad(11 / 2)
\end{aligned}
$$

Hence, vector of magnitude 6 units parallel to the
vector $2 \vec{a}-\vec{b}+3 \vec{c}=6\left(\frac{1}{3} \hat{i}-\frac{2}{3} \hat{j}+\frac{2}{3} \hat{k}\right)$

$$
\begin{equation*}
=2 \hat{i}-4 \hat{j}+4 \hat{k} \tag{1}
\end{equation*}
$$

39. Given, $\overrightarrow{O P}=$ Position vector of $P=2 \vec{a}+\vec{b}$

$$
\text { and } \overrightarrow{O Q}=\text { Position vector of } Q=\vec{a}-3 \vec{b}
$$

Let $\overrightarrow{O R}$ be the position vector of point R, which divides $P Q$ in the ratio 1:2 externally

[by external section formula]
$=\frac{\vec{a}-3 \vec{b}-4 \vec{a}-2 \vec{b}}{-1}$

$$
=\frac{-3 \vec{a}-5 \vec{b}}{-1}=3 \vec{a}+5 \vec{b}
$$

Hence, $\quad \overrightarrow{O R}=3 \vec{a}+5 \vec{b}$
Now, we have to show that P is the mid-point $R Q$,
i.e. $\overrightarrow{O P}=\frac{\overrightarrow{O R}+\overrightarrow{O Q}}{2}$

We have, $\quad \overrightarrow{O R}=3 \vec{a}+5 \vec{b}, \overrightarrow{O Q}=\vec{a}-3 \vec{b}$
$\therefore \quad \frac{\overrightarrow{O R}+\overrightarrow{O Q}}{2}=\frac{(3 \vec{a}+5 \vec{b})+(\vec{a}-3 \vec{b})}{2}$

$$
\begin{aligned}
& =\frac{4 \vec{a}+2 \vec{b}}{2} \\
& =\frac{2(2 \vec{a}+\vec{b})}{2}
\end{aligned}
$$

$$
=2 \vec{a}+\vec{b}
$$

$$
=\overrightarrow{O P}
$$

$$
[\because \overrightarrow{O P}=2 \vec{a}+
$$

Hence, P is the mid-point of line segment $R Q$.

Solutions

1. Given, two vectors \vec{a} and \vec{b} such that $|\vec{a}|=|\vec{b}|$,
$\vec{a} \cdot \vec{b}=\frac{9}{2}$ and angle between them is 60° We know that

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

where θ is angle between \vec{a} and \vec{b}.
$\therefore \quad \frac{9}{2}=|\vec{a}| \cdot|\vec{a}| \cos 60^{\circ}$
$\Rightarrow \quad \frac{1}{2} \cdot|\vec{a}|^{2}=\frac{9}{2}$
$\Rightarrow \quad|\vec{a}|^{2}=9$
$\Rightarrow \quad|\vec{a}|=3$
$[\because$ magnitude cannot $b /$ negative]
Thus,
$|\vec{a}|=|\vec{b}|=3$
2. $[\hat{i} \hat{k} \hat{j}]=\hat{i} \cdot(\hat{k} \times \hat{j})=-\hat{i} \cdot(\hat{j} \times \hat{k})$

$$
=-[\hat{i} \hat{j} \hat{k}]=-\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=-1
$$

2. Given, $(\hat{i}+3 \hat{j}+9 \hat{k}) \times(3 \hat{i}-\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$

$$
\left.\begin{aligned}
& \left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 3 & 9 \\
3 & -\lambda & \mu
\end{array}\right|
\end{aligned}=\overrightarrow{0} \right\rvert\, \begin{aligned}
& \Rightarrow \hat{i}(3 \mu+9 \lambda)-\hat{j}(\mu-27)+\hat{k}(-\lambda-9) \\
&=0 \hat{i}+0 \hat{j}+0 \hat{k}
\end{aligned}
$$

On comparing the coefficients of \hat{i}, \hat{j} and \hat{k}, we get

$$
\begin{aligned}
& 3 \mu+9 \lambda & =0,-\mu+27=0 \text { and }-\lambda-9=0 \\
\Rightarrow & \mu & =27 \text { and }-\lambda=9 \\
\Rightarrow & \mu & =27 \text { and } \lambda=-9
\end{aligned}
$$

Also, the values of μ and λ satisfy the equation $3 \mu+9 \lambda=0$.
Hence, $\mu=27$ and $\lambda=-9$.
(1/2)
4. We know that, unit vectors perpendicular to \vec{a} and \vec{b} are $\pm\left(\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}\right)$
So, there are two unit vectors perpendicular to the given vectors.
5. Given, $|\vec{a}|=|\vec{b}|=|\vec{c}|=1$ and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$.

$$
\begin{array}{ll}
\text { Consider, } & \vec{a}+\vec{b}+\vec{c}=\overrightarrow{0} \\
\Rightarrow & (\vec{a}+\vec{b}+\vec{c})^{2}=(\overrightarrow{0})^{2} \\
\Rightarrow & (\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})=\overrightarrow{0} \cdot \overrightarrow{0} \\
\Rightarrow \vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}
\end{array}
$$

$$
+\vec{c} \cdot \vec{b}+\vec{c} \cdot \vec{c}=0(1 / 2)
$$

$\Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0$

$$
\left[\because \cdot \vec{x} \cdot \vec{y}=\vec{y} \cdot \vec{x} \text { and } \vec{x} \cdot \vec{x}=|\vec{x}|^{2}\right]
$$

$\Rightarrow 1+1+1+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0$

$$
\begin{array}{ll}
\Rightarrow & 1+1+1+2(a \cdot 0+ \\
\Rightarrow & \quad \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}|=|\vec{b}|=|\vec{c}|=1] \\
\Rightarrow & \vec{a}=\frac{-3}{2}
\end{array}
$$

6. Given, $|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}=400$ and $|\vec{a}|=5$

Consider, $\quad|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}=400$
$\Rightarrow \quad|\vec{a}|^{2}|\vec{b}|^{2} \sin ^{2} \theta+|\vec{a}|^{2}|\vec{b}|^{2} \cos ^{2} \theta=400$
$[\because|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$ and $|\vec{a} \cdot \vec{b}|=|\vec{a}||\vec{b}||\cos \theta|]$

$$
\begin{equation*}
\Rightarrow \quad|\vec{a}|^{2}|\vec{b}|^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=400 \tag{1/2}
\end{equation*}
$$

$$
\begin{array}{lll}
\Rightarrow & 25 \cdot|\vec{b}|^{2}=400 & {[\because|\vec{a}|=5]} \\
\Rightarrow & |\vec{b}|^{2}=16 \Rightarrow|\vec{b}|=4
\end{array}
$$

[\because length cannot be negative] (1/2)
7. Given vectors are $\vec{a}=\hat{i}+3 \hat{j}+\hat{k}$,

$$
\vec{b}=2 \hat{i}-\hat{j}-\hat{k} \text { and } \vec{c}=\lambda \hat{j}+3 \hat{k} .
$$

Since, the vectors \vec{a}, \vec{b} and \vec{c} are coplanar, Therefore, we have $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0$

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow \quad\left|\begin{array}{ccc}
1 & 3 & 1 \\
2 & -1 & -1 \\
0 & \lambda & 3
\end{array}\right|=0 \\
& \Rightarrow \quad 1(-3+\lambda)-3(6)+1(2 \lambda)=0
\end{aligned}
$$

$$
\text { [expanding along } R_{1} \text {] }
$$

$$
\begin{aligned}
\Rightarrow & -3+\lambda-18+2 \lambda=0 \\
\Rightarrow & 3 \lambda=21
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad \lambda=7 \tag{1}
\end{equation*}
$$

8. Given vectors are $\vec{a}=7 \hat{i}+\hat{j}-4 \hat{k}$
and $\quad \vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$
Now, the projection of \vec{a} on $\vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
$=\frac{(7 \hat{i}+\hat{j}-4 \hat{k}) \cdot(2 \hat{i}+6 \hat{j}+3 \hat{k})}{\sqrt{2^{2}+6^{2}+3^{2}}}=\frac{14+6-12}{\sqrt{49}}=\frac{8}{7}(1)$
9. Given, \hat{a}, \hat{b} and \hat{c} are mutually perpendicular unit vectors, i.e.
and

$$
\begin{equation*}
\hat{a} \cdot \hat{b}=\hat{b} \cdot \hat{c}=\hat{c} \cdot \hat{a}=0 \tag{i}
\end{equation*}
$$

Now, $|2 \hat{a}+\hat{b}+\hat{c}|^{2}=(2 \hat{a}+\hat{b}+\hat{c}) \cdot(2 \hat{a}+\hat{b}+\hat{c})$

$$
\left[\because|\vec{a}|^{2}=\vec{a} \cdot \vec{a}\right]
$$

$$
\begin{aligned}
=4(\hat{a} \cdot \hat{a}) & +2(\hat{a} \cdot \hat{b})+2(\hat{a} \cdot \hat{c})+2(\hat{b} \cdot \hat{a}) \\
& +(\hat{b} \cdot \hat{b})+(\hat{b} \cdot \hat{c})+2(\hat{c} \cdot \hat{a})+(\hat{c} \cdot \hat{b})+(\hat{c} \cdot \hat{c})
\end{aligned}
$$

$[\because$ dot product is distributive over addition] (1/2)

$$
\begin{aligned}
=4\left(|\hat{a}|^{2}\right)+2(0)+2(0)+2(0)+|\hat{b}|^{2} & +(0) \\
& +2(0)+(0)+|\hat{c}|^{2}
\end{aligned}
$$

[from Eq. (i) and $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$]

$$
=4(1)+1+1=4+1+1=6
$$

[from Eq. (ii)]

$$
\therefore \quad|2 \hat{a}+\hat{b}+\hat{c}|=\sqrt{6}
$$

$[\because$ length cannot be negative]
10. First, determine perpendicular vectors of \vec{a} and \vec{b}, i.e. $\vec{a} \times \vec{b}$. Further, determine perpendicular unit vector by using formula $\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$.

Given vectors are $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$
As we know that, the vectors $\vec{a} \times \vec{b}$ is perpendicular to both the vectors, so let us first evaluate $\vec{a} \times \vec{b}$.
Then, $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right|$

$$
\begin{align*}
& =\hat{i}(0-1)-\hat{j}(0-1)+\hat{k}(1-1) \\
& =-\hat{i}+\hat{j} \tag{1/2}
\end{align*}
$$

Then, the unit vector perpendicular to both \vec{a} and \vec{b} is given by

$$
\begin{equation*}
\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}=\frac{-\hat{i}+\hat{j}}{\sqrt{(-1)^{2}+(1)^{2}}}=\frac{-\hat{i}+\hat{j}}{\sqrt{2}}=\frac{-\hat{i}}{\sqrt{2}}+\frac{\hat{j}}{\sqrt{2}} \tag{1/2}
\end{equation*}
$$

11. Let adjacent sides of a parallelogram be $\vec{a}=2 \hat{i}-3 \hat{k}$ and $\vec{b}=4 \hat{j}+2 \hat{k}$.

\therefore Area of parallelogram $=|\vec{a} \times \vec{b}|$

$$
\left.\begin{aligned}
& =|(2 \hat{i}-3 \hat{k}) \times(4 \hat{j}+2 \hat{k})| \\
& =\left|\begin{array}{|cc}
\hat{i} & \hat{j} \\
2 & \hat{k} \\
0 & 0
\end{array}\right| \\
& 0
\end{aligned} \right\rvert\,
$$

12. Given, $|\vec{a}+\vec{b}|=13$, and $|\vec{a}|=5$

Now, $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}$
$\Rightarrow \quad|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+\dot{0}+0+|\vec{b}|^{2}$

$$
\left[\because \vec{x} \cdot \vec{x}=|\vec{x}|^{2}, \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}=0 \text { as } \vec{a} \perp \vec{b}\right]
$$

\Rightarrow

$$
(13)^{2}=(5)^{2}+|\vec{b}|^{2}
$$

$\Rightarrow \quad 169=25+|\vec{b}|^{2} \Rightarrow 169-25=|\vec{b}|^{2}$

$$
\begin{equation*}
144=|\vec{b}|^{2} \Rightarrow|\vec{b}|=12 \tag{1}
\end{equation*}
$$

[\because length cannot be negative]
13. Given, $\quad|\vec{a}|=1,|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=1$

Now, $|\vec{a}+\vec{b}|^{2}=(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})$

$$
=\vec{a} \cdot \vec{a}+\vec{b} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{b}
$$

$\Rightarrow \quad|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2}$
$[\because \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$ and $\vec{x} \cdot \vec{x}=\mid \vec{x}$
$\Rightarrow \quad 1=1+2 \vec{a} \cdot \vec{b}+1$
$\Rightarrow \quad 2 \vec{a} \cdot \vec{b}=-1$
$\Rightarrow|\vec{a}||\vec{b}| \cos \theta=-\frac{1}{2} \quad[\because \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \vec{l}$
$\Rightarrow \quad \cos \theta=-\frac{1}{2} \quad[\because|\vec{a}|=|\vec{b}|=1]$
$\Rightarrow \quad \cos \theta=\cos \frac{2 \pi}{3} \Rightarrow \theta=\frac{2 \pi}{3}$
Hence, the angle between \vec{a} and \vec{b} is $\frac{2 \pi}{3}$.
14. Do same as Q. No. 8.
[Ans.
[Hint Let $\vec{a}=\hat{i}+3 \hat{j}+7 \hat{k}$ and $\vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}]$
15. Do same as Q . No. 8.
16. We have, $\hat{i} \times(\hat{j}+\hat{k})+\hat{j} \times(\hat{k}+\hat{i})+\hat{k} \times(\hat{i}+\hat{j})$ $=\hat{i} \times \hat{j}+\hat{i} \times \hat{k}+\hat{j} \times \hat{k}+\hat{j} \times \hat{i}+\hat{k} \times \hat{i}+\hat{k} \times \hat{j}$
[\because cross product is distributive over additio $]$

$$
\begin{aligned}
& =\hat{k}-\hat{j}+\hat{i}-\hat{k}+\hat{j}-\hat{i}=\overrightarrow{0} \\
& \quad[\because \hat{i} \times \hat{j}=\hat{k}, \hat{i} \times \hat{k}=-\hat{j}, \hat{j} \times \hat{k}=\hat{i}, \hat{j} \times \hat{i}=- \\
& \quad \hat{k} \times \hat{i}=\hat{j}, \hat{k} \times \hat{j}=-\hat{i}]
\end{aligned}
$$

17. Given, $|\vec{a}|=3$ and $|\vec{b}|=2 / 3$

Let θ be the angle between \vec{a} and \vec{b}.
Also, given $|\vec{a} \times \vec{b}|=1$

$$
\begin{aligned}
& \Rightarrow \quad|\vec{a}||\vec{b}| \sin \theta=1 \Rightarrow 3 \times \frac{2}{3} \sin \theta=1 \\
& \Rightarrow \quad 2 \sin \theta=1 \Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6}
\end{aligned}
$$

18. Given, $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$
and

$$
\vec{c}=3 \hat{i}+\hat{j}+2 \hat{k}
$$

Now, $\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=\left|\begin{array}{rrr}2 & 1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 2\end{array}\right|$

$$
=2(4-1)-1(-2-3)+3(-1-6)
$$

$$
=2 \times 3-1 \times(-5)+3 \times(-7)
$$

$$
=6+5-21=11-21=-10
$$

2. Given, \vec{a} and \vec{b} are two unit vectors, then $|\vec{a}|=|\vec{b}|=1$.
Alo. ($\sqrt{3} \vec{a}-\vec{b}$) is a unit vector.
$\therefore \quad|\sqrt{3} \vec{a}-\vec{b}|=1 \Rightarrow|\sqrt{3} \vec{a}-\vec{b}|^{2}=1^{2}$
$\Rightarrow(\sqrt{\vec{a}}-\vec{b}) \cdot(\sqrt{3} \vec{a}-\vec{b})=1$
$\left[\because|\vec{a}|^{2}=\vec{a} \cdot \vec{a}\right]$
$\Rightarrow 3(\vec{a} \cdot \vec{a})-\sqrt{3}(\vec{a} \cdot \vec{b})-\sqrt{3}(\vec{b} \cdot \vec{a})+\vec{b} \cdot \vec{b}=1$
$\Rightarrow 3|\vec{a}|^{2}-\sqrt{3}|\vec{a}||\vec{b}| \cos \theta$

$$
-\sqrt{3}|\vec{b}||\vec{a}| \cos \theta+|\vec{b}|^{2}=1 \quad(1 / 2)
$$

where, θ is the angle between \vec{a} and \vec{b}.
$\Rightarrow 3 \times 1-\sqrt{3} \times 1 \times 1 \times \cos \theta-\sqrt{3} \times 1 \times 1 \times \cos \theta+1=1$
$\Rightarrow \quad 3=2 \sqrt{3} \cos \theta \Rightarrow \cos \theta=\frac{3}{2 \sqrt{3}}$
$\Rightarrow \cos \theta=\frac{\sqrt{3}}{2} \Rightarrow \theta=\frac{\pi}{6}$
Hence, the required angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$.
20. Let θ be the angle between \vec{a} and \vec{b}.

Given, $\quad|\vec{a}|=8,|\vec{b}|=3$ and $|\vec{a} \times \vec{b}|=12$
We know that, $|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$
$\therefore \quad \cdots \vec{a}||\vec{b}| \sin \theta=12$
$\Rightarrow \quad \sin \theta=\frac{12}{|\vec{a}||\vec{b}|}$
$\Rightarrow \quad \sin \theta=\frac{12}{8 \times 3}$
$\Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6}$
Hence, the required angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$.
21. Do same as Q. No. 8.
22. Given vectors are $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$

$$
\text { and } \quad \vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}
$$

Since, vectors are perpendicular.

$$
\vec{a} \cdot \vec{b}=0
$$

\therefore

$$
\begin{array}{rlrl}
\therefore & & (2 \hat{i}+\lambda \hat{j}+\hat{k}) \cdot(\hat{i}-2 \hat{j}+3 \hat{k}) & =0 \\
& 2-2 \lambda+3 & =0 \\
& \therefore & \lambda & =51
\end{array}
$$

23. We have, $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$
Consider, $(\vec{b}+\vec{c})=(\hat{i}+2 \hat{j}-2 \hat{k})+(\hat{i}-\hat{j}+4 \hat{k})$

$$
\begin{equation*}
=3 \hat{i}+\hat{j}+2 \hat{k} \tag{1/2}
\end{equation*}
$$

Now, the projection of $\vec{b}+\vec{c}$ on \vec{a} is given by

$$
\begin{aligned}
\frac{(\vec{b}+\vec{c}) \cdot \vec{a}}{|\vec{a}|} & =\frac{(3 \hat{i}+\hat{j}+2 \hat{k}) \cdot(2 \hat{i}-2 \hat{j}+\hat{k})}{\sqrt{2^{2}+(-2)^{2}+(1)^{2}}} \\
& =\frac{6-2+2}{\sqrt{4+4+1}}=\frac{6}{3}=2
\end{aligned}
$$

24. Do same as Q. No. 8.
[Ans. $\frac{8}{7}$]
25. To prove, $(2 \vec{a}+\vec{b}) \perp \vec{b}$

Given, $\quad|\vec{a}+\vec{b}|=|\vec{a}|$
On squaring both sides, we get

$$
\begin{array}{ll}
& |\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2} \\
\Rightarrow & |\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2}=|\vec{a}|^{2} \\
\Rightarrow & 2 \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{b}=0 \quad\left[\because|\vec{x}|^{2}=\vec{x} \cdot \vec{x}\right] \\
\Rightarrow & (2 \vec{a}+\vec{b}) \cdot \vec{b}=0 \\
\therefore & (2 \vec{a}+\vec{b}) \perp \vec{b}
\end{array}
$$

$$
[\because \text { if } \vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b}=0](\mathfrak{1})
$$

Hence proved.
26. Given, \hat{a} is a unit vector. Then, $|\hat{a}|=1$.

Now, we have $(\vec{x}-\hat{a}) \cdot(\vec{x}+\hat{a})=15$
$\Rightarrow \quad \vec{x} \cdot \vec{x}-\hat{a} \cdot \vec{x}+\vec{x} \cdot \hat{a}-\hat{a} \cdot \hat{a}=15$
$\Rightarrow \vec{x} \cdot \vec{x}-\hat{a} \cdot \vec{x}+\hat{a} \cdot \vec{x}-\hat{a} \cdot \hat{a}=15$
[\because scalar product is commutative, i.e.
$\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}]$

$$
\begin{array}{lrl}
\Rightarrow & |\vec{x}|^{2}-|\hat{a}|^{2}=15 & {\left[\because \vec{z} \cdot \vec{z}=|\vec{z}|^{2}\right]} \\
\Rightarrow & |\vec{x}|^{2}-1=15 & {[\text { [given, }|\hat{a}|=1]} \\
\Rightarrow & |\vec{x}|^{2}=16 & \\
\therefore & |\vec{x}|=4
\end{array}
$$

[\because length cannot be negative] (1)
27. Given, $\vec{a}=\lambda \hat{l}+\hat{j}+4 \hat{k}, \vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$ and projection of \vec{a} on $\vec{b}=4$.
$\therefore \quad \quad \vec{a}=4\left[\right.$ verejection of \vec{A} on $\left.\vec{b}=\frac{\vec{b} \vec{b}}{|\vec{b}|}\right]$
$\Rightarrow \frac{(\lambda i+j+4 i) \cdot\left(y^{2}+0 j+\vec{k}\right)}{\sqrt{(2)^{2}+(0)^{2}+()^{2}}}=4$
$\begin{array}{rlrl} & \Rightarrow & 2 \lambda+n+12 & =1 \\ & \Rightarrow & \sqrt{49} & =4+18 \\ & =4 \\ & \Rightarrow & 7 & 2 \lambda \\ & \Rightarrow & 2 \lambda+18 & =28 \\ & & 2 \lambda & =10 \\ & & \lambda & =5\end{array}$
(1)
28.

Use the resulta $\hat{k} \times \hat{i}=-\hat{i}$.
$j, \hat{k}=0$ and $i, i=1$ and simplify it.
Given, $(\hat{k} \times j \cdot \hat{i}+j \cdot \hat{k}=(-i) \cdot \hat{i}+j \cdot \hat{k}$

$$
=-(\hat{i} \cdot \hat{i})+0=-1 \quad[\because(\hat{i} \cdot \hat{i})=1](1)
$$

2a Given, $\vec{a} \cdot \vec{a}=0 \Rightarrow|\vec{a}|^{2}=0$

$$
\begin{equation*}
\Rightarrow \quad|\vec{a}|=0 \tag{i}
\end{equation*}
$$

$$
\text { and } \quad \vec{a} \cdot \vec{b}=0
$$

$$
\Rightarrow \quad|\vec{a} \| \vec{b}| \cos \theta=0
$$

From Eqs. (i) and (ii), it may be concluded that b is elther zero or non-zero perpendicular vector. (1)
30. Do same as Q. No. 8.
[Ans, 0]
31. Let θ be the angle between \vec{a} and \vec{b}, then use the following formula

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

Given, $|\vec{a}|=\sqrt{3},|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=\sqrt{6}$.
Now, the angle between \vec{a} and \vec{b} is glven by

$$
\begin{align*}
& \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{\sqrt{6}}{\sqrt{3} \times 2}=\frac{\sqrt{3} \times \sqrt{2}}{\sqrt{3} \times 2}=\frac{\sqrt{2}}{2} \\
& \Rightarrow \quad \cos \theta=\frac{1}{\sqrt{2}}=\cos \frac{\pi}{4} \quad\left[\because \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}\right] \\
& \therefore \quad \tag{1}
\end{align*} \quad \theta=\frac{\pi}{4} \quad \text { (1) }
$$

32. Do some as Q. No. 22.
[Ans. 1/2]
33. We knew that, $\vec{A} \cdot \vec{b}-|\vec{a}| \cdot|\vec{b}| \cos \theta$

On putting $|\vec{d}|=\sqrt{3},|\vec{b}|=2$ and $\theta=60^{\circ}$, we hel

$$
\begin{array}{ll}
& \vec{a}=\sqrt{3} \times 2 \cos 60^{\circ} \\
\Rightarrow \quad & \vec{a} \cdot \vec{b}=\frac{1}{2} \times 2 \sqrt{3}=\sqrt{3} \\
\therefore \quad & \vec{a} \cdot \vec{b}=\sqrt{3}
\end{array}
$$

34. Do same as Q. No. 22.
35. Given, $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=3$
$\therefore \quad$ Projection of \vec{b} on $\vec{a}=\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|}$

$$
=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \quad \because \because \vec{a} \cdot \vec{b}=\vec{b} .
$$

$$
=\frac{3}{2} \quad[\because \vec{a} \cdot \vec{b}=3 \text { and }|\vec{a}|=2 \mid \text { (1) }
$$

36.

Use the following formulae:

$$
\vec{a} \cdot \vec{b}=|\vec{a} \| \vec{b}| \cos \theta
$$

and $\quad|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$
where, θ is the angle between \vec{a} and \vec{b}.
Given, $\quad|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$
$\Rightarrow|\vec{a}||\vec{b}| \cos \theta=|\vec{a}||\vec{b}| \sin \theta$
$\Rightarrow \quad \cos \theta=\sin \theta$ $\tan \theta=1$
$\Rightarrow \quad \tan \theta=\tan \frac{\pi}{4} \quad\left[\because 1=\tan \frac{\pi}{4}\right]$
$\therefore \quad \theta=\frac{\pi}{4}$
So, the angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$.
37. Do same as Q. No. 3.
38. Let $\vec{c}=\hat{a}+\hat{b}$. Then, according to given conditon
\vec{c} is a unit vector, i.e. $|\vec{c}|=1$.
To show

$$
|\hat{a}-\hat{b}|=\sqrt{3}
$$

Consider,

$$
\vec{c}=\hat{a}+\hat{b}
$$

\Rightarrow
\Rightarrow
$\Rightarrow \quad|\hat{a}+\hat{b}|^{2}=1$

$$
\begin{align*}
& \quad \begin{aligned}
&(\hat{a}+\hat{b}) \cdot(\hat{a}+\hat{b})=1 \\
& \Rightarrow \quad|\hat{a}|^{2}+2 \hat{i} \cdot \hat{b}+|\hat{b}|^{2}=1 \\
& \Rightarrow+2 \hat{i} \cdot \hat{b}+1=1 \Rightarrow 2 \hat{a} \cdot \hat{b}=-1 \ldots(i)(i) \\
& \Rightarrow
\end{aligned} \\
& \text { Novconsider. }|\hat{a}-\hat{b}|^{2}
\end{align*}=(\hat{a}-\hat{b}) \cdot(\hat{a}-\hat{b}) .
$$

[taking positive square root, as magnitude cannot be negative]

Hence proved. (1/2)
33. Given, $\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=\hat{i}-2 \hat{j}+\hat{k}$
and $\vec{c}=-3 \hat{i}+\hat{j}+2 \hat{k}$
We know that, $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$

$$
\begin{align*}
\therefore \quad\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] & =\left|\begin{array}{ccc}
2 & 3 & 1 \\
1 & -2 & 1 \\
-3 & 1 & 2
\end{array}\right| \tag{1}\\
& =2(-4-1)-3(2+3)+1(1-6) \\
& =-10-15-5=-30 \tag{1}
\end{align*}
$$

40. Let θ be the angle between \vec{a} and \vec{b}.

We have, $\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}$
Now, $|\vec{a} \times \vec{b}|=\sqrt{3^{2}+2^{2}+6^{2}}=\sqrt{49}=7$

$$
\Rightarrow|\vec{a}||\vec{b}| \sin \theta=7 \quad[\because|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta]
$$

$$
\Rightarrow \quad \sin \theta=\frac{7}{|\vec{a}||\vec{b}|}=\frac{7}{2 \times 7}=\frac{1}{2}
$$

$$
\Rightarrow \quad \sin \theta=\sin \left(\frac{\pi}{6}\right) \Rightarrow \theta=\frac{\pi}{6}
$$

Hence, the required angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$ (1)
41. Let $\vec{a}=-3 \hat{i}+7 \hat{j}+5 \hat{k}, \quad \vec{b}=-5 \hat{i}+7 \hat{j}-3 \hat{k}$
and $\vec{c}=7 \hat{i}-5 \hat{j}-3 \hat{k}$
Then, the volume of cuboid whose edges are given by \vec{a}, \vec{b} and \vec{c} is

$$
|\mid \vec{a}, \vec{b}, \vec{c}]\left|=\left|\begin{array}{ccc}
-3 & 7 & 5 \\
-5 & 7 & -3 \\
7 & -5 & -3
\end{array}\right|\right.
$$

$$
\begin{align*}
& =\mid-3(-21-15-7(15+21)+5(25-49 \mid \\
& =|108-252-120| \\
& =264 \text { cubic units } \tag{1}
\end{align*}
$$

42. Given, points are $A(-2 \hat{i}+3 \hat{j}+3 \hat{k}), B(\hat{i}+2 \hat{j}+3 \hat{k})$ and $C(7 \hat{i}-\hat{k})$
Here, $\overrightarrow{A B}=\vec{b}-\vec{a}=(\hat{i}+2 \hat{j}+3 \hat{k})-(-2 \hat{j}+3 \hat{j}+3 \hat{k})$

$$
\begin{equation*}
=3 \hat{i}-\hat{j}-2 \hat{k} \tag{1}
\end{equation*}
$$

and $\overrightarrow{B C}=\vec{c}-\vec{b}=(7 \hat{i}-\hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k})$

$$
=6 \hat{i}-2 \hat{j}-4 \hat{k}=2(3 \hat{i}-\hat{j}-2 \hat{k})
$$

Since, $\overrightarrow{A B}=\lambda \overrightarrow{B C}$, where $\lambda=2$
So, given points are collinear.
43. We have, $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$

$$
\begin{align*}
\therefore \vec{a} \times \vec{b} & =\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
2 & 1 & 3 \\
3 & 5 & -2
\end{array}\right| \tag{1}\\
& =\hat{i}(-2-15)-\hat{j}(-4-9)+\hat{k}(10-3) \\
& =-17 \hat{i}+13 \hat{j}+7 \hat{k} \tag{1}
\end{align*}
$$

44. Let $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$

Then, $\sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}$
$[\because|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta]$
Here, $|\vec{a}|=\sqrt{1^{2}+(-2)^{2}+3^{2}}=\sqrt{1+4+9}=\sqrt{14}$

$$
\text { and } \begin{align*}
&|\vec{a}|=\sqrt{3^{2}+(-2)^{2}+1^{2}}=\sqrt{9+4+1}=\sqrt{14} \tag{1/2}\\
&=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -2 & 3 \\
3 & -2 & 1
\end{array}\right| \\
&=\hat{i}(-2+6)-\hat{j}(1-9)+\hat{k}(-2+6) \\
&=4 \hat{i}+8 \hat{j}+4 \hat{k}=4(\hat{i}+2 \hat{j}+\hat{k}) \\
& \Rightarrow|\vec{a} \times \vec{b}|=4 \sqrt{1^{2}+2^{2}+1^{2}} \\
&=4 \sqrt{1+4+1}=4 \sqrt{6}
\end{align*}
$$

(1/2)
Now, from Eq. (i), we get

$$
\sin \theta=\frac{4 \sqrt{6}}{\sqrt{14} \cdot \sqrt{14}}=\frac{4 \sqrt{6}}{14}=\frac{2 \sqrt{6}}{7}
$$

(1)
45. Given, $\vec{a}+\vec{b}+\vec{c}=0$
$\Rightarrow \quad \vec{a}+\vec{b}=-\vec{c}$
$\Rightarrow \quad(\vec{a}+\vec{b})^{2}=(-\vec{c})^{2}$
[by squaring on both sides]
$\Rightarrow \quad(\vec{a}+\vec{b})(\vec{a}+\vec{b})=(-\vec{c}) \cdot(-\vec{c})$
$\Rightarrow \vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}=\vec{c} \cdot \vec{c}$
$\Rightarrow \quad|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2}=|\vec{c}|^{2} \quad[\because \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}]$
$\Rightarrow|\vec{a}|^{2}+2|\vec{a}||\vec{b}| \cos \theta+|\vec{b}|^{2}=|\vec{c}|^{2}$
$[\because \cdot \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta](1)$
Putting the values of $|\vec{a}|=5,|\vec{b}|=6$ and $|\vec{c}|=9$ in Eq. (i), we get

$$
\begin{align*}
& & (5)^{2}+2 \times 5 \times 6 \times \cos \theta+(6)^{2} & =(9)^{2} \\
\Rightarrow & & 25+60 \cos \theta+36 & =81 \\
\Rightarrow & & 60 \cos \theta & =81-61=20 \\
\Rightarrow & & \cos \theta & =\frac{20}{60}=\frac{1}{3} \\
\Rightarrow & & \theta & =\cos ^{-1}\left(\frac{1}{3}\right) \tag{1}
\end{align*}
$$

46. Given $\overrightarrow{O A}=(\hat{i}+\hat{j}+\hat{k}), \overrightarrow{O B}=(2 \hat{i}+5 \hat{j})$, $\overrightarrow{O C}=(3 \hat{i}+2 \hat{j}-3 \hat{k})$ and $\overrightarrow{O D}=(\hat{i}-6 \hat{j}-\hat{k})$
Angle between $\overrightarrow{A B}$ and $\overrightarrow{C D}$ is given by

$$
\begin{equation*}
\cos \theta=\frac{\overrightarrow{A B} \cdot \overrightarrow{C D}}{|\overrightarrow{A B}| \cdot|\overrightarrow{C D}|} \tag{i}
\end{equation*}
$$

Here, $\overrightarrow{A B}=(2-1) \hat{i}+(5-1) \hat{j}+(0-1) \hat{k}$

$$
=\hat{i}+4 \hat{j}-\hat{k},
$$

$$
\overrightarrow{C D}=(1-3) \hat{i}+(-6-2) \hat{j}+(-1-(-3)) \hat{k}
$$

$$
=-2 \hat{i}-8 \hat{j}+2 \hat{k},
$$

$$
|\overrightarrow{A B}|=\sqrt{1^{2}+4^{2}+(-1)^{2}}=\sqrt{18}=\sqrt{9 \times 2}=3 \sqrt{2},
$$

and $|\overrightarrow{C D}|=\sqrt{(-2)^{2}+(-8)^{2}+2^{2}}$

$$
=\sqrt{72}=\sqrt{36 \times 2}=6 \sqrt{2}
$$

Now, $\cos \theta=\frac{(\hat{i}+4 \hat{j}-\hat{k}) \cdot(-2 \hat{i}-8 \hat{j}+2 \hat{k})}{3 \sqrt{2} \times 6 \sqrt{2}}$
[from Eq. (1)] (1)

$$
=\frac{1(-2)+4(-8)+(-1)(2)}{3 \times 6 \times 2}=-1
$$

$\cos \theta=-1 \Rightarrow \theta=180^{\circ}=\pi$
So angle between $\overrightarrow{A B}$ and $\overrightarrow{C D}$ is π.
Also, since angle between $\overrightarrow{A B}$ and $\overrightarrow{C D}$ is 180 they are in opposite directions.

Since, $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are parallel to the same line m, they are collinear.
47. Given, $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$
and $\quad \vec{c}=\lambda \hat{i}+2 \hat{j}+3 \hat{k}$
$\therefore \vec{b}+\vec{c}=(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}$
Let \hat{r} denote the unit vector along $\vec{b}+\vec{c}$.
Then, $\hat{r}=\frac{\vec{b}+\vec{c}}{|\vec{b}+\vec{c}|}=\frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{(2+\lambda)^{2}+36+4}}$

$$
\begin{equation*}
=\frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{(2+\lambda)^{2}+40}} \tag{1}
\end{equation*}
$$

Now, according to given condition, we have

$$
\begin{array}{cc}
& (\hat{i}+\hat{j}+\hat{k}) \cdot \hat{r}=1 \quad \text { [gifen] } \\
\Rightarrow & (\hat{i}+\hat{j}+\hat{k}) \cdot \frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{(2+\lambda)^{2}+40}}=1 \\
\Rightarrow & (\hat{i}+\hat{j}+\hat{k}) \cdot\{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}\} \\
=\sqrt{(2+\lambda)^{2}+40} \\
\Rightarrow & 2+\lambda+6-2=\sqrt{(2+\lambda)^{2}+40} \\
\Rightarrow & (\lambda+6)^{2}=(2+\lambda)^{2}+40 \\
\Rightarrow & 8 \lambda=8 \Rightarrow \lambda=1
\end{array}
$$

Putting $\lambda=1$ in Eq. (i), we get

$$
\hat{r}=\frac{1}{7}(3 \hat{i}+6 \hat{j}-2 \hat{k})
$$

48. We have, $\vec{a}=4 \hat{i}+5 \hat{j}-\hat{k}, \vec{b}=\hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}-\hat{k}$

Since, \vec{d} is perpendicular to both \vec{c} and \vec{b}.

$$
\begin{align*}
\therefore \vec{d} & =\lambda(\vec{c} \times \vec{b})=\lambda\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & 1 & -1 \\
1 & -4 & 5
\end{array}\right| \tag{1}\\
& =\lambda(\hat{i}(5-4)-\hat{j}(15+1)+\hat{k}(-12-1)] \\
& =\lambda(\hat{i}-16 \hat{j}-13 \hat{k}) \tag{i}
\end{align*}
$$

Also, t is given that $\vec{a} \cdot \vec{a}=21$
$\left.\begin{array}{lrl}\therefore & \lambda(\hat{i}-16 \hat{j}-13 \hat{k}) \cdot(4 \hat{i}+5 \hat{j}-\hat{k}) & =21 \\ \Rightarrow & \lambda(4-80+13) & =21 \\ \Rightarrow & \lambda(-63) & =21 \\ \Rightarrow & & \lambda\end{array}\right)=\frac{-1}{3}$
Now from Eq. (i), we get

$$
\begin{equation*}
\left.\vec{a}=-\frac{1}{3} \hat{i}-16 \hat{j}-13 \hat{k}\right) \tag{1}
\end{equation*}
$$

49. Given points are $A(4,4,4), B(5, x, 8), C(5,4,1)$ and $D(7,7,2)$, then position vectors of A, B, C and D respectively, are

$$
\begin{aligned}
\overrightarrow{O A} & =4 \hat{i}+4 \hat{j}+4 \hat{k}, \quad \overrightarrow{O B}=5 \hat{i}+x \hat{j}+8 \hat{k}, \\
\overrightarrow{O C} & =5 \hat{i}+4 \hat{j}+\hat{k} \text { and } \overrightarrow{O D}=7 \hat{i}+7 \hat{j}+2 \hat{k} \\
\therefore \quad \overrightarrow{A B} & =(5 \hat{i}+x \hat{j}+8 \hat{k})-(4 \hat{i}+4 \hat{j}+4 \hat{k}) \\
& =\hat{i}+(x-4) \hat{j}+4 \hat{k} \\
\overrightarrow{A C} & =(5 \hat{i}+4 \hat{j}+\hat{k})-(4 \hat{i}+4 \hat{j}+4 \hat{k}) \\
& =\hat{i}-3 \hat{k}
\end{aligned}
$$

and $\overrightarrow{A D}=(7 \hat{i}+7 \hat{j}+2 \hat{k})-(4 \hat{i}+4 \hat{j}+4 \hat{k})$

$$
=3 \hat{i}+3 \hat{j}-2 \hat{k}
$$

Given points are coplanar, if , ictors $\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}$ are coplanar.

$$
\begin{array}{rlrl}
\Rightarrow & {\left[\begin{array}{lll}
{[\overrightarrow{A B}} & \overrightarrow{A C} & \overrightarrow{A D}
\end{array}\right]} & =0 \\
\Rightarrow & & \left|\begin{array}{ccc}
1 & x-4 & 4 \\
1 & 0 & -3 \\
3 & 3 & -2
\end{array}\right| & =0 \\
\Rightarrow & 1(0+9)-(x-4)(-2+9)+4(3-0) & =0 \\
\Rightarrow & 9-(x-4)(7)+12 & =0 \\
\Rightarrow & 9-7 x+28+12 & =0 \\
\Rightarrow & 49-7 x & =0 \\
\Rightarrow & & 7 x & =49 \\
\Rightarrow & x & =7
\end{array}
$$

[Ans. 5]
51. If three vectors \vec{a}, \vec{b} and \vec{c} are mutually perpendicular to each other, then $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}$ $=\vec{c} \cdot \vec{a}=0$ and if all three vectors \vec{a}, \vec{b} and \vec{c} are equally inclined with the vector $(\vec{a}+\vec{b}+\vec{c})$, that means each vector \vec{a}, \vec{b} and \vec{c} makes equal angle with ($\vec{a}+\vec{b}+\vec{c}$) by using formula $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$.

Given, $|\vec{a}|=|\vec{b}|=|\vec{c}|=\lambda$ (say)
and $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0$ and $\vec{c} \cdot \vec{a}=0$
Now, $|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}$

$$
\begin{array}{r}
+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}) \\
=\lambda^{2}+\lambda^{2}+\lambda^{2}+2(0+0+0)=3 \lambda^{2}
\end{array}
$$

$\Rightarrow \quad|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3} \lambda$
[length cannot be negative] (1)
Suppose $(\vec{a}+\vec{b}+\vec{c})$ is inclined at angles θ_{1}, θ_{2} and θ_{3} respectively with vectors \vec{a}, \vec{b} and \vec{c}, then

$$
\begin{array}{cc}
\Rightarrow & \vec{a} \cdot \vec{b}+|\vec{b}|^{2}+\vec{c} \cdot \vec{b}=\sqrt{3} \lambda \cdot \lambda \cos \theta_{2} \\
\Rightarrow & 0+\lambda^{2}+0=\sqrt{3} \lambda^{2} \cos \theta_{2}
\end{array}
$$

$$
\begin{array}{ll}
\quad[\text { from Eqs. (i) and (ii)] } \\
\Rightarrow \quad \cos \theta_{2} & =\frac{1}{\sqrt{3}}
\end{array}
$$

Similarly, $(\vec{a}+\vec{b}+\vec{c}) \cdot \vec{c}=|\vec{a}+\vec{b}+\vec{c}||\vec{c}| \cos \theta_{3}$

$$
\begin{equation*}
\Rightarrow \quad \cos \theta_{1}=\frac{1}{\sqrt{3}} \tag{1}
\end{equation*}
$$

Thus, $\cos \theta_{1}=\cos \theta_{2}=\cos \theta_{3}=\frac{1}{\sqrt{3}}$
Hence, it is proved that $(\vec{a}+\vec{b}+\vec{c})$ is equally inclined with the vectors \vec{a}, \vec{b} and \vec{c}.

$$
\begin{aligned}
& (\vec{a}+\vec{b}+\vec{c}) \cdot \vec{a}=|\vec{a}+\vec{b}+\vec{c}||\vec{a}| \cos \theta_{1} \\
& {[\because \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta]} \\
& \Rightarrow \quad|\vec{a}|^{2}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=\sqrt{3} \lambda \times \lambda \cos \theta_{1} \\
& \Rightarrow \quad \lambda^{2}+0+0=\sqrt{3} \lambda^{2} \cos \theta_{1} \\
& \text { \& [from Eqs. (i) and (ii)] } \\
& \therefore \quad \cos \theta_{1}=\frac{1}{\sqrt{3}} \\
& (\vec{a}+\vec{b}+\vec{c}) \cdot \vec{b}=|\vec{a}+\vec{b}+\vec{c}||\vec{b}| \cos \theta_{2} \quad \text { (1) }
\end{aligned}
$$

52. Let the position vectors of the vertices A, B and C of $\triangle A B C$ be

$$
\overrightarrow{O A}=\hat{i}+2 \hat{j}+3 \hat{k}, \overrightarrow{O B}=2 \hat{i}-\hat{j}+4 \hat{k}
$$

and $\overrightarrow{O C}=4 \hat{i}+5 \hat{j}-\hat{k}$, respectively.

Then, $\quad \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$

$$
\begin{aligned}
& =(2 \hat{i}-\hat{j}+4 \hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k}) \\
& =\hat{i}-3 \hat{j}+\hat{k}
\end{aligned}
$$

(1)
and $\overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A}$
$=(4 \hat{i}+5 \hat{j}-\hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k})$

$$
=(3 \hat{i}+3 \hat{j}-4 \hat{k})
$$

(1)

Now. $\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{rrr}\hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 1 \\ 3 & 3 & -4\end{array}\right|$

$$
\begin{align*}
& =\hat{i}(2-3)-\hat{j}(-4-3)+\hat{k}(3+9) \\
& =9 \hat{i}+7 \hat{j}+12 \hat{k} \tag{1}
\end{align*}
$$

and

$$
\begin{aligned}
|\overrightarrow{A B} \times \overrightarrow{A C}| & =\sqrt{(9)^{2}+(7)^{2}+(12)^{2}} \\
& =\sqrt{81+49+144}=\sqrt{274}
\end{aligned}
$$

\therefore Area of $\triangle A B C=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|$

$$
\begin{equation*}
=\frac{1}{2} \sqrt{274} \text { sq units } \tag{1}
\end{equation*}
$$

53. Given, $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+0 \cdot \hat{j}+0 \cdot \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$
The given vectors are coplanar iff $[\vec{a} \vec{b} \vec{c}]=0$

$$
\Rightarrow \quad\left|\begin{array}{ccc}
1 & 1 & 1 \tag{i}\\
1 & 0 & 0 \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=0
$$

(a) If $c_{1}=1$ and $c_{2}=2$

Then, from Eq. (i), we get

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 2 & c_{3}
\end{array}\right|=0
$$

$$
\begin{aligned}
\Rightarrow 1\left|\begin{array}{ll}
0 & 0 \\
2 & c_{3}
\end{array}\right|-1\left|\begin{array}{ll}
1 & 0 \\
1 & c_{3}
\end{array}\right|+1\left|\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right| & =0 \\
\Rightarrow & -1\left(c_{3}-0+1(2-0)\right.
\end{aligned}=0
$$

(b) If $c_{2}=-1$ and $c_{3}=1$, then from Eq. (i), we

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 0 \\
c_{1} & -1 & 1
\end{array}\right|=0
$$

$$
\begin{aligned}
\Rightarrow 1(0)-1(1-0)+1(-1-0) & =0 \\
\Rightarrow \quad 0-1-1 & =0 \Rightarrow-2 \neq 0
\end{aligned}
$$

\therefore No value of c_{1} can make \vec{a}, \vec{b} and \vec{c} coplarar
Hence proved
54. We have,
$\overrightarrow{A B}=($ Position vector of $B)-($ Position vector of

$$
\begin{aligned}
& =(\hat{i}-3 \hat{j}-5 \hat{k})-(2 \hat{i}-\hat{j}+\hat{k}) \\
& =-\hat{i}-2 \hat{j}-6 \hat{k}
\end{aligned}
$$

$$
\overrightarrow{B C}=(3 \hat{i}-4 \hat{j}-4 \hat{k})-(\hat{i}-3 \hat{j}-5 \hat{k})
$$

$$
=2 \hat{i}-\hat{j}+\hat{k}
$$

and $\overrightarrow{C A}=(2 \hat{i}-\hat{j}+\hat{k})-(3 \hat{i}-4 \hat{j}-4 \hat{k})$

$$
=-\hat{i}+3 \hat{j}+5 \hat{k}
$$

Here, $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=0$
$\Rightarrow A, B$ and C are the vertices of a triangle.
Now, $\overrightarrow{B C} \cdot \overrightarrow{C A}=(2 \hat{i}-\hat{j}+\hat{k}) \cdot(-\hat{i}+3 \hat{j}+5 \hat{k})$

$$
=-2-3+5=0
$$

$\Rightarrow \overrightarrow{B C} \perp \overrightarrow{C A} \Rightarrow \angle C=90^{\circ}$

Now, area of $\triangle A B C=\frac{1}{2}|\overrightarrow{C B} \times \overrightarrow{C A}|$
$=\frac{1}{2}|(-8 \hat{i}-11 \hat{j}+5 \hat{k})|=\frac{1}{2} \sqrt{210}$ sq units
55. Consider $[(\vec{a}+\vec{b})(\vec{b}+\vec{c})(\vec{c}+\vec{a})]$
$=(\vec{a}+\vec{b}) \cdot\{(\vec{b}+\vec{c}) \times(\vec{c}+\vec{a})\}$
$=(\vec{a}+\vec{b}) \cdot(\vec{b} \times \vec{c}+\vec{b} \times \vec{a}+\vec{c} \times \vec{c}+\vec{c} \times \vec{a})$
$=(\vec{a}+\vec{b}) \cdot(\vec{b} \times \vec{c}+\vec{b} \times \vec{a}+\vec{c} \times \vec{a}) \quad[\because \vec{c} \times \vec{c}=\overrightarrow{0}]$
$=\vec{a} \cdot(\vec{b} \times \vec{c})+\vec{a} \cdot(\vec{b} \times \vec{a})+\vec{a} \cdot(\vec{c} \times \vec{a})$

$$
\begin{equation*}
+\vec{b} \cdot(\vec{b} \times \vec{c})+\vec{b} \cdot(\vec{b} \times \vec{a})+\vec{b} \cdot(\vec{c} \times \vec{a}) \tag{1}
\end{equation*}
$$

$=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]+\left[\begin{array}{ll}\vec{a} & \vec{b} \\ \vec{a}\end{array}\right]+\left[\begin{array}{lll}\vec{a} & \vec{c} & \vec{a}\end{array}\right]+\left[\begin{array}{lll}\vec{b} & \vec{b} & \vec{c}\end{array}\right]$
$+\left[\begin{array}{lll}\vec{b} & \vec{b} & \vec{a}\end{array}\right]+\left[\begin{array}{lll}\vec{b} & \vec{c} & \vec{a}\end{array}\right]$
$=[\vec{a} \vec{b} \vec{c}]+[\vec{b} \vec{c} \vec{a}]$
$\left[\because\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{a}\end{array}\right]=\left[\begin{array}{lll}\vec{b} & \vec{b} & \vec{c}\end{array}\right]=\left[\begin{array}{lll}\vec{b} & \vec{b} & \vec{a}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{c} & \vec{a}\end{array}\right]=0\right]$
$=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]+\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
$\left[\because[\vec{b} \vec{c} \vec{a}]=-\left[\begin{array}{lll}\vec{b} & \vec{a} & \vec{c}]\end{array}\right]=-\left(-\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]\right)=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]\right](1)$
Now, if $\vec{a}, \vec{b}, \vec{c}$ are coplanar $\Rightarrow\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0$
$\Rightarrow \quad 2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0$
$\left.\Rightarrow \begin{array}{lll}\vec{a}+\vec{b} & \vec{b}+\vec{c} \quad \vec{c}+\vec{a}\end{array}\right]=0 \quad[$ from Eq. (i)]
$\Rightarrow \vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are coplanar.
56. Let the position vector of points A, B, C and D are
$\overrightarrow{O A}=4 \hat{i}+5 \hat{j}+\hat{k}, \overrightarrow{O B}=0 \hat{i}-\hat{j}-\hat{k}$,
$\overrightarrow{O C}=3 \hat{i}+9 \hat{j}+4 \hat{k}$ and $\overrightarrow{O D}=-4 \hat{i}+4 \hat{j}+4 \hat{k}$
Now, $\quad \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$ $=0 \hat{i}-\hat{j}-\hat{k}-(4 \hat{i}+5 \hat{j}+\hat{k})$ $=-4 \hat{i}-6 \hat{j}-2 \hat{k}$

$$
\begin{align*}
\overrightarrow{A C} & =\overrightarrow{O C}-\overrightarrow{O A} \tag{1/2}\\
& =3 \hat{i}+9 \hat{j}+4 \hat{k}-(4 \hat{i}+5 \hat{j}+\hat{k}) \\
& =-\hat{i}+4 \hat{j}+3 \hat{k} \tag{1/2}
\end{align*}
$$

and

$$
\begin{align*}
\overrightarrow{A D} & =\overrightarrow{O D}-\overrightarrow{O A} \\
& =-4 \hat{i}+4 \hat{j}+4 \hat{k}-(4 \hat{i}+5 \hat{j}+\hat{k}) \\
& =-8 \hat{i}-\hat{j}+3 \hat{k} \tag{1/2}
\end{align*}
$$

Use the condition that the four points are coplanar, if $\left[\begin{array}{lll}\overrightarrow{A B} & \overrightarrow{A C} & \overrightarrow{A D}\end{array}\right]=0$.
(1/2)
Now, $\left.\quad \begin{array}{lll}\overrightarrow{A B} & \overrightarrow{A C} & \overrightarrow{A D}\end{array}\right]=\left|\begin{array}{ccc}-4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3\end{array}\right|$
$=-4(12+3)+6(-3+24)-2(1+32)$
$=-60+126-66=0$
Hence, the four points A, B, C and D are coplanar.
(1)
57. Let $A B C D$ be the given parallelogram with $\overrightarrow{A B}=2 \hat{i}-4 \hat{j}-5 \hat{k}$ and $\overrightarrow{A D}=2 \hat{i}+2 \hat{j}+3 \hat{k}$.
Clearly, the diagonal $\overrightarrow{A C}$ is given by $\overrightarrow{A B}+\overrightarrow{A D}$

$$
=4 \hat{i}-2 \hat{j}-2 \hat{k}
$$

and the diagonal $\overrightarrow{B D}$ is given by $\overrightarrow{B C}+\overrightarrow{B A}$

$$
=\overrightarrow{A D}-\overrightarrow{A B}=6 \hat{j}+8 \hat{k}
$$

[using parallelogram law of addition] (1)

Now, the unit vector along $\overrightarrow{A C}$ is given by

$$
\begin{aligned}
\frac{\overrightarrow{A C}}{|\overrightarrow{A C}|} & =\frac{4 \hat{i}-2 \hat{j}-2 \hat{k}}{\sqrt{16+4+4}} \\
& =\frac{4 \hat{i}-2 \hat{j}-2 \hat{k}}{\sqrt{24}} \\
& =\frac{4 \hat{i}-2 \hat{j}-2 \hat{k}}{2 \sqrt{6}} \\
& =\frac{1}{\sqrt{6}}(2 \hat{i}-\hat{j}-\hat{k})
\end{aligned}
$$

and the unit vector along $\overrightarrow{B D}$ is given by

$$
\begin{equation*}
\frac{\overrightarrow{B D}}{|\overrightarrow{B D}|}=\frac{6 \hat{j}+8 \hat{k}}{\sqrt{36+64}}=\frac{6 \hat{j}+8 \hat{k}}{10}=\frac{1}{5}(3 \hat{j}+4 \hat{k}) \tag{1}
\end{equation*}
$$

Now, area of parallelogram $A B C D$

$$
\begin{equation*}
=\frac{1}{2}|\overrightarrow{A C} \times \overrightarrow{B D}| \tag{1/2}
\end{equation*}
$$

Here, $\overrightarrow{A C} \times \overrightarrow{B D}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 4 & -2 & -2 \\ 0 & 6 & 8\end{array}\right|$

$$
\begin{align*}
& =\hat{i}(-16+12)-\hat{j}(32-0)+\hat{k}(24-0) \\
& =-4 \hat{i}-32 \hat{j}+24 \hat{k} \tag{1/2}
\end{align*}
$$

and $|\overrightarrow{A C} \times \overrightarrow{B D}|=\sqrt{(-4)^{2}+(-32)^{2}+(24)^{2}}$

$$
\begin{align*}
& =\sqrt{4^{2}\left(1+8^{2}+6^{2}\right)} \\
& =4 \sqrt{1+64+36}=4 \sqrt{101} \tag{1/2}
\end{align*}
$$

\therefore Area of parallelogram $A B C D=\frac{1}{2} \times 4 \sqrt{101}$ $=2 \sqrt{101}$ sq units (1/2)
58.

Use the result, if two vectors are parallel, then their cross-product will be a zero vector.

Given,

$$
\begin{equation*}
\vec{a} \times \vec{b}=\vec{c} \times \vec{d} \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{a} \times \vec{c}=\vec{b} \times \vec{d} \tag{ii}
\end{equation*}
$$

On subtracting Eq. (ii) from Eq. (i), we get

$$
\begin{array}{lll}
& & (\vec{a} \times \vec{b})-(\vec{a} \times \vec{c})=(\vec{c} \times \vec{d})-(\vec{b} \times \vec{a}) \\
\Rightarrow & (\vec{a} \times \vec{b})-(\vec{a} \times \vec{c})+(\vec{b} \times \vec{a})-(\vec{c} \times \vec{a})=\overrightarrow{0} \\
\Rightarrow & & \vec{a} \times(\vec{b}-\vec{c})+(\vec{b}-\vec{c}) \times \vec{a}=\overrightarrow{0} \\
\Rightarrow & \ddots & \vec{a} \times(\vec{b}-\vec{c})-\vec{a} \times(\vec{b}-\vec{c})=\overrightarrow{0} \\
& & {[\because \vec{a} \times \vec{b}=-\vec{b} \times \vec{a}] \quad \text { (1) }} \\
\therefore & (\vec{a}-\vec{a}) \times(\vec{b}-\vec{c})=\overrightarrow{0} \\
& & {[\because \vec{a} \neq \vec{a} \text { and } \vec{b} \neq \vec{c}, \text { given }](1 / 2)}
\end{array}
$$

Thus, we have that cross-product of vectors $\vec{a}-\vec{d}$ and $\vec{b}-\vec{c}$ is a zero vector, so $\vec{a}-\vec{d}$ is parallel to $\vec{b}-\vec{c}$.
($11 / 2$)
59. Given, $\quad \vec{r}=x \hat{i}+\hat{y}+z \hat{k}$

Now, $\vec{r} \times \hat{i}=(x \hat{i}+\hat{y j}+z \hat{k}) \times \hat{i}$

$$
\begin{align*}
& =x(\hat{i} \times \hat{i})+y(\hat{j} \times \hat{i})+z(\hat{k} \times \hat{i}) \\
& =x \cdot 0+y(-\hat{k})+z(\hat{j}) \\
& =-y \hat{k}+z \hat{j} \tag{1}
\end{align*}
$$

$$
[\because \vec{a} \times \vec{a}=\hat{0} ; \hat{j} \times \hat{i}=-\hat{k}, \hat{k} \times \hat{i}=\hat{j}]
$$

and $\quad(\vec{r} \times \hat{j})=(x \hat{i}+y \hat{j}+z \hat{k}) \times \hat{j}$

$$
\begin{aligned}
& =x(\hat{i} \times \hat{j})+y(\hat{j} \times \hat{j})+z(\hat{k} \times \hat{j}) \\
& =x \hat{k}+y \cdot 0+z(-\hat{i}) \\
& =x \hat{k}-z \hat{i}
\end{aligned}
$$

$$
[\because \vec{a} \times \vec{a}=0 ; \hat{i} \times \hat{j}=\hat{k} \text { and } \hat{k} \times \hat{j}=-\hat{i}](\imath)
$$

$\therefore \quad(\vec{r} \times \hat{i}) \cdot(\vec{r} \times \hat{j})=(-y \hat{k}+\hat{z}) \cdot(x \hat{k}-z \hat{i})$

$$
=-y x+y z \cdot 0+0 \cdot z x-z^{2} \cdot 0
$$

$$
\begin{align*}
{[\because \hat{k} \cdot \hat{k}} & =1, \hat{k} \cdot \hat{i}=0, \hat{j} \cdot \hat{k}=0, \hat{j} \cdot \hat{i}=0] \\
& =-x y \tag{2}
\end{align*}
$$

$\therefore(\vec{r} \times \hat{i}) \cdot(\vec{r} \times \hat{j})+x y=-x y+x y=0$
60. Given vectors are $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$
and
Now,

$$
\begin{align*}
\vec{c} & =3 \hat{i}-4 \hat{j}-5 \hat{k} \tag{1}\\
\vec{a}-\vec{b} & =(\hat{i}+2 \hat{j}+\hat{k})-(2 \hat{i}+\hat{j}) \\
& =-\hat{i}+\hat{j}+\hat{k} \\
\vec{c}-\vec{b} & =(3 \hat{i}-4 \hat{j}-5 \hat{k})-(2 \hat{i}+\hat{j}) \\
& =\hat{i}-5 \hat{j}-5 \hat{k}
\end{align*}
$$

and

Now, a vector perpendicular to $(\vec{a}-\vec{b})$ and $\mid \vec{c}-\vec{b}$ is given by

$$
\begin{aligned}
(\vec{a}-\vec{b}) \times(\vec{c}-\vec{b}) & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-1 & 1 & 1 \\
1 & -5 & -5
\end{array}\right| \\
& =\hat{i}(-5+5)-\hat{j}(5-1)+\hat{k}\left(\frac{1}{-1}-1\right) \\
& =\hat{i}(0)-\hat{j}(4)+\hat{k}(4)=-4 \hat{j}-4 \hat{k}(m)
\end{aligned}
$$

and unit vector along $(\vec{a}-\vec{b}) \times(\vec{c}-\vec{b})$ is given by

$$
\begin{aligned}
\frac{-4 \hat{j}+4 \hat{k}}{|-4 \hat{j}+4 \hat{k}|} & =\frac{-4 \hat{j}+4 \hat{k}}{\sqrt{(-4)^{2}+4^{2}}}=\frac{-4 \hat{j}+4 \hat{k}}{\sqrt{32}} \\
& =\frac{-4 \hat{j}+4 \hat{k}}{4 \sqrt{2}}=-\frac{\hat{j}}{\sqrt{2}}+\frac{\hat{k}}{\sqrt{2}}
\end{aligned}
$$

(1)
61.

Use the condition that four points with position vectors $\vec{A}, \vec{B}, \vec{C}$ and \vec{D} are coplanar, if $[\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}]=\overrightarrow{0}$.

Given, $\overrightarrow{O A}=4 \hat{i}+5 \hat{j}+\hat{k}, \overrightarrow{O B}=-\hat{j}-\hat{k}$, $\overrightarrow{O C}=3 \hat{i}+\lambda \hat{j}+4 \hat{k}$ and $\overrightarrow{O D}=-4 \hat{i}+4 \hat{j}+4 \hat{k}$ Now, $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=-\hat{j}-\hat{k}-(4 \hat{i}+5 \hat{j}+$

$$
=-4 \hat{i}-6 \hat{j}-2 \hat{k}
$$

$$
\begin{aligned}
\overrightarrow{A C} & =\overrightarrow{O C}-\overrightarrow{O A}=3 \hat{i}+\lambda \hat{j}+4 \hat{k}-(4 \hat{i}+5)+\hat{k}) \\
& =-\hat{i}+(\lambda-5) \hat{j}+3 \hat{k}
\end{aligned}
$$

and $\overrightarrow{A D}=\overrightarrow{O D}-\overrightarrow{O A}$

$$
\begin{aligned}
& =-4 \hat{i}+4 \hat{j}+4 \hat{k}-(4 \hat{i}+5 \hat{j}+\hat{k}) \\
& =-8 \hat{i}-\hat{j}+3 \hat{k}
\end{aligned}
$$

Since, vectors $\overrightarrow{O A}, \overrightarrow{O B}, \overrightarrow{O C}$ and $\overrightarrow{O D}$ are copl nar.
$\therefore \quad\left[\begin{array}{lll}\overrightarrow{A B} & \overrightarrow{A C} & \overrightarrow{A D}\end{array}\right]=0$
$\therefore \quad\left|\begin{array}{ccc}-4 & -6 & -2 \\ -1 & (\vec{\lambda}-5) & 3 \\ -8 & -1 & 3\end{array}\right|=0$
On expanding along R_{1}, we get
$\begin{array}{lr} & -4(3 \lambda-15+3)+6(-3+24)-2(1+8 \lambda-40) \\ \Rightarrow & -4(3 \lambda-12)+6(21)-2(8 \lambda-39)=0 \\ \Rightarrow & -12 \lambda+48+126-16 \lambda+78=0 \\ \Rightarrow & -28 \lambda+252=0 \\ \Rightarrow & \lambda=9 \text { (1) }\end{array}$
62. To prove $\left[\begin{array}{ll}\vec{a} \vec{b}+\vec{c} \vec{d}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{d}\end{array}\right]+\left[\begin{array}{ll}\vec{a} & \vec{c}\end{array} \vec{a}\right]$ Let LHS $=\left[\begin{array}{lll}\vec{a} & \vec{b}+\vec{c} & \vec{d}\end{array}\right]=\vec{a} \cdot\{(\vec{b}+\vec{c}) \times \vec{a}\}$
[by definition of scalar triple product] (1)
$=\vec{a} \cdot(\vec{b} \times \vec{d}+\vec{c} \times \vec{a})$

$$
=\vec{a}(\vec{b} \times \vec{d})+\vec{a}(\vec{c} \times \vec{d})=\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{d}
\end{array}\right]
$$

Hence proved.

63. Given, $\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}, \vec{b}=-\hat{i}+\hat{k}$ and $\vec{c}=2 \hat{j}-\hat{k}$.

Let $\vec{d}_{1}=\vec{a}+\vec{b}$ and $\vec{d}_{2}=\vec{b}+\vec{c}$.
Then, $\vec{d}_{1}=(2 \hat{i}-3 \hat{j}+\hat{k})+(-\hat{i}+\hat{k})=\hat{i}-3 \hat{j}+2 \hat{k}$
and $\vec{d}_{2}=(-\hat{i}+\hat{k})+(2 \hat{j}-\hat{k})=-\hat{i}+2 \hat{j}$
Clearly, area of given parallelogram with diagonals \vec{d}_{1} and \vec{d}_{2} is given by $\frac{1}{2}\left|\vec{d}_{1} \times \vec{d}_{2}\right|$.
Here, $\vec{d}_{1} \times \vec{d}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ -1 & 2 & 0\end{array}\right|$

$$
\begin{align*}
& =\hat{i}(-4)-\hat{j}(0+2)+\hat{k}(2-3) \\
& =-4 \hat{i}-2 \hat{j}-\hat{k} \tag{1}
\end{align*}
$$

So, area of parallelogram $=\frac{1}{2}|-4 \hat{i}-2 \hat{j}-\hat{k}|$

$$
\begin{aligned}
& =\frac{1}{2} \sqrt{(-4)^{2}+(-2)^{2}+(-1)^{2}} \\
& =\frac{1}{2} \sqrt{16+4+1} \\
& =\frac{1}{2} \sqrt{21} \text { sq units }
\end{aligned}
$$

64. Do same as Q. No. 45.
$\left[\right.$ Ans. $\left.\frac{\pi}{3}\right]$
65.

First, determine the unit vector of $\vec{b}+\vec{c}$, i.e.
$\frac{\vec{b}+\vec{c}}{|\vec{b}+\vec{c}|}$. Further put $\vec{a} \cdot \frac{(\vec{b}+\vec{c})}{|\vec{b}+\vec{c}|}=1$ and then determine the value of λ.

Given, $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$
and $\quad \vec{c}=\lambda \hat{i}+2 \hat{j}+3 \hat{k}$.

Now, $\vec{b}+\vec{c}=2 \hat{i}+4 \hat{j}-5 \hat{k}+\lambda \hat{i}+2 \hat{j}+3 \hat{k}$

$$
\begin{align*}
&=(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k} \\
& \therefore \quad|\vec{b}+\vec{c}|=\sqrt{(2+\lambda)^{2}+(6)^{2}+(-2)^{2}} \\
&=\sqrt{4+\lambda^{2}+4 \lambda+36+4} \\
&=\sqrt{\lambda^{2}+4 \lambda+44} \tag{1}
\end{align*}
$$

Now, the unit vector along $\vec{b}+\vec{c}$

$$
\begin{equation*}
=\frac{\vec{b}+\vec{c}}{|\vec{b}+\vec{c}|}=\frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{\lambda^{2}+4 \lambda+44}} \tag{i}
\end{equation*}
$$

Given scalar product of $(\hat{i}+\hat{j}+\hat{k})$ with unit vector $\vec{b}+\vec{c}$ is 1 .

$$
\begin{array}{lc}
\therefore & (\hat{i}+\hat{j}+\hat{k}) \cdot \frac{\vec{b}+\vec{c}}{|\vec{b}+\vec{c}|}=1 \\
\Rightarrow & (\hat{i}+\hat{j}+\hat{k}) \cdot \frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{\lambda^{2}+4 \lambda+44}}=1 \\
\Rightarrow & \frac{1(2+\lambda)+1(6)+1(-2)}{\sqrt{\lambda^{2}+4 \lambda+44}}=1 \\
\Rightarrow & \frac{(2+\lambda)+6-2}{\sqrt{\lambda^{2}+4 \lambda+44}}=1 \\
\Rightarrow & \lambda+6=\sqrt{\lambda^{2}+4 \lambda+44} \\
\Rightarrow & (\lambda+6)^{2}=\lambda^{2}+4 \lambda+44
\end{array}
$$

[squaring both sides]
$\Rightarrow \lambda^{2}+36+12 \lambda=\lambda^{2}+4 \lambda+44$.
$\Rightarrow \quad 8 \lambda=8$
$\Rightarrow \quad \lambda=1$
Hence, the value of λ is 1 .
On substituting the value of λ in Eq. (i), we get Unit vector along $\vec{b}+\vec{c}$

$$
\begin{align*}
& =\frac{(2+1) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{(1)^{2}+4(1)+44}} \\
& =\frac{3 \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{1+4+44}} \\
& =\frac{3 \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{49}} \\
& =\frac{3}{7} \hat{i}+\frac{6}{7} \hat{j}-\frac{2}{7} \hat{k} \tag{1}
\end{align*}
$$

66. Given, $\vec{\alpha}=4 \hat{i}+5 \hat{j}-\hat{k}$,

$$
\vec{\beta}=\hat{i}-4 \hat{j}+5 \hat{k}
$$

$$
\text { and } \vec{q}=3 \hat{i}+\hat{j}-\hat{k}
$$

Also, vector \vec{p} is perpendicular to α and β.
Then, $\vec{p}=\lambda(\vec{\alpha} \times \vec{\beta})$
Now, $\vec{\alpha} \times \vec{\beta}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 4 & 5 & -1 \\ 1 & -4 & 5\end{array}\right|$

$$
\begin{align*}
& =\hat{i}(25-4)-\hat{j}(20+1)+\hat{k}(-16-5) \\
& =\hat{i}(21)-\hat{j}(21)+\hat{k}(-21) \\
& =21 \hat{i}-21 \hat{j}-21 \hat{k} \tag{ii}
\end{align*}
$$

So, $\vec{p}=21 \lambda \hat{i}-21 \lambda \hat{j}-21 \lambda \hat{k}$ [from Eq. (i)]
Also, given that $\vec{p} \cdot \vec{q}=21$
$\therefore \quad(21 \lambda \hat{i}-21 \lambda \hat{j}-21 \lambda \hat{k}) \cdot(3 \hat{i}+\hat{j}-\hat{k})=21$
$\begin{aligned} \Rightarrow & 63 \lambda-21 \lambda+21 \lambda & =21 \\ \Rightarrow & 63 \lambda & =21 \\ \Rightarrow & \lambda & =1 / 3\end{aligned}$
(1)

On putting $\lambda=\frac{1}{3}$ in Eq. (ii), we get

$$
\vec{p}=21 \times \frac{1}{3} \hat{i}-21 \times \frac{1}{3} \hat{j}-21 \times \frac{1}{3} \hat{k}
$$

$$
\begin{equation*}
\therefore \quad \vec{p}=7 \hat{i}-7 \hat{j}-7 \hat{k} \tag{1}
\end{equation*}
$$

which is the required vector.
67. Given, $\vec{a}=\hat{i}+\hat{j}+\hat{k}$
and $\cdot \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$
Let the required unit vector be

$$
\vec{r}=x \hat{i}+\hat{y}+z \hat{k},
$$

then $\sqrt{x^{2}+y^{2}+z^{2}}=1$
$\Rightarrow \quad x^{2}+y^{2}+z^{2}=1$
Now,

$$
\begin{align*}
\vec{a}+\vec{b} & =(\hat{i}+\hat{j}+\hat{k})+(\hat{i}+2 \hat{j}+3 \hat{k}) \tag{i}\\
& =2 \hat{i}+3 \hat{j}+4 \hat{k}
\end{align*}
$$

and

$$
\begin{align*}
\vec{a}-\vec{b} & =(\hat{i}+\hat{j}+\hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k}) \\
& =-\hat{j}-2 \hat{k} \tag{1}
\end{align*}
$$

Since, \vec{r} is perpendicular to $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$,
$\therefore \vec{r} \cdot(\vec{a}+\vec{b})=0$ and $\vec{r} \cdot(\vec{a}-\vec{b})=0$
i.e. $\quad(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=0$
$\Rightarrow \quad 2 x+3 y+4 z=0$
and
\Rightarrow
\Rightarrow
On putting the value of y in Eq. (ii), we get

$$
2 x+3(-2 z)+4 z=0
$$

$\Rightarrow \quad x=z$
On substituting the value of x and y in Eq. (i), we get

$$
\left.\left.\begin{array}{rlrl}
& & z^{2}+4 z^{2}+z^{2} & =1 \\
\Rightarrow & & 6 z^{2} & =1 \\
& & & z
\end{array}\right)= \pm \frac{1}{\sqrt{6}}\right)
$$

Hence, the required vectors are
$\frac{1}{\sqrt{6}} \hat{i}-\frac{2}{\sqrt{6}} \hat{j}+\frac{1}{\sqrt{6}} \hat{k}$ and $\frac{-1}{\sqrt{6}} \hat{i}+\frac{2}{\sqrt{6}} \hat{j}-\frac{1}{\sqrt{6}} \hat{k}$.
68.

A unit vector perpendicular to plane $A B C$ is

$$
\frac{\overrightarrow{A B} \times \overrightarrow{A C}}{|\overrightarrow{A B} \times \overrightarrow{A C}|}
$$

Let O be the origin of reference.
Then, given $\overrightarrow{O A}=2 \hat{i}-\hat{j}+\hat{k}$, $\overrightarrow{O B}=\hat{i}+\hat{j}+2 \hat{k}$
and

$$
\overrightarrow{O C}=2 \hat{i}+3 \hat{k}
$$

Now, $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$

$$
\begin{aligned}
& =\hat{i}+\hat{j}+2 \hat{k}-2 \hat{i}+\hat{j}-\hat{k} \\
& =-\hat{i}+3 \hat{i}+\hat{k}
\end{aligned}
$$

$$
=-\hat{i}+2 \hat{j}+\hat{k}
$$

and

$$
\begin{aligned}
\overrightarrow{A C} & =\overrightarrow{O C}-\overrightarrow{O A} \\
& =2 \hat{i}+3 \hat{k}-2 \hat{i}+\hat{j}-\hat{k} \\
& =\hat{j}+2 \hat{k}
\end{aligned}
$$

Now, $\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{rrr}\hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right|$

$$
=\hat{i}(4-1)-\hat{j}(-2-0)+\hat{k}(-1-0)
$$

$$
=3 \hat{i}+2 \hat{j}-\hat{k}
$$

and $|\overrightarrow{A B} \times \overrightarrow{A C}|=\sqrt{(3)^{2}+(2)^{2}+(-1)^{2}}$

$$
=\sqrt{9+4+1}=\sqrt{14}
$$

\therefore Unit vector perpendicular to the plane $A B C$

$$
\begin{align*}
& =\frac{\overrightarrow{A B} \times \overrightarrow{A C}}{|\overrightarrow{A B} \times \overrightarrow{A C}|} \\
& =\frac{3 \hat{i}+2 \hat{j}-\hat{k}}{\sqrt{14}} \\
& =\frac{3}{\sqrt{14}} \hat{i}+\frac{2}{\sqrt{14}} \hat{j}-\frac{1}{\sqrt{14}} \hat{k} \tag{1}
\end{align*}
$$

0. Let the required vector is $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$

Also, let $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.

$$
\vec{c}=2 \hat{i}+\hat{j}-3 \hat{k}
$$

and $\vec{d}=\hat{i}+\hat{j}+\hat{k}$
Given. $\vec{a} \cdot \vec{b}=4$,

$$
\vec{a} \cdot \vec{c}=0
$$

and $\vec{a} \cdot \vec{a}=2$
Now, $\vec{a} \cdot \vec{b}=4$

$$
\begin{align*}
\Rightarrow \quad a_{1}-a_{2}+a_{3} & =4 \tag{i}\\
\vec{a} \cdot \vec{c} & =0 \\
\Rightarrow \quad 2 a_{1}+a_{2}-3 a_{3} & =0 \tag{ii}
\end{align*}
$$

and $\quad \vec{a} \cdot \vec{a}=2$
$\Rightarrow \quad a_{1}+a_{2}+a_{3}=2$
On subtracting Eq. (iii) from Eq. (i), we get

$$
\begin{align*}
& -2 a_{2} & =2 \\
\Rightarrow & a_{2} & =-1 \tag{1/2}
\end{align*}
$$

On substituting $a_{2}=-1$ in Eq. (ii) and (iii), we get

$$
\begin{align*}
2 a_{1}-3 a_{3} & =1 \tag{iv}\\
a_{1}+a_{3} & =3 \tag{v}
\end{align*}
$$

On multiplying Eq. (v) by 3 and then adding with Eq. (iv), we get

$$
\Rightarrow \quad \begin{align*}
& 5 a_{1}=1+9=10 \\
& a_{1}=2
\end{align*}
$$

On substituting $a_{1}=2$ in Eq. (v), we get

$$
\begin{equation*}
a_{3}=1 \tag{1}
\end{equation*}
$$

Hence, the vector is $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$.
70. Let θ be the obtuse angle between the vectors
$\vec{a}=2 \lambda^{2} \hat{i}+4 \lambda \hat{j}+\hat{k}$ and $\vec{b}=7 \hat{i}-2 \hat{j}+\lambda \hat{k}$
Then, $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
$\Rightarrow \cos \theta=\frac{14 \lambda^{2}-8 \lambda+\lambda}{\sqrt{4 \lambda^{4}+16 \lambda^{2}+1} \sqrt{49+4+\lambda^{2}}}$
$\because \theta$ is an obtuse angle.
$\begin{array}{llr}\therefore & \cos \theta & <0 \\ \Rightarrow & \frac{14 \lambda^{2}-7 \lambda}{\sqrt{4 \lambda^{4}+16 \lambda^{2}+1} \sqrt{53+\lambda^{2}}}<0\end{array}$
$\Rightarrow \quad 14 \lambda^{2}-7 \lambda<0$
$\Rightarrow \quad 2 \lambda^{2}-\lambda<0$
$\Rightarrow \quad \lambda(2 \lambda-1)<0$
\Rightarrow Either $\lambda<0,2 \lambda-1>0$ or $\lambda>0,2 \lambda-1<0$
\Rightarrow Either $\lambda<0, \lambda>\frac{1}{2}$ or $\lambda>0, \lambda<\frac{1}{2}$
Clearly, first option is impossible.

$$
\begin{array}{ll}
\therefore & \lambda>0, \lambda<\frac{1}{2} \\
\Rightarrow & 0<\lambda<\frac{1}{2} \\
\Rightarrow & \lambda \in\left(0, \frac{1}{2}\right) \tag{1}
\end{array}
$$

71. Given, $\vec{a} \perp(\vec{b}+\vec{c}), \vec{b} \perp(\vec{c}+\vec{a}), \vec{c} \perp(\vec{a}+\vec{b})$ and $|\vec{a}|=3|\vec{b}|=4,|\vec{c}|=5$
To Prove $|\vec{a}+\vec{b}+\vec{c}|=5 \sqrt{2}$
(1/2)
Consider, $|\vec{a}+\vec{b}+\vec{c}|^{2}=(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})$

$$
\left[\because|\vec{x}|^{2}=\vec{x} \cdot \vec{x}\right]
$$

$=\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$
$+\vec{c} \cdot \vec{b}+\vec{c} \cdot \vec{c}$ (1/2)
$=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+\vec{a} \cdot(\vec{b}+\vec{c})+\vec{b} \cdot(\vec{a}+\vec{c})$
$+\vec{c} \cdot(\vec{a}+\vec{b})(1 / 2)$

$$
\begin{equation*}
=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+0+0+0 \tag{1}
\end{equation*}
$$

$$
\left[\begin{array}{l}
\because \vec{a} \perp(\vec{b}+\vec{c}), \text { therefore } \\
\vec{a} \cdot(\vec{b}+\vec{c})=0 \\
\text { Similarly, } \vec{b} \cdot(\vec{a}+\vec{c})=0 \\
\text { and } \vec{c} \cdot(\vec{a}+\vec{b})=0
\end{array}\right]
$$

$$
\begin{aligned}
& =3^{2}+4^{2}+5^{2}=9+16+25 \\
& \Rightarrow|\vec{a}+\vec{b}+\vec{c}|^{2}=50 \\
& \Rightarrow|\vec{a}+\vec{b}+\vec{c}|=5 \sqrt{2}
\end{aligned}
$$

ilength cannot be negative) (1/2)
72. Given, $\vec{a}=3 \hat{i}-\hat{j}$
and $\quad \vec{b}=2 \hat{i}+\hat{j}-3 \hat{k}$
Let $\vec{b}_{1}=x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}$ and $\vec{b}_{2}=x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}$ are
two vectors such that $\overrightarrow{b_{1}}+\overrightarrow{b_{2}}=\vec{b}, \overrightarrow{b_{1}} \| \vec{a}$ and
$\overrightarrow{b_{2}} \perp \vec{a}$.
Consider, $\overrightarrow{b_{1}}+\overrightarrow{b_{2}}=\vec{b}$
$\Rightarrow \quad\left(x_{1}+x_{2}\right) \hat{i}+\left(y_{1}+y_{2}\right) \hat{j}+\left(z_{1}+z_{2}\right) \hat{k}=2 \hat{i}+\hat{j}-3 \hat{k}$
On comparing the coefficient of \hat{i}, \hat{j} and \hat{k} both sides, we get
\Rightarrow

$$
\begin{align*}
x_{1}+x_{2} & =2 \tag{i}\\
y_{1}+y_{2} & =1 \tag{ii}\\
z_{1}+z_{2} & =-3 \tag{iii}
\end{align*}
$$

Now, consider $\overrightarrow{b_{1}} \| \vec{a}$

$$
\begin{align*}
& \Rightarrow \quad \frac{x_{1}}{3}=\frac{y_{1}}{-1}=\frac{z_{1}}{0}=\lambda \text { (say) } \\
& \Rightarrow \quad x_{1}=3 \lambda, y_{1}=-\lambda \text { and } z_{1}=0 \tag{iv}
\end{align*}
$$

On substituting the values of x, y and z, from
Eq. (iv) to Eq. (i), (ii) and (iii), respectively,
we get

$$
\begin{equation*}
x_{2}=2-3 \lambda_{1} y_{2}=1+\lambda \text { and } z_{2}=-3 \tag{v}
\end{equation*}
$$

Since, $\overrightarrow{b_{2}} \perp \vec{a}$, therefore $\overrightarrow{b_{2}} \cdot \vec{a}=0$

$$
\begin{array}{rlr}
\Rightarrow & 3 x_{2}-y_{2} & =0 \tag{1/2}\\
\Rightarrow & 3(2-3 \lambda)-(1+\lambda) & =0 \\
\Rightarrow & 6-9 \lambda-1-\lambda & =0 \\
\Rightarrow & 5-10 \lambda & =0 \\
\Rightarrow & \lambda & =\frac{1}{2}
\end{array}
$$

(1/2)
On substituting $\lambda=\frac{1}{2!}$ in Eqs. (iv) and (v), we get
and $\quad x_{2}=\frac{1}{2}, y_{2}=\frac{3}{2}$ and $z_{2}=-3$
Hence, $\vec{b}_{1}+\vec{b}_{2}=\left(\frac{3}{2} \hat{i}-\frac{1}{2} \hat{j}\right)+\left(\frac{1}{2} \hat{i}+\frac{3}{2} \hat{j}-3 \hat{k}\right)$

$$
\begin{equation*}
=2 \hat{i}+\hat{j}-3 \hat{k}=\vec{b} \tag{1/2}
\end{equation*}
$$

where, $\overrightarrow{b_{1}} \| \vec{a}$ and $\overrightarrow{b_{2}} \perp \vec{a}$.
73. Given. $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{j}-\hat{k}$

Let

$$
\begin{aligned}
\therefore \quad \vec{a} \times \vec{c} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 & 1 \\
x & y & z
\end{array}\right| \\
& =\hat{i}(z-y)-\hat{j}(\dot{z}-x)+\hat{k}(y-x)
\end{aligned}
$$

Now, $\vec{a} \times \vec{c}=\vec{b}$

$$
\begin{array}{r}
\Rightarrow \quad \hat{i}(z-y)+\hat{j}(x-z)+\hat{k}(y-x) \\
=0 \hat{i}+1 \hat{j}+(-1) \hat{k}
\end{array}
$$

On comparing the coefficients from both sides, we get

$$
z-y=0, x-z=1, y-x=-1
$$

$$
\begin{equation*}
\Rightarrow \quad y=z \text { and } x-y=1 \tag{i}
\end{equation*}
$$

Also given,

$$
\vec{a} \cdot \vec{c}=3
$$

$\Rightarrow(\hat{i}+\hat{j}+\hat{k}) \cdot(x \hat{i}+y \hat{j}+z \hat{k})=3$

$$
\begin{array}{rr}
\Rightarrow & x+y+z=3 \\
\Rightarrow & x+2 y=3 \tag{i}
\end{array}
$$

$$
[\because y=z]
$$

On subtracting Eq. (i) from Eq. (ii), we get

$$
\begin{aligned}
& 3 y & =2 \\
\Rightarrow & y=\frac{2}{3} & =z
\end{aligned}
$$

From Eq. (i),

$$
x=1+y=1+\frac{2}{3}=\frac{5}{3}
$$

Hence, $\quad \vec{c}=\frac{5}{3} \hat{i}+\frac{2}{3} \hat{j}+\frac{2}{3} \hat{k}$
74.

Use the result that if \vec{a} and \vec{b} are perpendicular then their dot product should be zero and
simplify it.

Given, $\vec{a}=\hat{i}-\hat{j}+7 \hat{k}$ and $\vec{b}=5 \hat{i}-\hat{j}+\lambda \hat{k}$
Then, $\vec{a}+\vec{b}=(\hat{i}-\hat{j}+7 \hat{k})+(\hat{i}-\hat{j}+\lambda \hat{k})$

$$
=6 \hat{i}-2 \hat{j}+(7+\lambda) \hat{k}
$$

Since, $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are perpendicular
2. De same as Q. No. 74.
re bo same as Q. No.s.
[Ana, $\lambda=\ddagger 1]$
[Ans, -169]
in Given metous are $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}$.

$$
\vec{b}=\hat{i}-2 \hat{j}+7 \hat{k}
$$

and

$$
\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}
$$

Let $\vec{p}=x \hat{i}+x \hat{j}^{2}+z \hat{k}$
We have, \vec{b} is perpendicular to both \vec{a} and \vec{b}.

$$
\begin{align*}
& \overrightarrow{\vec{k}} \vec{a}=0 \\
& \Rightarrow \quad(x \hat{i}+\hat{y}+2 \hat{k}) \cdot(\hat{i}+4 \hat{j}+2 \hat{k})=0 \\
& \Rightarrow \quad x+4 y+2 z=0 \tag{i}
\end{align*}
$$

$$
\text { and } \quad \vec{p} \cdot \vec{b}=0
$$

$\Rightarrow \quad(x \hat{i}+x \hat{j}+2 \hat{k}) \cdot(3 \hat{i}-2 \hat{j}+7 \hat{k})=0$
$\Rightarrow \quad 3 x-2 y+7 z=0$
Also. given

$$
\begin{equation*}
\vec{p} \cdot \vec{c}=18 \tag{ii}
\end{equation*}
$$

$$
\begin{align*}
\Rightarrow & (x \hat{i}+y \hat{j}+z \hat{k}) \cdot(2 \hat{i}-\hat{j}+4 \hat{k}) & =0 \tag{1}\\
\Rightarrow & & 2 x-y+4 z=18 \tag{iii}
\end{align*}
$$

On multiplying Eq. (i) by 3 and subtracting it from Eq. (ii), we get

$$
\begin{equation*}
-14 y+z=0 \tag{iv}
\end{equation*}
$$

Now, multiplying Eq. (i) by 2 and subtracting it from Eq. (iii), we get

$$
-9 y=18
$$

$$
\begin{equation*}
\Rightarrow \quad y=-2 \tag{1}
\end{equation*}
$$

On putting $y=-2$ in Eq. (iv), we get

$$
\begin{array}{rlrl}
& & -14(-2)+z & =0 \\
\Rightarrow & & 28+z & =0 \\
\Rightarrow & z & =-28
\end{array}
$$

On putting $y=-2$ and $z=-28$ in Eq. (i), we get

$$
\begin{align*}
& & x+4(-2)+2(-28) & =0 \\
\Rightarrow & & x-8-56 & =0 \tag{1/1/2}\\
\Rightarrow & & x & =64
\end{align*}
$$

Hence, the required vector is

$$
\begin{array}{ll}
& \vec{p}=x \hat{l}+\vec{y}+z \hat{k} \\
\text { l.e. } \quad & \vec{p}=64 \hat{i}-2 \hat{j}-28 \hat{k} \tag{1/2}
\end{array}
$$

78. Do same as Q. No. 60 . [Ans. $\left.\frac{2}{3} \hat{i}-\frac{2}{3} \hat{j}-\frac{1}{3} \hat{k}\right]$
79. Given, $|\vec{a}|=2|\vec{b}|=1$ and $\vec{a} \cdot \vec{b}=1$

Now, $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$

$$
\begin{align*}
& =6 \vec{a} \cdot \vec{a}+21 \vec{a} \cdot \vec{b}-10 \vec{b} \cdot \vec{a}-35 \vec{b} \cdot \vec{b} \\
& =6|\vec{a}|^{2}+21 \vec{a} \cdot \vec{b}-10 \vec{a} \cdot \vec{b}-35|\vec{b}|^{2} \\
& \quad\left[\because \vec{x} \cdot \vec{x}=|\vec{x}|^{2} \text { and } \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\right] \\
& =6|\vec{a}|^{2}+11 \vec{a} \cdot \vec{b}-35|\vec{b}|^{2} \\
& =6(2)^{2}+11(1)-35(1)^{2} \tag{i}\\
& =24+11-35=0 \tag{1}
\end{align*}
$$

Hence, $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})=0$
80. Given, $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}$,

$$
\vec{b}=-\hat{i}+2 \hat{j}+\hat{k}
$$

and $\quad \vec{c}=3 \hat{i}+\hat{j}$
Also, $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}.

$$
\begin{equation*}
\therefore \quad(\vec{a}+\lambda \vec{b}) \cdot \vec{c}=0 \tag{i}
\end{equation*}
$$

$[\because$ when $\vec{a} \perp \vec{b}$, then $\vec{a} \cdot \vec{b}=0]$
Now, $\vec{a}+\lambda \vec{b}=(2 \hat{i}+2 \hat{j}+3 \hat{k})+\lambda(-\hat{i}+2 \hat{j}+\hat{k})$
$\Rightarrow \quad \vec{a}+\lambda \vec{b}=\hat{i}(2-\lambda)+\hat{j}(2+2 \lambda)+\hat{k}(3+\lambda)$
Then, from Eq. (i), we get

$$
\begin{array}{rlrl}
& & {[\hat{i}(2-\lambda)+\hat{j}(2+2 \lambda)+\hat{k}(3+\lambda)] \cdot[3 \hat{i}+\hat{j}]=0} \\
\Rightarrow & & 3(2-\lambda)+1(2+2 \lambda) & =0 \\
\Rightarrow & & 8-\lambda & =0 \\
\therefore & & \lambda & =8
\end{array}
$$

$$
\Rightarrow
$$

81. Do same as Q. No. 52 .
[Ans. $\frac{1}{2} \sqrt{61}$ sq units]
82. Do same as Q. No. 52 .

Solutions (objective)

f. (A) Now, $|(\hat{i}+2 \hat{j}-6 \hat{k})|=\sqrt{3^{2}+2^{2}+(-6)^{2}}$ $-\sqrt{9+4+36}=\sqrt{49}=7$
since, $\lambda(3 \hat{i}+2 \hat{j}-6 \hat{k})$ is a unit vector.
$\therefore \quad \lambda= \pm \frac{1}{|3 \hat{i}+2 \hat{j}-6 \hat{k}|}= \pm \frac{1}{7}$
2. (c) Let the vertices be $\overrightarrow{O A}=\hat{i}+\hat{j}+\hat{k}$,
$\overrightarrow{O B}=2 \hat{i}+3 \hat{j}, \overrightarrow{O C}=3 \hat{i}+5 \hat{j}-2 \hat{k}$ and $\overrightarrow{O D}=\hat{k}-\hat{j}$
$\therefore \overrightarrow{A B}=\hat{i}+2 \hat{j}-\hat{k}, \overrightarrow{B C}=\hat{i}+2 \hat{j}-2 \hat{k}$
$\overrightarrow{C D}=-3 \hat{i}-6 \hat{j}+3 \hat{k}=-3(\hat{i}+2 \hat{j}-\hat{k})$
$\overrightarrow{D A}=\hat{i}+2 \hat{j}+\hat{k}$
It is clear that, $|\overrightarrow{A B}| \neq|\overrightarrow{B C}| \neq|\overrightarrow{C A}| \neq|\overrightarrow{D A}|$ Also, $\overrightarrow{A B} \| \overrightarrow{C D}$
Hence, figure formed by four points is a trapezium.
3. (b) Given, $|\vec{a}|=|\vec{b}|=1$ and $\theta=\pi / 3$

Now, $|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}| \cos \theta$

$$
\begin{aligned}
& =1^{2}+1^{2}+2 \times 1 \times 1 \times \cos \frac{\pi}{3} \\
& =1+1+2 \times \frac{1}{2}=1+1+1=3
\end{aligned}
$$

$\Rightarrow \quad|\vec{a}+\vec{b}|=\sqrt{3}$
$\therefore \quad|\vec{a}+\vec{b}|>1$
4. (d) Given, $\vec{a} \cdot \vec{b}=0$

Now, $(\vec{a}+\vec{b}) \cdot \vec{a}=|\vec{a}+\vec{b}||\vec{a}| \cos 60^{\circ}$
$\Rightarrow \quad \vec{a} \cdot \vec{a}+\vec{b} \cdot \vec{a}=|\vec{a}+\vec{b}||\vec{a}| \frac{1}{2}$
$\Rightarrow \quad|\vec{a}|^{2}+0=\frac{|\vec{a}+\vec{b}||\vec{a}|}{2}$
$\Rightarrow \quad 2|\vec{a}|=|\vec{a}+\vec{b}|$
On squaring both sides, we get

$$
4|\vec{a}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \vec{b}
$$

$\Rightarrow \quad 3|\vec{a}|^{2}=|\vec{b}|^{2}+0 \quad[\because|\vec{a}||\vec{b}| \cos \theta=\vec{a} \cdot \vec{b}=0]$
$\therefore \quad \sqrt{3}|\vec{a}|=|\vec{b}|$
5. (a) Given, $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$
$\vec{a} \cdot \vec{b}=|\vec{b}|^{2}$
and $|\vec{a}-\vec{b}|=\sqrt{7} \Rightarrow|\vec{a}-\vec{b}|^{2}=7$
$\Rightarrow \quad|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b}=7$
$\Rightarrow \quad(\sqrt{1+4+9})^{2}+|\vec{b}|^{2}-2|\vec{b}|^{2}=7$
$\Rightarrow \quad 14-|\vec{b}|^{2}=7$
$\Rightarrow \quad|\vec{b}|^{2}=7$
$\therefore \quad|\vec{b}|=\sqrt{7}$
6. (b) Given, $\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|$
$\Rightarrow|\vec{a}||\vec{b}| \cos \theta=-|\vec{a}||\vec{b}|$
$\Rightarrow \quad \cos \theta=-1 \Rightarrow \theta=180^{\circ}$
7. (a) Given, $\vec{a}=\lambda \hat{i}-7 \hat{j}+3 \hat{k}, \vec{b}=\lambda \hat{i}+\hat{j}+2 \lambda \hat{k}$
$\therefore \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{\lambda^{2}-7+6 \lambda}{\sqrt{\lambda^{2}+49+9} \sqrt{\lambda^{2}+1+4 \lambda^{2}}}<0$
\Rightarrow $(\lambda+7)(\lambda-1)<0$
\Rightarrow
8. (d) Given, $|\vec{x}|=|\vec{y}|=1$ and $\vec{x} \cdot \vec{y}=0$

$$
\begin{aligned}
& |\vec{x}+\vec{y}|^{2}=|\vec{x}|^{2}+|\vec{y}|^{2}+2(\vec{x} \cdot \vec{y}) \\
\Rightarrow \quad & |\vec{x}+\vec{y}|^{2}=1+1+0 \\
\Rightarrow \quad & |\vec{x}+\vec{y}|=\sqrt{2}
\end{aligned}
$$

9. (c) The projection of \vec{a} on $\vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

$$
=\frac{(3 \hat{i}-\hat{j}+5 \hat{k}) \cdot(2 \hat{i}+3 \hat{j}+\hat{k})}{\sqrt{2^{2}+3^{2}+1^{2}}}=\frac{8}{\sqrt{14}}
$$

10. (b) $|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}=16-4=12$ and $\quad|\vec{c}|^{2}=(2 \vec{a} \times \vec{b}-3 \vec{b})^{2}$

$$
\begin{aligned}
& =4|\vec{a} \times \vec{b}|^{2}+9|\vec{b}|^{2}=4 \cdot 12+9 \cdot 16 \\
& =192 \Rightarrow|\vec{c}|=8 \sqrt{3} \quad[\because \vec{b} \vec{b} \vec{c}=0]
\end{aligned}
$$

Now, $\vec{b} \cdot \vec{c}=\vec{b} \cdot(2 \vec{a} \times \vec{b}-3 \vec{b})=-3|\vec{b}|^{2}=-48$
$\therefore \cos \theta=\frac{\vec{b} \cdot \vec{c}}{|\vec{b}||\vec{c}|}=-\frac{48}{4 \cdot 8 \sqrt{3}}=-\frac{\sqrt{3}}{2} \Rightarrow \theta=\frac{5 \pi}{6}$
11. (b) Given, $\vec{a}+\vec{b}+\vec{c}=0$

Taking cross product of both sides, we get

$$
\begin{aligned}
& (\vec{a}+\vec{b}+\vec{c}) \times \vec{a}=0 \times \vec{a} \\
& \Rightarrow \quad \vec{a} \times \vec{a}+\vec{b} \times \vec{a}+\vec{c} \times \vec{a}=0 \\
& \Rightarrow \quad 0+\vec{b} \times \vec{a}+\vec{c} \times \vec{a}=0 \\
& \Rightarrow \quad-\vec{a} \times \vec{b}+\vec{c} \times \vec{a}=0 \\
& \vec{a} \times \vec{b}=\vec{c} \times \vec{a} \\
& \text { Similarly, } \\
& \vec{b} \times \vec{c}=\vec{c} \times \vec{a} \\
& \therefore \quad \vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} \neq 0
\end{aligned}
$$

12. (c) $\because|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}=144$
$\Rightarrow|\vec{a}|^{2} \cdot|\vec{b}|^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=144$
$\Rightarrow \quad 16|\vec{b}|^{2}=144$
$\therefore \quad \quad|\vec{b}|=3$
13. (c) Given, area $=|\vec{a} \times \vec{b}|=15$

If the sides are $(3 \vec{a}+2 \vec{b})$ and $(\vec{a}+3 \vec{b})$, then

Area of parallelogram

$$
\begin{aligned}
& =|(3 \vec{a}+2 \vec{b}) \times(\vec{a}+3 \vec{b})| \\
& =7|\vec{a} \times \vec{b}| \\
& =7 \times 15=105 \mathrm{sq} \text { units }
\end{aligned}
$$

14. (c) Given, $\vec{r} \cdot \vec{a}=0 \Rightarrow \vec{r} \perp \vec{a}$

$$
\begin{aligned}
& \vec{r} \cdot \vec{b}=0 \Rightarrow \vec{r} \perp \vec{b} \\
& \vec{r} \cdot \vec{c}=0 \Rightarrow \vec{r} \perp \vec{c}
\end{aligned}
$$

and
So, \vec{a}, \vec{b} and \vec{c} are coplanar.
$\therefore \quad[\vec{a} \vec{b} \vec{c}]=0$
15. (b) Since, volume of parallelopiped $=34$

$$
\begin{array}{llrl}
\therefore & & \left|\begin{array}{ccc}
4 & 5 & 1 \\
0 & -1 & 1 \\
3 & 9 & p
\end{array}\right| & =34 \\
& \Rightarrow & 4(-p-9)-5(-3)+1(3) & =34 \\
\Rightarrow & -4 p-36+15+3 & =34 \\
\Rightarrow & & 4 p=-52 \\
\therefore & & p=-13
\end{array}
$$

