20. Using properties of determinants, prove that

$$
\left|\begin{array}{lll}
(a+1)(a+2) & a+2 & 1 \\
(a+2)(a+3) & a+3 & 1 \\
(a+3)(a+4) & a+4 & 1
\end{array}\right|=-2
$$

21. Prove the following, using properties of determinants.

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a+b+2 c & a & b \\
c & b+c+2 a & b \\
c & a & c+a+2 b
\end{array}\right| \\
& =2(a+b+c)^{3}
\end{aligned}
$$

Or Prove, using properties of determinants $\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|$
$=2(x+y+z)^{3}$
22. Using properties of determinants, prove that
$\left|\begin{array}{ccc}x^{2}+1 & x y & x z \\ x y & y^{2}+1 & y z \\ x z & y z & . z^{2}+1\end{array}\right|=1+x^{2}+y^{2}+z^{2}$.
Or Prove, using properties of determinants

$$
\left|\begin{array}{ccc}
a^{2}+1 & a b & a c \\
a b & b^{2}+1 & b c \\
c a & c b & c^{2}+1
\end{array}\right|
$$

$=1+a^{2}+b^{2}+c^{2}$.
23. Using properties of determinants, prove that
$\left|\begin{array}{ccc}2 y & y-z-x & 2 y \\ 2 z & 2 z & z-x-y \\ x-y-z & 2 x & 2 x\end{array}\right|=(x+y+z)^{3}$
24. Using properties of determinants, prove

$$
\begin{aligned}
& \text { that } \\
& \qquad\left|\begin{array}{lll}
b+c & c+a & a+b \\
q+r & r+p & p+q \\
y+z & z+x & x+y
\end{array}\right|=2\left|\begin{array}{ccc}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right| .
\end{aligned}
$$

25. Using properties of determinants, prove that

$$
\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|=a b c+b c+c a+a b
$$

26. Using properties of determinants, prove that

$$
\left|\begin{array}{ccc}
x+y & x & x \\
5 x+4 y & 4 x & 2 x \\
10 x+8 y & 8 x & 3 x
\end{array}\right|=x^{3} .
$$

27. Using properties of determinants, prove that

$$
\left|\begin{array}{ccc}
a+x & y & z \\
x & a+y & z \\
x & y & a+z
\end{array}\right|=a^{2}(a+x+y+z)
$$

28. Using properties of determinants, prove that

$$
\left|\begin{array}{ccc}
x+\lambda & 2 x & 2 x \\
2 x & x+\lambda & 2 x \\
2 x & 2 x & x+\lambda
\end{array}\right|=(5 x+\lambda)(\lambda-x)^{2} .
$$

Or Using properties of determinants, prove that
$\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2}$.
29. Using properties of determinants, prove
that $\left|\begin{array}{ccc}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|=\begin{gathered}(a-b)(b-c)(c-a) . \\ (b c+c a+a b)\end{gathered}$.
30. Show that $\Delta=\Delta_{1}$, where
$\Delta=\left|\begin{array}{lll}A x & x^{2} & 1 \\ B y & y^{2} & 1 \\ C z & z^{2} & 1\end{array}\right|, \Delta_{1}=\left|\begin{array}{ccc}A & B & C \\ x & y & z \\ z y & z x & x y\end{array}\right|$.
31. Using properties of determinants, prove that

$$
\left|\begin{array}{ccc}
b+c & a & a \\
b & c+a & b \\
c & c & a+b
\end{array}\right|=4 a b c .
$$

32. Using properties of determinants, prove that

$$
\left|\begin{array}{lll}
1 & a & a^{3} \\
1 & b & b^{3} \\
1 & c & c^{3}
\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)
$$

33. Using properties of determinants, prove that

$$
\left|\begin{array}{ccc}
a & b & c \\
a^{2} & b^{2} & c^{2} \\
b c & c a & a b
\end{array}\right|=(a-b)(b-c) \quad(c-a)(a b+b c+c a)
$$

34. Using properties of determinants, prove that
$\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y\end{array}\right|=2\left|\begin{array}{ccc}a \cdot p & x \\ b & q & y \\ c & r & z\end{array}\right|$
35. Using properties of determinants, prove the following

$$
\left|\begin{array}{rrr}
1 & 1 & 1 \\
a & b & c \\
a^{3} & b^{3} & c^{3}
\end{array}\right|=(a-b)(b-c)
$$

36. Using properties of determinants, prove the following

$$
\left|\begin{array}{ccc}
a & b & c \\
a-b & b-c & c-a \\
b+c & c+a & a+b
\end{array}\right|=a^{3}+b^{3}+c^{3}-3 a b c
$$

37. Using properties of determinants, prove the following.

$$
\left|\begin{array}{ccc}
a & b-c & c+b \\
a+c & b & c-a \\
a-b & b+a & c
\end{array}\right|=(a+b+c)
$$

38. Using properties of determinants, prove that

$$
\left|\begin{array}{ccc}
\alpha & \beta & \gamma \\
\alpha^{2} & \beta^{2} & \gamma^{2} \\
\beta+\gamma & \gamma+\alpha & \alpha+\beta
\end{array}\right|=(\alpha-\beta)(\beta-\gamma)
$$

39. Using properties of determinants, prove that

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a^{2} & a^{2}-(b-c)^{2} & b c \\
b^{2} & b^{2}-(c-a)^{2} & c a \\
c^{2} & c^{2}-(a-b)^{2} & a b
\end{array}\right| \\
& =(a-b)(b-c)(c-a)(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)
\end{aligned}
$$

40. Using properties of determinants, prove that $\left|\begin{array}{ccc}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$.
41. Using properties of determinants, prove that

$$
\left|\begin{array}{ccc}
x & y & z \\
x^{2} & y^{2} & z^{2} \\
x^{3} & y^{3} & z^{3}
\end{array}\right|=x y z(x-y)(y-z)(z-x) .
$$

42. Using properties of determinants, solve the following for x

$$
\left|\begin{array}{ccc}
x-2 & 2 x-3 & 3 x-4 \\
x-4 & 2 x-9 & 3 x-16 \\
x-8 & 2 x-27 & 3 x-64
\end{array}\right|=0
$$

43. Using properties of determinants, solve the following for x.

$$
\left|\begin{array}{ccc}
x+a & x & x \\
x & x+a & x \\
x & x & x+a
\end{array}\right|=0
$$

44. Prove, using properties of determinants
$\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$.
45. Prove, using properties of determinants

$$
\left|\begin{array}{ccc}
y+k & y & y \\
y & y+k & y \\
y & y & y+k
\end{array}\right|=k^{2}(3 y+k) \text {. }
$$

46. Prove that

$$
\left|\begin{array}{ccc}
(b+c)^{2} & a^{2} & a^{2} \\
b^{2} & (c+a)^{2} & b^{2} \\
c^{2} & c^{2} & (a+b)^{2}
\end{array}\right|
$$

〔 6 Marks Questions

47. Prove that $\left|\begin{array}{lll}y z-x^{2} & z x-y^{2} & x y-z^{2} \\ z x-y^{2} & x y-z^{2} & y z-x^{2} \\ x y-z^{2} & y z-x^{2} & z x-y^{2}\end{array}\right|$ is
divisible by $(x+y+z)$ and hence find the quotient.
48. Using properties of determinants, prove that

$$
\begin{aligned}
& \left.\begin{array}{ccc}
(x+y)^{2} & z x & z y \\
z x & (z+y)^{2} & x y \\
z y & x y & (z+x)^{2}
\end{array} \right\rvert\, \\
& =2 x y z \\
& (x+y+z)^{3} .
\end{aligned}
$$

Or Using properties of determinants, show the following

$$
\left|\begin{array}{ccc}
(b+c)^{2} & a b & c a \\
a b & (a+c)^{2} & b c \\
a c & b c & (a+b)^{2}
\end{array}\right|
$$

49. Using properties of determinants, show that $\triangle A B C$ is isosceles, if

$$
\begin{aligned}
& \text { } \left.\begin{array}{ccc}
1 & 1 & 1 \\
1+\cos A & 1+\cos B & 1+\cos C \\
\cos ^{2} A+\cos A & \cos ^{2} B+\cos B & \cos ^{2} C+\cos C
\end{array} \right\rvert\, \\
& =0
\end{aligned}
$$

50. If a, b and c are all non-zero and
$\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+\hat{c}\end{array}\right|=0$, then prove that
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1=0$.
51. If a, b, c are positive and unequal, show that the following determinant is negative.
$\Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$
52. Using properties of determinants, prove the following.

$$
\begin{aligned}
& \left|\begin{array}{lll}
x & x^{2} & 1+p x^{3} \\
y & y^{2} & 1+p y^{3} \\
z & z^{2} & 1+p z^{3}
\end{array}\right| \\
& =(1+p x y z)(x-y)(y-z)(z-x)
\end{aligned}
$$

