semiconductor devices (solutions with objectives)

$\boxed{\int}$ Explanations

1. Refer to graph
(Zener Diode).
2. The diode having these type of $V-I$ characteristics is photodiode.
3. Resistance of a material can be found out by the slope of the curve V versus I. Part $B C$ of the curve shows the negative resistanceasin this region current decreases by increasing the voltage.
4.

n-type

Semiconductor \quad| p-type |
| :---: |
| Semiconductor |

It is formed by doping pentavalent impurities with tetravalent atoms.

It is formed by doping
trivalent impurities with tetravalent atoms. (1/2)

The electrons are . The holes are majority majority carriers and camiets and electrons holes are minority are minority carriers carriers.
($n_{k} \gg n_{4}$)

8 (i) Width of depletion layer decreases in forward
Width
(1/2)
(ii) Width of depletion layer increases in reverse bias.
(1/2)
6. In this way, continuous contact cannot be produced at atomic level and junction will behave as a discontinuity for the flowing charge carrier. (1)
9. Working of photodiode A junction diode made from light sensitive semiconductor is called a photodiode. A photodiode is a $p-n$ junction diode arranged in reverse biasing.

The number of charge carriers increases when light of suitable frequency is made to fall on the $p-n$ junction, because new electron holes pairs are created by absorbing the photons of suitable frequency. Intensity of light controls the number of charge carriers. Due to this property. photodiodes are used to detect optical signals.
2. A rectifier is used to convert alternating current into direct current, whose labelled circuit is given below.

Circuit diagram of full wove rectifier
(1/2)

Working

During the positive half cycle of the input AC , the diode D_{1} is forward biased and the diode D_{2} is reverse biased, The forward current flows through diode D_{1}.
During the negative half cycle of the input $A C$, the diode D_{1} is reverse biased and diode D_{2} is forward biased. Thus, current flows through diode D_{2}. Thus, we find that during both the halves. current flows in the same direction.

9. (i) From the given curve, we have

Voltage, $V=0.7$ volt for current,
$I=15 \mathrm{~mA}$ for voltage,
$\begin{aligned} \text { tisuris is lu quance, } & \frac{V}{I} \\ \therefore \text { Resistan } & \frac{0.7}{15 \times 16^{-3}}=47 \Omega\end{aligned}$
(ii) For $V=-10 \mathrm{~V}$, we have

$$
\begin{align*}
I & =-1 \mu \mathrm{~A}=-1 \times 10^{-6} \mathrm{~A} \\
\Rightarrow R & \frac{10}{1 \times 10^{-6}}=1.0 \times 10^{7} \Omega \tag{1}
\end{align*}
$$

10.

Intrinsic semiconductor

It is a pure semiconductor material with no impurity atoms in it.
The number of free electtors' in the conductionsbatid rand the number of holes in valence, band is exactly equal. $n_{e}=n_{h}=n_{i}$
fristhourril in

It is prepared by doping a small quantity of impurity atoms to the pure semiconductor.

The number of free electrons and holes is never equal. There is an excess of electrons $n_{e}>n_{i}$ in n-type semiconductors and excess of holes $n_{h}>n_{i}$ in p-type semiconductors. (1)
11. p-n Junction Diode as a Half-Wave Rectifier AC voltage to be rectified is connected to the primary coil of a step-down transformer.

Secondary coil is connected to the lionded hrough resistors R_{L}, across which output iswiflined.

Working During positive half cycle of the input AC, the p - n junction is forward biased. Thus, the resistance in $p-n$ junction becomes low and current flows. Hence, we get output in the load. During negative half cycle of the input AC , the p-n junction is reverse biased. Thus, the resistance of $p-n$ junction is high and current does not flow. Hence, no output in the load. So, for complete cycle of AC, current flows through the load resistance in the same direction.

12. The required energy band diagram is shown below

Acceptor energy.tevel

(a) p-type :3 whs ygions
mo ai रวぃวยpoा

Valence band
(b) n-type
13. Metal For metals, the valence band is completely filled and the conduction band can have two possibilities either it is partially filled with an
extremely small energy gap between the valence and conduction bands or it is empty, with two bands overlapping each other as shown below:

On applying even small electric field, metals can conduct electricity.
Insulators For insulator, the energy gap between the conduction and valence bands are very large, also the conduction band is practically empty, as shown below:

When an electric field is applied across such a solid, the electrons find it difficult to acquire, so a large amount of energy to reach the conduction band. Thus, the conduction band contintues to be empty. That is why no current flows through insulators.
14. Refer to Sol. 7
15. According to the question,

16. For LEDs, the threshold voltages are much higher and slighty different for different colours. The revence breakdown woltages of LEDS are low generally around 5 V . It is due to this reason, the care is taken that high reverse voltages do not appear across LEDs. There is very little resistance to limit the current in LED. Therefore, a resistor must be used in series with the LED to avoid any damage to it.

The semiconductor used for fabrication of visible LEDs must at least have a band gap of 1.8 eV (spectral range of visible light is from about $0.4 \mu \mu$ wa $0.7 \mu \mathrm{~m}$ ice from about 3 eV to 1.8 eV).
17. Characteristics features of n-type semiconductor
(i) In n-type semiconductor, the semiconductor is doped with pentavalent impurity. In it the electrons are majority carriers and holes are minority carriers or $n_{c} \gg n_{h}\left(n_{c}=\right.$ number density of electrons, $n_{h}=$ number density of holes). Nü
(ii) In energy band diagram of n-type semiconductor, the donor energy level E_{D} is slightly below the bottom of E_{C} conduction band and thus, the electron can move to conduction band, even with small supply of energy.

Chaxacteristics features of p-type samiconductor

(i) Inp-1ype semiconductor, the semiconductor is doped with trivalent impurity, In this semiconductor, the holes are the majority cartiers and electrons are the minority carriers i.e. $n_{h}>n_{6}$.

(iw) (if) In energy band diagram of p-type, the acceptor energy level is slightly above the top of valence band E_{V}. Thus, even with small supply of energy electron from valence band can jump to level, E_{A} and ionise the acceptor, negatively. (1)
18. Advantages of LEDs over incandescent lamps:
(i) Since, LEDS do not have a filament that can burn out, hence, they last longer.
(ii) They do not get hot during use, hence last action, no warm up time required.
19. When photodiode is illuminated with light due to breaking of covalent bonds, equal number of additional electrons and holes come into existence whereas fractional change in minority charge carrier is much higher than fractional change in majority charge carrier. Since, the fractional change of minority carrier current is measurable significantly in reverse bias than that of forward bias. Therefore, photodiodes are connected in reverse bias.
20. When we apply sufficient voltage to LED, electron move across the junction into p-region and get attracted to the holes these holes are sent from pregion to wregion (where they are minority carriers). Thus, electrons and holes recombine. During each recombination, the electric potential energy is converted into the electromagnetic energy and a photon of light with a characteristic frequency is emitted, this is how, LED works.

Advantages of LEDs Refer to Sol. 18

21. (i) The energy for the maximum intensityof the solar radiation is nearly 1.5 eVoIn ortier too have photo excitation, the eniengyof radifition ($h v$) must be greater than energy band gap $\left(E_{g}\right)$, i.e. $h \nu>E_{g}$. Therefore, the semiconductor with energy band gap about 1.5 eV or lower and with higher absorption coefficient, is likely to give better solar conversion efficiency.
The energy band gap for Si is about 1.1 eV , while for GaAs, it is about 1.43 eV . The gas GaAs is better inspite of its higher band gap than Si because it absorbs relatively more energy from the incident solar radiations being of relatively higher absorption coefficient.
(ii)

Short circuit current V-I characteristic of a solar cell ${ }^{(1)}$,
(a) $V-I$ curve is drawn in the forth quadrant, because a solar cell does not draw current but supplies current to the load.
(b) In $V-I$ curve, the point A indicates the maximum voltage $V_{O C}$ which is being supplied by the given solar cell when no current is being drawn from it. $V_{O C}$ is called the open circuit voltage.
(c) In $V-I$ curve, the point B indicates the maximum current $I_{S C}$ which can be obtained by short circuiting the solar cell without any load resistance. $\eta_{S C}$ is called the short circuit current.
22. Zener diode is used as voltage regulator.

Principle Zener diode is operated in the reverse breakdown region. The voltage across it remains constant, equal to the breakdownovoltage for large change in reverse current.

23. Differences between forward and reverse biasing are given below:

Forward bias	Reverse blas
Positive terminal of battery is connected to p-lype and negative terminal to n-type semiconductor.	Positive terminal of battery is connected to n-type and negative terminal to p-type semiconductor.
Depletion layer is very thin.	Depletion layer is thick.
$p-n$ junction offers very	p- n junction offers very high resistance.
low resistance.	An ideal diode have
An ideal diode have	infinite resistance.

24. With the formation of $p-n$ junction, the holes from p-region diffuse into the n-region and electrons from n-region diffuse into p-region and electron-hole pair combine and get annihilated. This in turn, produces potential barrier, V_{B} across the junction which opposes the further diffusion through the junction. Thus, small region forms in the vicinity of the junction,which is depleted of free charge carrier and has only immobile ions is called the depletion region.
25. Circuit diagram of forward biased and reyerse biased $p-n$ junction diode isi shown below:

The width of depletion layer
(i) decreases in forward bias.
(ii) increases in reverse bias.
($1 / 2 \times 2=1$)
26. The four valence electrons of carbon are present in second orbit while that of silicon in third orbit. So, energy required to extricate an ellectron from silicon is much smaller than carbon. Therefore, the number of free electrons for conduction in silicon is significant on contrary to the carbon. This makes silicon's conductivity much higher than carbon. This is the main distinguishable property.
27. Device, D is a Zener diode.

Symbol of Zener diode is

28. Circuit diagram of illuminated photodiode in reverse bias is shown below:

Reverse bias currents through a photodiode
Hence, frequency of light v such that $h v>E_{g}$, where E_{g} is band gap of increasing intensity I_{1}, I_{2}, I_{3}, etc. The value of reverse saturation current increases with the increase of intensity of light.
Thus, the measurement of change in the reverse saturation current can give the intensity of incident light.
29. (i) Main use of photodiode In demodulation and detection of optical signals, in light operated switches and in electronic counters.
(ii) Main use of Zener diode As DC voltage regulator.
(1)
30. (i) Given, that, $\lambda=600 \mathrm{~nm}$, so

$$
E=\frac{1240}{\lambda} \AA=\frac{1240}{600} \mathrm{eV}=2.06 \mathrm{cV}
$$

So, diode D_{1} and D_{3} does not detect light wave of wavelength 600 nm .
(ii) Refer to Sol. 19
31. Refer to Sol. 8
32. Refer to Sol. 8
33. (i) Refer to Sol. 19
($11 / 2$)
(ii) $\lambda_{1}=\frac{h c}{E_{1}}=\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{2.5 \times 1.6 \times 10^{-19}}=4965 \AA$
$\lambda_{2}=\frac{h c}{B_{2}}=\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{2.8 \times 1.6 \times 10^{-19}}=4433 \AA$
Range of wavelength $=4433 \AA-4965 \AA$
34. zener diode is fabricated by heavily doping both p and n sides of the junction. Due to this, thickness
of depletion region is reduced to less than $1 \mu \mathrm{~m}$ which in turn increases the potential gradient of the junction to a very high value.
nointhe current in series resistor is

$$
\begin{aligned}
I_{S} & =\frac{V_{S}-V_{Z}}{R_{S}} \\
& =\frac{20-15}{250}=\frac{5}{250}=\frac{1}{50}
\end{aligned}
$$

The current in load resistor across Zener diode is

$$
I_{L}=\frac{V_{Z}}{R_{L}}=\frac{15}{1000}=\frac{3}{200}
$$

Thus, current across Zener diode is
(419n) $I_{Z}=I_{S}-I_{L}$

$$
\begin{align*}
& =\frac{1}{50}-\frac{3}{200}=\frac{1}{200} \\
I_{Z} & =5 \mathrm{~mA} \tag{11/2}
\end{align*}
$$

35. (i) D_{1} diode is forward biased, hence current will flow in B_{1} bulb and D_{2} is reverse biased, so there will be no current in B_{2}. Hence, B_{1} will glow.
(ii) The diagram of illuminated p-n junction solar cell is given below

(1)
(iii) Processes involved due to generation of emf in , a solar cell are given below
(il.) $\boldsymbol{m}_{1}($ (a) When light photon reach the junction, the exçited electrons from the valence band to conduction band creating equal number of holes and electrons.
(b) Thiese electron hole pairs move in opposite direction due to junction field. Their eniminy ti movement in opposite direction creates tol , ,
(f) (c) When load is connected in the external circuit, current starts flowing through it due to photo-voltage.
36. (1) The given diagram shown below.

The circuit above can be redrawn as follows

As the p-section is connected to negative terminal of the battery, the diodershown is reverse biased. (1) (0)
(ii) Working of full wave rectifief

During the first half of input cycie, the upper end of the coil is at positive potential and lower end at negative potential. The function diode D_{1} is forward biased and D_{2} in reverse biased. Current flows in output load in the direction shown in figure. During the second half of input cycle, D_{2} is forward biased. In this way, current flows in the load in the singleq direction as shown in figure.

Circuit diagram of full wove rectifier
37. Two processes that take place during the formation of $p-n$ junction are diffusion and drift of charge carriers. In a n-type semiconductor, the concentration of electrons is more than that of hdles. Similarly, in a p-type semiconductor, the concentration of holes is more than that of electrons. Formation of depletion region during formation of $p-n$ junction and due to the concentration gradient across p and n-sides, holes diffuse from p-side to n-side $(p \rightarrow n)$ and electrons diffuse from n-side to p-side ($n \rightarrow p$). The diffused charge carriers combine with their counterparts in the immediate vicinity of the junction and neutralise each other.
Thus, near the junction, positive charge is built on n-side and negative charge on p-sidejoriq orlT
inged rioitibrios
Electron drift \leftrightarrows Electron diffusion noitibrios

This sets up potential difference across the junction and an internal electric field E_{i} directed from n-side to p-side. The equilibrium is established when the field E_{i} becomes strong enough to stop further diffusion of the majority charge carriers (however, it helps the minority charge carriers to drift across the junction).
The region on either side of the junction which becomes depleted (free) from the mobile charge carriers is called depletion region or depletion layer. The potential difference developed across the depletion region is called the potential barrier.
38. In Zener diode, both p and n-side of the junctions are heavily doped. Heavy doping ensures high junction field and low breakdown voltage.
The circuit diagram of a voltage regulator using a Zener diode is shown in figure.

The unregulated DC voltage is connected to the Zener diode through a series resistance R_{s} in reverse biased. Thus, any change in the input voltage result in change of voltage drop across R_{s} without any change in voltage across the Zener diode. Therefore, Zener diode acts as a voltage regulator.
39. (i) The small region in the vicinity of the junction which is depleted opfertiag ge carriers and has only immobile ions is called depletion region.

42. (i)

(b)

Energy band diagram of p-type semiconductor at $T>0 \mathrm{~K}$
In n-type extrinsic semiconductors, the number of free electrons in conduction band is much more than the number of holes in valence band. The donor energy level lies just below the conduction band. In p-type extrinsic semiconductor, the number of holes in valence band is much more than the number of free electrons in conduction band. The acceptor energy level lies just above the valence band.
(ii)

At absolute zero temperature (0 K) conduction band of semiconductor is completely empty, i.e., $\sigma=0$.

Hence, the semiconductor behaves as an insulator. At room temperature, some valence electrons acquire enough thermal energy and jump to the conduction band where they are
free to conduct electricity. Thus, the semiconductor acquires a small conductivity at room temperature.
43. The required energy band diagrams are given in

Sol. 42(i)
The donor energy level E_{D} is just below the bottom of the conduction band. At room temperature, this small energy gap is easily converted by the thermally excited electrons. The conduction band has more electrons as they have been contributed both by thermal excitation and donor impurities. Whereas the acceptor energy level E_{A} lies slightly above the top of the valence band.
At room temperature, many electror., of the valence band get excited to these acceptor energy levels, leaving behind equal ${ }^{-}$imber of holes in the valence band. These holes can conduct currenit. Thus, the valence band has more holes thain the electrons in the conduction band.
44. Refer to text (Differences between conductor, insulator and semiconductor on the basis of energy bands).
45. (i) A photodiode is fabricated by allowing light to fall on a diode through a transparent window. It is fabricated such that the generation of $e-h$ pairs take place near the depletion region.
(ii) Refer to Sol. 7

- V-I characteristics

46. In these type of questions, we have to mind that in full-wave rectifier, full cycle of the input will be used. The circuit diagram of full-wave rectifier is shown

The input and output waveforms have been given below:

Working of full wave rectifier
Refer to Sol 36 (ii)
47. V-I characteristic of $\boldsymbol{p}-\boldsymbol{n}$ junction diode Refer to class notes.
(i) Under the reverse bias condition, the holes of p-side are attracted towards the negative terminal of the battery and the electrons of the n-side are attracted towards the positive terminal of the battery. This increases the depletion layer and the potential barrier. However, the minority charge carriers are drifted across the junction producing a small current.
At any temperature, the number of minority carriers is constant, so there is the small current at any applied potential. This is the reason for the current under reverse bias to be almost independent of applied potential. At the critical voltage, avalanche breakdown takes place which results in a sudden flow of large current.
(ii) At the critical voltage, the holes in the n-side and conduction electrons in the p-side are accelerated due to the reverse bias voltage. These minority carriers acquire sufficient kinetic energy from the electric field and collide with a valence electron.

Thus, the bond is finally broken and the valence electrons move into the conduction band resulting in enormous flow of electrons and thus, formation of hole-electron pairs. Thus, there is a sudden increase in the current at the critical voltage.
Zener diode is a semiconductor device which operates under the reverse bias in the breakdown region.
48. Refer to Sol. 46
(3)
49.

During the formation of $p-n$ junction, diffusion of charge takes place. As, soon as p-type semiconductor is joined with n-type semiconductor, diffusion of free charges across the junction starts.
For explanation of formation of $\boldsymbol{p}-\boldsymbol{n}$ junction Refer to Sol. 24
Potential barrier The accumulation of '-ve' charges in the p-region and + ve charges in the n-region sets up a potential difference across the junction $(p-n)$ is called potential barrier $\left(V_{B}\right)$ which opposes the further diffusion of electrons and holes.
50. In these type of questions, we should mind that the diode is connected reverse biased or forward biased.
(i) Photodiode is connected in reverse bias and feeble reverse current flows due to thermally generated electron-hole pair, known as dark current. When light of suitable frequency (v) such that $h v>E_{g}$, where E_{g} is the band gap incident on diode, additional electron-hole pair generated and current grows in the circuit.
(ii) Refer to Sol 29(i)
(iii) Refer to Sol 28
51. (i) Refer to Sol 21 (i)
(ii) When light of frequency, v such that $h v>E_{g}$ (band gap) is incident on junction, then electron-hole pair liberated in the depletion region drifts under the influence of potential barrier. The gathering of these charge carriers make p-type as positive electrode and n-type as negative electrode and hence, genelaming photo-voltage across solar cell.

52. (i) Working of LED LED is a forward biased $p-n$ junction which converts electrical energy into optical energy of infrared and visible light region. Being in forward bias, thin depletion layer and low potential barrier facilitate diffusion of electron and hole through the junction. When high energy electron of conduction band combines with the low energy holes in valence band, then energy is released in the form of photon, which may be seen in the form of light.(1)
(ii) Semiconductors with appropriate band gap (E_{g}) close to 1.5 eV are preferred to make LED size, e.g. GaAs.
The other reasons to select these materials are high optical absorption, availability of raw material and low cost.
(iii) Uses of LEDs
(a) LED can operate at very low voltage and consumes less power in comparison to incandescent lamps.
(b) Unlike the lamps, they take very less
operational time and have long.life.
53. (i) Refer to Sol. 37
(ii) Refer to text
(Forward Biased Characteristic)
54. (i) $p-n$ Junction $A p-n$ junction is an arrangement made by a close contact of n-type semiconductor and p-type semiconductor. There are varibus methods of forming $p=-H$ junction diode.

Formation of Depletion Region in p-n Junction in an n-type semiconductor, the concentration of electrons is more than concentration of holes. Similarly, in a p-type semiconductor, the concentration of holes is more than that of concentration of electrons. During formation of $p-n$ junction and due to the concentration gradient across p and n-sides, holes diffuse from p-side to n-side ($p \rightarrow n$) and electrons diffuse from n-side to

The diffused charge carriers combine with their counterparts in the immediate vicinity of the junction and neutralise each other.
Thus, near the junction, positive charge is built on \dot{n}-side and negative charge on p-side. This sets up potential difference across the junction and an internal electric field E_{i} directed from n-side to p-side. The equilibrium is established when the field E_{i} becomes strong enough to stop further diffusion of the majority charge carriers (however, it helps the minority charge carriers to diffuse across the junction). The region on either side of the junction which becomes depleted (free) from the mobile charge carriers is called depletion region or depletion layer. The width of depletion region is of the order of $10^{-6} \mathrm{~m}$. The potential difference developed across the depletion region is called the potential barrier. Potential barrier depends on dopant concentration in the semiconductor and temperature of the junction.
(ii) (a) Forward Blased Characteristics The circuit diagram for studying forward biased characteristics is shown in the figure. Starting from a low value, forward bias voltage is increased step by step (measured by voltmeter) and forward current is noted (by ammeter), A sraph is plotted betweth voltage and eurtent. The curve so obtained is the forwand blased sharacteristic of the diode.

At the beginning, when applied voltage is low, the current through the diode is almost zero. It is because of the potential barrier, which opposes the applied voltage. Till the applied voltage exceeds the potential barrier, the current increases very slowly with increase in applied voltage (OA portion of the graph). With further increase in applied voltage, the current increases very rapidly ($A B$ portion of the graph), in this situation, the diode behaves like a conductor. The forward voltage beyond which the zurrent through the junction starts increasing rapidly with voltage is called knee voltage. If line $A B$ is extended back, it cuts the voltage axis at potential barrier voltage.
(b) Reverse Biased Characteristics The circuit diagram for studying reverse biased characteristics is shown in the figure.

(a)

(b)

In reverse biased, the applied voltage supports the flow of minority charge carriers across the junction. So, a very small current flows across the junction due to minority charge carriers.
Motion of minority charge carriers is also supported by internal potential barrier, so all the minority carriers cross over the junction.
Therefore, the small reverse current remains almost constant wer a sufficiently long range of reverse bias, increasing very litic with increasing voltage (OC portion of the graph). This reverse current is voltage independent upto certain voltage known as breakdown voltage and this voltage independent current is called reverse saturation current.
Use of \boldsymbol{p} - \boldsymbol{m} Junction Characteristics in Rectification
From forward and reverse characteristics, it is clear that current flows through the junction diode only in forward bias not in reverse bias i.e. current flows only in one direction. (1)
55. (i) Refer to Sol. 54(ii) (2)
(ii) Refer to Sol. 28
56. (i) Refer to Sol. 54 (i) (2)
(ii) Refer to Sol. 46
57. (i) Refer to Sol. 54(i)
(ii) Refer to Sol. 46
(iii) A full-wave bridge rectifier using four diodes (full-wave bridge rectifier) gives a continuous, unidirectional but pulsating output voltage or current.
The rectified output is passed through a filter circuit which removes the ripple and an almost steady DC voltage (or current) is obtained.
58. Zener diode works only in reverse breakdown region that is why it is considered as a special purpose semiconductor.
$I-V$ characteristics of Zener diode is given below
Reverse current is due to the flow of electrons from $n \rightarrow p$ and holes from $p \rightarrow n$. As, the reverse biased voltage increase the electric field across the junction,
 increases significantly and when reverse bias voltage $V=V_{z}$, then the electric field strength is high enough to pull the electrons from p-side and accelerated it to n-side.
These electrons are responsible for the high current at the breakdown.

Voltage regulator converts an unregulated DC output of rectifier into a constant regulated DC voltage, using Zener diode.
The unregulated voltage is connected to the Zener diode through a series resistance R_{S} such that the zener diode is reverse blased. If the input voltage increases, then current through R_{S} and zener
diode increases. Thus, the voltage drop acriss R_{S} increases without any change in the voltagedrop across Zener diode. This is because of the breakdown region, Zener voltage remain corstant even though the current through Zener diot? changes. Similarly, if the input voltage decr ases, the current through R_{S} and Zener diode decreases. The voltage drop across R_{S}, decre ses without any change in the voltage across th: Zener diode.
Now, any change in input voltage results th change in voltage drop across R_{S}, without aly change in voltage across the Zener diode.This, Zener diode acts as a voltage regulator.
59. When we are dealing with depletion layer formaion we have to keep in mind the majority charge carriers, diffusion will always happen from high concentration to low concentration.
(i)

The two process involved in the formatios of $p-n$ junction.
(a) Diffusion
(b) Drift.
(1/2 $\times 2=1)$

Holes and electrons diffuse from p to n arl n to p respectively.
The majority charge carrier drifts under tie influence of applied electric field such tht
(a) holes along applied Eand
(b) electron opposite to E
$(1 / 2>2=1)$
(ii) Zener diode is used as a voltage regulator For explanation Refer to Sol. 22 and 58
60. (i) Refer to Sol. 54 (ii)
(ii) Refer to Sol. 52 (i) and (iii)
61. (i) Refer characteristics curve of Sol. 22
(ii) Circuit diagram Refer to Sol. 38 Zener diode connected with unregulated ifc
voltage in reverse blas. When the input voitage

 whtle rollane atows the tener illode remation
 momatir comstant beyond fenet vollane and hemes satmotomistant readated vollage is obtatined actow K_{1}

on midence of ligho of sulboble fequeney. there is cqual sive in number of elections alld holer (tie An (xay)]

$$
\Rightarrow \quad \frac{1}{n_{0}} \leqslant \frac{1}{n_{4}} \text { or } \quad \frac{\Delta n}{n_{0}} \times \frac{A n}{n_{n}}
$$

where $\Delta t=$ change in electron of hole charge carter. Thus, Hactonal change in minorlty chatse cartier (hole) is much hifger than faction change in majorty charge canter (electron). Also, minorlty change carter contribute in drift current in teverse blas.
Thus, with lucidence of light, Practional change it minority charge earrler is significans. Therefore, photodlode should be connected in reverse blas for measuring light intensity.
08. (I) Refer to Sol. 54 (ii)
(ii) Refer to Sol. 52

Objective Questions

Ø 1 Mark Questions

1. In insulators (CB is Conduction Band and VB is Valence Band)
(a) VB is partially filled with electrons
(b) CB is partially filled with electrons
(c) CB is empty and VB is filled with electrons
(d) CB is filled with electrons and VB is empty
2. Identify the wrong statement.
(a) In conductors, the valence and conduction bands overlap.
(b) Substances with energy gap of the order of 10 eV are insulators.
(c) The resistivity of semiconductors is lower than metals.
(d) The conductivity of metals is high.

 then the matarial ine
(a) Aembenorlustur
(bi) gend cumbluen
(0) smperconductor
(d) imsulator
A. In 11 type samicomduetar, afactrons are majorty charge chrriers but it does ient ahow any nogative charge 'The reasem in
(a) eleotronn ares atalifonary
(b) eleotrons neutralises with boles
(e) mobility of electroms it extremely stmall
(d) atom is alsetrically neutral
B. In a n-lype somiconductor, whech of thes following atatemont is true?
(a) Electrons are majority carriers and trivalent atoms are dopants
(b) Electrons are minority carriers and pentavalont atoms are dopents
(c) Holes are minority carriers and pentavalent atoms are dopants
(d) Holos are majority carriers and trivalont atom are dopants
3. If a small amount of antimony is added to germanium cryatal
(a) the antimony becomes an acceptor atom
(b) thore will be more free electrons than holes in the semiconductor
(c) its resistance is increased
(d) it becomes a p-type semiconductor
4. Identify the wrong statement with reference to solar cell.
(a) It is a $p-n$ junction diode with no external bias.
(b) It uses materials of high optical absorption.
(c) It uses materials with band gap of 5 eV .
(d) It converts light energy into electrical energy.
5. In the circuit shown below, assume the diode to be ideal. When V_{i} increases from 2 V to 6 V , the change in the current is (in mA)

(a) zero
(b) 20
(c) $80 / 3$
(d) 40
6. In the following figures, which one of the diode is reverse biased?
(a)

(b)

(c)

(d)

7. Zener diode is used for
(a) amplification
(b) rectification
(c) voltage regulation
(d) produce oscillation in an oscillator
8. When two semiconductors of p-type and n-type are brought into contact, they form a $p-n$ junction which acts like a
(a) conductor
(b) oscillator
(c) amplifier
(d) rectifier
9. For detecting intensity of light, we use
(a) photodiode in forward bias
(b) photodiode in reverse bias
(c) LED in forward bias
(d) LED in reverse bias

E Explanations

1. (c) In insulators conduction band is empty and valence band is filled with electrons.
2. (c) The resistivity of semiconductors is lower than metals, this is not correct.
3. (d) The band gap of 5 seV corresponds to that of an insulator.
4. (d) The n-type semiconductor region has (negative) electrons as majority charge carriers and an equal number of fixed positively charged donor ions. Again, the material as a whole is
 neutral. That is a reason that atom is electrically neutral.
5. (c) The A-type semteonductor can by prodited lo, doping an Impurtiy atom of valency 5, i.e. pentavalent atoms such as phosphorus and electrons are as majority charge cartier and holece are minortly charge carter.
6. (b) When a small amount of antmony is added to germantum crystal, the erystal becomes n tyle semiconductor, because antimony is a pentavalent substrate. It has excess free electrons.
7. (c) The wrong statement with reference 10 a solar cell is that, It uses materials with band gap of 5 eV . Because for solar cell, band yape; eV .
8. (b) The initial current, $I_{\text {in }}=0$

and the final current, $I_{f}=\frac{3}{150}=0.02 \mathrm{~A}$
So, change in current, ΔI

$$
=I_{f}-I_{\mathrm{in}}=0.02 \mathrm{~A}=20 \mathrm{~mA}
$$

9. (b) A diode is symbolically shown in the adjacent diagram.

The diode is said to be forward biased when, $V_{A}>V_{B}$.
The diode is said to be reverse biased when, $V_{A}<V_{B}$
In the option (b), $5 \mathrm{~V}>0 \mathrm{~V}$

Hence, $V_{B}>V_{A}$
So, the diode is reverse biased.
10. (c) A zener voltage remains constant even though the current through the zener diode varies over a wide range, hence it is used to obtain regulated voltage output as shown in the above diagram.
11. (d) An p - n junction acts as a rectifier.
12. (b) To detect the intensity of light photodiode is used in reverse bias.

