Chapter 5

CONTINUITY AND DIFFERENTIABILITY

5.1 Overview

5.1.1 Continuity of a function at a point

Let f be a real function on a subset of the real numbers and let c be a point in the domain of f. Then f is continuous at c if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

More elaborately, if the left hand limit, right hand limit and the value of the function at $x=c$ exist and are equal to each other, i.e.,

$$
\lim _{x} f(x) \quad f(c) \lim _{x} f(x)
$$

then f is said to be continuous at $x=c$.

5.1.2 Continuity in an interval

(i) f is said to be continuous in an open interval (a, b) if it is continuous at every point in this interval.
(ii) f is said to be continuous in the closed interval $[a, b]$ if

- f is continuous in (a, b)
- $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
- $\lim _{x \rightarrow b^{-}} f(x)=f(b)$

5.1.3 Geometrical meaning of continuity

(i) Function f will be continuous at $x=c$ if there is no break in the graph of the function at the point $(c, f(c))$.
(ii) In an interval, function is said to be continuous if there is no break in the graph of the function in the entire interval.

5.1.4 Discontinuity

The function f will be discontinuous at $x=a$ in any of the following cases :
(i) $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist but are not equal.
(ii) $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist and are equal but not equal to $f(a)$.
(iii) $f(a)$ is not defined.

5.1.5 Continuity of some of the common functions

Function $f(x)$

1. The constant function, i.e. $f(x)=c$
2. The identity function, i.e. $f(x)=x$
3. The polynomial function, i.e.

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}
$$

4. $|x-a|$
$(-\infty, \infty)$
5. x^{-n}, n is a positive integer
$(-\infty, \infty)-\{0\}$
6. $p(x) / q(x)$, where $p(x)$ and $q(x)$ are $\mathbf{R}-\{x: q(x)=0\}$
polynomials in x
7. $\sin x, \cos x$
8. $\tan x, \sec x$
$\mathbf{R}-\left\{(2 n+1) \frac{\pi}{2}: n \in \mathbf{Z}\right\}$
9. $\cot x, \operatorname{cosec} x$
$\mathbf{R}-\{(n \pi: n \in \mathbf{Z}\}$
10. e^{x}
11. $\log x$
12. The inverse trigonometric functions, i.e., $\sin ^{-1} x, \cos ^{-1} x$ etc.

R

$$
(0, \infty)
$$

In their respective domains

5.1.6 Continuity of composite functions

Let f and g be real valued functions such that ($f \circ g$) is defined at a. If g is continuous at a and f is continuous at $g(a)$, then $(f \circ g)$ is continuous at a.

5.1.7 Differentiability

The function defined by $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, wherever the limit exists, is defined to be the derivative of f at x. In other words, we say that a function f is differentiable at a point c in its domain if both $\lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h}$, called left hand derivative, denoted by $L f^{\prime}(c)$, and $\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h}$, called right hand derivative, denoted by $R f^{\prime}(c)$, are finite and equal.
(i) The function $y=f(x)$ is said to be differentiable in an open interval (a, b) if it is differentiable at every point of (a, b)
(ii) The function $y=f(x)$ is said to be differentiable in the closed interval $[a, b]$ if $\mathrm{R} f^{\prime}(a)$ and $\mathrm{L} f^{\prime}(b)$ exist and $f^{\prime}(x)$ exists for every point of (a, b).
(iii) Every differentiable function is continuous, but the converse is not true

5.1.8 Algebra of derivatives

If u, v are functions of x, then
(i) $\frac{d(u \pm v)}{d x}=\frac{d u}{d x} \pm \frac{d v}{d x}$
(ii) $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
(iii) $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
5.1.9 Chain rule is a rule to differentiate composition of functions. Let $f=v o u$. If $t=u(x)$ and both $\frac{d t}{d x}$ and $\frac{d v}{d t}$ exist then $\frac{d f}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}$
5.1.10 Following are some of the standard derivatives (in appropriate domains)

1. $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
2. $\frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}}$
3. $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
4. $\frac{d}{d x}\left(\cot ^{-1} x\right)=\frac{-1}{1+x^{2}}$
5. $\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}},|x|>1$
6. $\frac{d}{d x}\left(\operatorname{cosec}^{-1} x\right)=\frac{-1}{|x| \sqrt{x^{2}-1}},|x|>1$

5.1.11 Exponential and logarithmic functions

(i) The exponential function with positive base $b>1$ is the function $y=f(x)=b^{x}$. Its domain is \mathbf{R}, the set of all real numbers and range is the set of all positive real numbers. Exponential function with base 10 is called the common exponential function and with base e is called the natural exponential function.
(ii) Let $b>1$ be a real number. Then we say logarithm of a to base b is x if $b^{x}=a$, Logarithm of a to the base b is denoted by $\log _{b} a$. If the base $b=10$, we say it is common logarithm and if $b=e$, then we say it is natural logarithms. $\log x$ denotes the logarithm function to base e. The domain of logarithm function is \mathbf{R}^{+}, the set of all positive real numbers and the range is the set of all real numbers.
(iii) The properties of logarithmic function to any base $b>1$ are listed below:

1. $\log _{b}(x y)=\log _{b} x+\log _{b} y$
2. $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
3. $\log _{b} x^{n}=n \log _{b} x$
4. $\log _{b} x=\frac{\log _{c} x}{\log _{c} b}$, where $c>1$
5. $\log _{b} x=\frac{1}{\log _{x} b}$
6. $\log _{b} b=1$ and $\log _{b} 1=0$
(iv) The derivative of e^{x} w.r.t., x is e^{x}, i.e. $\frac{d}{d x}\left(e^{x}\right) \quad e^{x}$. The derivative of $\log x$ w.r.t., x is $\frac{1}{x}$; i.e. $\frac{d}{d x}(\log x) \frac{1}{x}$.
5.1.12 Logarithmic differentiation is a powerful technique to differentiate functions of the form $f(x)=(u(x))^{v(x)}$, where both f and u need to be positive functions for this technique to make sense.
5.1.13 Differentiation of a function with respect to another function

Let $u=f(x)$ and $v=g(x)$ be two functions of x, then to find derivative of $f(x)$ w.r.t. to $g(x)$, i.e., to find $\frac{d u}{d v}$, we use the formula

$$
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}
$$

5.1.14 Second order derivative

$\frac{d}{d x} \frac{d y}{d x} \quad \frac{d^{2} y}{d x^{2}}$ is called the second order derivative of y w.r.t. x. It is denoted by $y^{\prime \prime}$ or y_{2}, if $y=f(x)$.

5.1.15 Rolle's Theorem

Let $f:[a, b] \quad \mathbf{R}$ be continuous on $[a, b]$ and differentiable on (a, b), such that $f(a)$ $=f(b)$, where a and b are some real numbers. Then there exists at least one point c in (a, b) such that $f^{\prime}(c)=0$.

Geometrically Rolle's theorem ensures that there is at least one point on the curve $y=f(x)$ at which tangent is parallel to x-axis (abscissa of the point lying in (a, b)).

5.1.16 Mean Value Theorem (Lagrange)

Let $f:[a, b] \quad \mathbf{R}$ be a continuous function on $[a, b]$ and differentiable on (a, b). Then there exists at least one point c in (a, b) such that $f^{\prime}(c)=\frac{f(b) f(a)}{b a}$.

Geometrically, Mean Value Theorem states that there exists at least one point c in (a, b) such that the tangent at the point $(c, f(c))$ is parallel to the secant joining the points $(a, f(a)$ and $(b, f(b))$.

5.2 Solved Examples

Short Answer (S.A.)

Example 1 Find the value of the constant k so that the function f defined below is continuous at $x=0$, where $f(x)=\left\{\begin{array}{ll}\frac{1-\cos 4 x}{8 x^{2}}, x \neq 0 \\ k, & x=0\end{array}\right.$.

Solution It is given that the function f is continuous at $x=0$. Therefore, $\lim _{x \rightarrow 0} f(x)=f(0)$

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow \quad \lim _{x \rightarrow 0} \frac{1-\cos 4 x}{8 x^{2}}=k \\
& \Rightarrow \quad \lim _{x \rightarrow 0} \frac{2 \sin ^{2} 2 x}{8 x^{2}}=k \\
& \Rightarrow \quad \lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{2 x}\right)^{2}=k \\
& \Rightarrow
\end{aligned} \quad k=1
$$

Thus, f is continuous at $x=0$ if $k=1$.
Example 2 Discuss the continuity of the function $f(x)=\sin x \cdot \cos x$.
Solution Since $\sin x$ and $\cos x$ are continuous functions and product of two continuous function is a continuous function, therefore $f(x)=\sin x \cdot \cos x$ is a continuous function.

Example 3 If $f(x)=\left\{\begin{array}{c}\frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}}, x \neq 2 \\ k\end{array}, x=2\right.$ is continuous at $x=2$, find the value of k.
Solution Given $f(2)=k$.
Now, $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2} \frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}}$

$$
=\lim _{x} \frac{\left(\begin{array}{ll}
x & 5
\end{array}\right)(x-2)^{2}}{(x-2)^{2}} \lim _{x}\left(\begin{array}{ll}
x & 5
\end{array}\right) 7
$$

As f is continuous at $x=2$, we have

$$
\begin{array}{ll}
& \lim _{x \rightarrow 2} f(x)=f(2) \\
\Rightarrow \quad & k=7 .
\end{array}
$$

Example 4 Show that the function f defined by

$$
f(x)=\left\{\begin{array}{r}
x \sin \frac{1}{x}, x \neq 0 \\
0, x=0
\end{array}\right.
$$

is continuous at $x=0$.
Solution Left hand limit at $x=0$ is given by

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x \sin \frac{1}{x}=0 \quad\left[\text { since },-1<\sin \frac{1}{x}<1\right]
$$

Similarly $\lim _{x} f(x) \quad \lim _{x} x \sin \frac{1}{x} \quad 0$. Moreover $f(0)=0$.
Thus $\lim _{x} f(x) \quad \lim _{x} 0_{0} f(x) \quad f(0)$. Hence f is continuous at $x=0$
Example 5 Given $f(x)=\frac{1}{x-1}$. Find the points of discontinuity of the composite function $\mathrm{y}=f[f(x)]$.
Solution We know that $f(x)=\frac{1}{x-1}$ is discontinuous at $x=1$
Now, for $x \quad 1$,

$$
f(f(x)) \quad=f \frac{1}{x-1}=\frac{1}{\frac{1}{x-1}-1} \quad \frac{x-1}{2-x}
$$

which is discontinuous at $x=2$.
Hence, the points of discontinuity are $x=1$ and $x=2$.
Example 6 Let $f(x)=x|x|$, for all $x \in \mathbf{R}$. Discuss the derivability of $f(x)$ at $x=0$
Solution We may rewrite f as $f(x)=\left\{\begin{array}{c}x^{2}, \text { if } x \geq 0 \\ -x^{2}, \text { if } x<0\end{array}\right.$
Now Lf $f^{\prime}(0)=\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h^{2}-0}{h}=\lim _{h \rightarrow 0^{-}}-h=0$
Now $R f^{\prime}(0)=\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{h^{2}-0}{h}=\lim _{h \rightarrow 0^{-}} h=0$
Since the left hand derivative and right hand derivative both are equal, hence f is differentiable at $x=0$.
Example 7 Differentiate $\sqrt{\tan \sqrt{x}}$ w.r.t. x
Solution Let $y=\sqrt{\tan \sqrt{x}}$. Using chain rule, we have

$$
\begin{aligned}
& \frac{d y}{d x} \frac{1}{2 \sqrt{\tan \sqrt{x}}} \cdot \frac{d}{d x}(\tan \sqrt{x}) \\
& =\frac{1}{2 \sqrt{\tan \sqrt{x}}} \cdot \sec ^{2} \sqrt{x} \frac{d}{d x}(\sqrt{x}) \\
& =\frac{1}{2 \sqrt{\tan \sqrt{x}}}\left(\sec ^{2} \sqrt{x}\right) \frac{1}{2 \sqrt{x}} \\
& =\frac{\left(\sec ^{2} \sqrt{x}\right)}{4 \sqrt{x} \sqrt{\tan \sqrt{x}}} .
\end{aligned}
$$

Example 8 If $y=\tan (x+y)$, find $\frac{d y}{d x}$.
Solution Given $y=\tan (x+y)$. differentiating both sides w.r.t. x, we have

$$
\left.\begin{array}{rl}
\frac{d y}{d x} & \sec ^{2}\left(\begin{array}{ll}
x & y
\end{array}\right) \frac{d}{d x}\left(\begin{array}{ll}
x & y
\end{array}\right) \\
& =\sec ^{2}(x+y)
\end{array} 1 \frac{d y}{d x}\right) ~ \$
$$

or $\quad\left[1-\sec ^{2}(x+y] \frac{d y}{d x}=\sec ^{2}(x+y)\right.$
Therefore, $\frac{d y}{d x} \frac{\sec ^{2}\left(\begin{array}{ll}x & y\end{array}\right)}{1 \sec ^{2}\left(\begin{array}{ll}x & y\end{array}\right)}=-\operatorname{cosec}^{2}(x+y)$.
Example 9 If $e^{x}+e^{y}=e^{x+y}$, prove that

$$
\frac{d y}{d x}=-e^{y-x}
$$

Solution Given that $e^{x}+e^{y}=e^{x+y}$. Differentiating both sides w.r.t. x, we have

$$
\begin{aligned}
& e^{x}+e^{y} \frac{d y}{d x}=e^{x+y} \quad 1 \quad \frac{d y}{d x} \\
& \left(e^{y}-e^{x}+y\right) \frac{d y}{d x}=e^{x}+y-e^{x},
\end{aligned}
$$

or
which implies that $\frac{d y}{d x} \frac{e^{x} y}{}-e^{x} e^{y} e^{x y} \quad \frac{e^{x} e^{y} e^{x}}{e^{y} e^{x} e^{y}}-e^{y x}$.
Example 10 Find $\frac{d y}{d x}$, if $y=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right),-\frac{1}{\sqrt{3}}<x<\frac{1}{\sqrt{3}}$.
Solution Put $x=\tan$, where $\frac{-\pi}{6}<\theta<\frac{\pi}{6}$.
Therefore, $\quad y=\tan ^{-1}\left(\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right)$

$$
=\tan ^{-1}(\tan 3)
$$

$$
\begin{array}{ll}
=3 & \text { (because } \frac{3}{2} \\
=3 \tan ^{-1} x &
\end{array}
$$

Hence, $\quad \frac{d y}{d x}=\frac{3}{1 x^{2}}$.
Example 11 If $y=\sin ^{-1} x \sqrt{1 \quad x} \sqrt{x} \sqrt{1 \quad x^{2}}$ and $0<x<1$, then find $\frac{d y}{d x}$.
Solution We have $y=\sin ^{-1} x \sqrt{1 \quad x} \sqrt{x} \sqrt{1 x^{2}}$, where $0<x<1$.
Put

$$
x=\sin A \text { and } \sqrt{x}=\sin B
$$

Therefore, $y=\sin ^{-1} \sin \mathrm{~A} \sqrt{1 \sin ^{2} \mathrm{~B}} \sin \mathrm{~B} \sqrt{1 \sin ^{2} \mathrm{~A}}$

$$
\begin{aligned}
& =\sin ^{-1} \sin \mathrm{~A} \cos \mathrm{~B} \sin \mathrm{~B} \cos \mathrm{~A} \\
& =\sin ^{-1} \sin (\mathrm{~A} \quad \mathrm{~B})=\mathrm{A}-\mathrm{B}
\end{aligned}
$$

Thus

$$
y=\sin ^{-1} x-\sin ^{-1} \sqrt{x}
$$

Differentiating w.r.t. x, we get

$$
\begin{gathered}
\frac{d y}{d x} \frac{1}{\sqrt{1 x^{2}}} \frac{1}{\sqrt{1 \sqrt{x}^{2}}} \cdot \frac{d}{d x} \sqrt{x} \\
\quad=\frac{1}{\sqrt{1 x^{2}}} \frac{1}{2 \sqrt{x} \sqrt{1 \quad x}}
\end{gathered}
$$

Example 12 If $x=a \sec ^{3} \quad$ and $y=a \tan ^{3}$, find $\frac{d y}{d x}$ at $\quad \overline{3}$.
Solution We have $x=a \sec ^{3}$ and $y=a \tan ^{3}$.
Differentiating w.r.t. , we get

$$
\frac{d x}{d} 3 a \sec ^{2} \frac{d}{d}(\sec) 3 a \sec ^{3} \tan
$$

and $\frac{d y}{d \theta}=3 a \tan ^{2} \theta \frac{d}{d \theta}(\tan \theta)=3 a \tan ^{2} \theta \sec ^{2} \theta$.
Thus $\frac{d y}{d x} \frac{\frac{d y}{d}}{\frac{d x}{d}} \frac{3 a \tan ^{2} \sec ^{2}}{3 a \sec ^{3} \tan } \quad \frac{\tan }{\sec } \sin$.

Hence, $\frac{d y}{d x}$ at $\quad \begin{aligned} & \overline{3} \\ & \sin \\ & 3\end{aligned} \frac{\sqrt{3}}{2}$.

Example 13 If $x^{y}=e^{x-y}$, prove that $\frac{d y}{d x}=\frac{\log x}{(1 \log x)^{2}}$.
Solution We have $x^{y}=e^{x-y}$. Taking logarithm on both sides, we get

$$
y \log x=x-y
$$

$\Rightarrow \quad y(1+\log x)=x$
i.e. $\quad y=\frac{x}{1 \log x}$

Differentiating both sides w.r.t. x, we get

$$
\frac{d y}{d x} \frac{(1 \log x) \cdot 1 \quad x \frac{1}{x}}{(1 \log x)^{2}} \frac{\log x}{(1 \log x)^{2}}
$$

Example 14 If $y=\tan x+\sec x$, prove that $\frac{d^{2} y}{d x^{2}}=\frac{\cos x}{(1 \sin x)^{2}}$.
Solution We have $y=\tan x+\sec x$. Differentiating w.r.t. x, we get

$$
\begin{gathered}
\frac{d y}{d x}=\sec ^{2} x+\sec x \tan x \\
=\frac{1}{\cos ^{2} x} \frac{\sin x}{\cos ^{2} x}=\frac{1 \sin x}{\cos ^{2} x}=\frac{1+\sin x}{(1+\sin x)(1-\sin x)} .
\end{gathered}
$$

thus $\frac{d y}{d x}=\frac{1}{1-\sin x}$.
Now, differentiating again w.r.t. x, we get

$$
\frac{d^{2} y}{d x^{2}}=\frac{--\cos x}{(1-\sin x)^{2}} \frac{\cos x}{(1-\sin x)^{2}}
$$

Example 15 If $f(x)=|\cos x|$, find $f^{\prime} \frac{3}{4}$.

Solution When $\frac{-}{2}<x<\pi, \cos x<0$ so that $|\cos x|=-\cos x$, i.e., $f(x)=-\cos x$ $f^{\prime}(x)=\sin x$.
Hence, $f^{\prime} \frac{3}{4}=\sin \frac{3}{4}=\frac{1}{\sqrt{2}}$

Example 16 If $f(x)=|\cos x-\sin x|$, find $f^{\prime} \overline{6}$.
Solution When $0<x<\frac{\pi}{4}, \cos x>\sin x$, so that $\cos x-\sin x>0$, i.e., $f(x)=\cos x-\sin x$ $f^{\prime}(x)=-\sin x-\cos x$

Hence $f^{\prime} \frac{\overline{6}}{6}=-\sin \frac{-}{6}-\cos \frac{-}{6}=-\frac{1}{2}(1+\sqrt{3})$.

Example 17 Verify Rolle's theorem for the function, $f(x)=\sin 2 x$ in $0, \overline{2}$.

Solution Consider $f(x)=\sin 2 x$ in $0, \overline{2}$. Note that:
(i) The function f is continuous in $0, \overline{2}$, as f is a sine function, which is always continuous.
(ii) $\quad f^{\prime}(x)=2 \cos 2 x$, exists in $0, \frac{\overline{2}}{}$, hence f is derivable in $\left(0, \frac{\pi}{2}\right)$.
(iii) $\quad f(0)=\sin 0=0$ and $f \quad \overline{2} \quad=\sin \pi=0 \Rightarrow f(0)=f \quad \overline{2}$.

Conditions of Rolle's theorem are satisfied. Hence there exists at least one $c \in 0, \overline{2}$ such that $f^{\prime}(c)=0$. Thus

$$
2 \cos 2 c=0 \quad \Rightarrow \quad 2 c=\frac{-}{2} \quad \Rightarrow \quad c=\frac{-}{4}
$$

Example 18 Verify mean value theorem for the function $f(x)=(x-3)(x-6)(x-9)$ in $[3,5]$.
Solution (i) Function f is continuous in [3, 5] as product of polynomial functions is a polynomial, which is continuous.
(ii) $f^{\prime}(x)=3 x^{2}-36 x+99$ exists in $(3,5)$ and hence derivable in $(3,5)$.

Thus conditions of mean value theorem are satisfied. Hence, there exists at least one $c \in(3,5)$ such that

$$
\begin{aligned}
& f(c) \frac{f(5) f(3)}{5} \\
& \Rightarrow 3 c^{2}-36 c+99=\frac{80}{2}=4 \\
& \Rightarrow c=6 \sqrt{\frac{13}{3}} .
\end{aligned}
$$

Hence $c \quad 6 \sqrt{\frac{13}{3}}$ (since other value is not permissible).

Long Answer (L.A.)

Example 19 If $f(x)=\frac{\sqrt{2} \cos x \quad 1}{\cot x \quad 1}, x-\frac{}{4}$
find the value of $f \overline{4}$ so that $f(x)$ becomes continuous at $x=\overline{4}$.
Solution Given, $f(x)=\frac{\sqrt{2} \cos x \quad 1}{\cot x \quad 1}, x \quad-$
Therefore, $\quad \lim _{x_{\overline{4}}} f(x) \lim _{x_{\overline{4}}} \frac{\sqrt{2} \cos x \quad 1}{\cot x 1}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \frac{\pi}{4}} \frac{(\sqrt{2} \cos x-1) \sin x}{\cos x-\sin x} \\
& =\lim _{x} \frac{\sqrt{2} \cos x \quad 1}{\sqrt{2} \cos x \quad 1} \cdot \frac{\sqrt{2} \cos x \quad 1}{\cos x \sin x} \cdot \frac{\cos x}{\sin x} \\
& \cos x \\
& \sin x
\end{aligned} \sin x .
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \frac{\pi}{4}} \frac{2 \cos ^{2} x-1}{\cos ^{2} x-\sin ^{2} x} \cdot \frac{\cos x+\sin x}{\sqrt{2} \cos x+1} \cdot(\sin x) \\
& =\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos 2 x}{\cos 2 x} \cdot\left(\frac{\cos x+\sin x}{\sqrt{2} \cos x+1}\right) \cdot(\sin x) \\
& =\lim _{x} \frac{\cos x \sin x}{\sqrt{2} \cos x 1} \sin x \\
& =\frac{\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}}{\sqrt{2} \cdot \frac{1}{\sqrt{2}} 1} \frac{1}{2}
\end{aligned}
$$

Thus, $\quad \lim _{x-\overline{4}} f(x) \frac{1}{2}$
If we define $f\left(\frac{\pi}{4}\right)=\frac{1}{2}$, then $f(x)$ will become continuous at $x=\frac{\pi}{4}$. Hence for f to be continuous at $x \quad \frac{-}{4}, f-\frac{1}{4}$.

Example 20 Show that the function f given by $f(x)$

$$
\begin{array}{llll}
\frac{e^{\frac{1}{x}}}{\frac{1}{\frac{1}{x}}} & \text {, if } x & 0 \\
e^{x} & 1 \\
0, & \text { if } x & 0
\end{array}
$$

is discontinuous at $x=0$.
Solution The left hand limit of f at $x=0$ is given by

$$
\lim _{x 0} f(x) \lim _{x} \frac{e^{\frac{1}{x}}}{0} \frac{0}{e^{\frac{1}{x}}} 10 \frac{1}{0} 1
$$

Similarly,

$$
\begin{aligned}
& \lim _{x 0} f(x) \lim _{x} \frac{e^{\frac{1}{x}}}{e^{\frac{1}{x}}} 1 \\
& =\lim _{x} 0 \frac{e^{\frac{1}{x}}}{1 \frac{1}{e^{\frac{1}{x}}}}=\lim _{x} \frac{1}{1} \frac{e^{\frac{1}{x}}}{1} e^{\frac{1}{x}} \\
& 10
\end{aligned}
$$

Thus $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim f(x)$, therefore, $\lim _{x \rightarrow 0^{+}}^{f} f(x)$ does not exist. Hence f is discontinuous at $x=0$.

$$
\frac{1 \cos 4 x}{x^{2}} \text {, if } x 0
$$

Example 21 Let $f(x)$

$$
\begin{array}{cccc}
a & , \text { if } x & 0 \\
\sqrt{16 \sqrt{x}} & 4
\end{array} \text { if } x \quad 0
$$

For what value of a, f is continuous at $x=0$?
Solution Here $f(0)=a$ Left hand limit of f at 0 is

$$
\begin{aligned}
& \lim _{x 0} f(x) \lim _{x 0} \frac{1 \cos 4 x}{x^{2}} \quad \lim _{x 0} \frac{2 \sin ^{2} 2 x}{x^{2}} \\
& \lim _{2 x} 8 \frac{\sin 2 x^{2}}{2 x}=8(1)^{2}=8 .
\end{aligned}
$$

and right hand limit of f at 0 is

$$
\begin{aligned}
& \lim _{x 0} f(x) \lim _{x} \frac{\sqrt{x}}{\sqrt{16 \sqrt{x}} 4} \\
= & \left.\lim _{x} \frac{\sqrt{x}(\sqrt{16 \sqrt{x}} 4)}{(\sqrt{16 \sqrt{x}}} 4\right)(\sqrt{16 \sqrt{x}} 4)
\end{aligned}
$$

$$
=\quad \lim _{x 0} \frac{\sqrt{x}(\sqrt{16 \sqrt{x}} 4)}{16 \sqrt{x} 16} \lim _{x 0} \sqrt{16 \sqrt{x}} 48
$$

Thus, $\lim _{x} f(x) \lim _{x} f(x) 8$. Hence f is continuous at $x=0$ only if $a=8$.
Example 22 Examine the differentiability of the function f defined by

$$
f(x) \quad \begin{array}{lllll}
2 x & 3, & \text { if } & 3 & x \\
x & 1 & \text { if } & 2 & x
\end{array} 0
$$

Solution The only doubtful points for differentiability of $f(x)$ are $x=-2$ and $x=0$. Differentiability at $x=-2$.
Now $L f^{\prime}(-2)=\lim _{h} \frac{f(-2 \quad h) f(-2)}{h}$

$$
=\lim _{h} \frac{2\left(\begin{array}{ll}
-2 & h
\end{array}\right) 3\left(\begin{array}{ll}
-2 & 1
\end{array}\right)}{h} \lim _{h} \frac{2 h}{h} \lim _{h} 22 .
$$

and $\mathrm{R} f^{\prime}(-2)=\lim _{h} \frac{f(-2 \quad h) f(-2)}{h}$

$$
\begin{aligned}
& =\lim _{h 0} \frac{-2 h 1(21)}{h} \\
& =\lim _{h} \frac{h 1(-1)}{h} \lim _{h} \frac{h}{h} 1
\end{aligned}
$$

Thus $\mathrm{R} f^{\prime}(-2) \neq \mathrm{L} f^{\prime}(-2)$. Therefore f is not differentiable at $x=-2$.
Similarly, for differentiability at $x=0$, we have

$$
\begin{aligned}
L\left(f^{\prime}(0)\right. & =\lim _{h} \frac{f\left(\begin{array}{ll}
0 & h
\end{array}\right) f(0)}{h} \\
& =\lim _{h} \frac{0 \quad h \quad 1 \quad\left(\begin{array}{lll}
0 & 2
\end{array}\right)}{h} \\
& =\lim _{h} \frac{h 1}{h} \lim _{h} 1 \frac{1}{h}
\end{aligned}
$$

which does not exist. Hence f is not differentiable at $x=0$.

Example 23 Differentiate $\tan ^{-1} \frac{\sqrt{1 x^{2}}}{x}$ with respect to $\cos ^{-1} 2 x \sqrt{1 \quad x^{2}}$, where $x \quad \frac{1}{\sqrt{2}}, 1$.

Solution Let $u=\tan ^{-1} \frac{\sqrt{1 x^{2}}}{x}$ and $v=\cos ^{-1} \quad 2 x \sqrt{1 \quad x^{2}}$.

We want to find $\frac{d u}{d v} \frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
Now $u=\tan ^{-1} \frac{\sqrt{1 x^{2}}}{x}$. Put $x=\sin \theta .\left(\frac{\pi}{4}<\theta<\frac{\pi}{2}\right)$.
Then $u=\tan ^{-1} \frac{\sqrt{1 \sin ^{2}}}{\sin }=\tan ^{-1}(\cot \theta)$

$$
=\tan ^{-1}\left\{\tan \left(\frac{\pi}{2}-\theta\right)\right\}=\frac{\pi}{2}-\theta \quad \overline{2} \sin ^{-1} x
$$

Hence $\frac{d u}{d x} \frac{1}{\sqrt{1 x^{2}}}$.
Now

$$
\begin{aligned}
v & =\cos ^{-1}\left(2 x \sqrt{1 x^{2}}\right) \\
& =\frac{-}{2}-\sin ^{-1}\left(2 x \sqrt{1 x^{2}}\right) \\
& =\frac{-}{2}-\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right)=\frac{\pi}{2}-\sin ^{-1}(\sin 2 \theta) \\
& =\frac{-}{2}-\sin ^{-1}\{\sin (\pi-2 \theta)\} \quad\left[\text { since } \frac{\pi}{2}<2 \theta<\pi\right]
\end{aligned}
$$

$$
\begin{array}{ll}
& =\frac{2}{2}(2) \overline{2} \quad 2 \\
\Rightarrow & v=\frac{-}{2}+2 \sin ^{-1} x \\
\Rightarrow & \frac{d v}{d x} \frac{2}{\sqrt{1 x^{2}}} . \\
\text { Hence } & \frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{-1}{\sqrt{1-x^{2}}}}{\frac{2}{\sqrt{1-x^{2}}}}=\frac{-1}{2} .
\end{array}
$$

Objective Type Questions

Choose the correct answer from the given four options in each of the Examples 24 to 35 .
Example 24 The function $f(x)=\begin{array}{rrr}\frac{\sin x}{x} & \cos x, \text { if } x & 0 \\ k & \text {, if } x & 0\end{array}$
is continuous at $x=0$, then the value of k is
(A) 3
(B) 2
(C) 1
(D) 1.5

Solution (B) is the Correct answer.
Example 25 The function $f(x)=[x]$, where $[x]$ denotes the greatest integer function, is continuous at
(A) 4
(B) -2
(C) 1
(D) 1.5

Solution (D) is the correct answer. The greatest integer function $[x]$ is discontinuous at all integral values of x. Thus D is the correct answer.

Example 26 The number of points at which the function $f(x)=\frac{1}{x-[x]}$ is not continuous is
(A) 1
(B) 2
(C) 3
(D) none of these

Solution (D) is the correct answer. As $x-[x]=0$, when x is an integer so $f(x)$ is discontinuous for all $x \in \mathbf{Z}$.
Example 27 The function given by $f(x)=\tan x$ is discontinuous on the set
(A) $n: n \mathbf{Z}$
(B) $2 n: n$
Z
(C)
$\left(\begin{array}{ll}2 n & 1\end{array}\right)-: n$
(D) $\frac{n}{2}: n$
Z

Solution C is the correct answer.
Example 28 Let $f(x)=|\cos x|$. Then,
(A) $\quad f$ is everywhere differentiable.
(B) $\quad f$ is everywhere continuous but not differentiable at $n=n \pi, n \quad \mathbf{Z}$.
(C) $\quad f$ is everywhere continuous but not differentiable at $x=(2 n+1) \frac{\pi}{2}$, $n \in \mathbf{Z}$.
(D) none of these.

Solution C is the correct answer.
Example 29 The function $f(x)=|x|+|x-1|$ is
(A) continuous at $x=0$ as well as at $x=1$.
(B) continuous at $x=1$ but not at $x=0$.
(C) discontinuous at $x=0$ as well as at $x=1$.
(D) continuous at $x=0$ but not at $x=1$.

Solution Correct answer is A.
Example 30 The value of k which makes the function defined by
$f(x) \quad \begin{array}{ll}\sin \frac{1}{x}, & \text { if } x \\ k \quad, & \text { if } x\end{array}$, continuous at $x=0$ is
(A) 8
(B) 1
(C) -1
(D) none of these

Solution (D) is the correct answer. Indeed $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist.
Example 31 The set of points where the functions f given by $f(x)=|x-3| \cos x$ is differentiable is
(A) \mathbf{R}
(B) $\mathbf{R}-\{3\}$
(C) $(0, \infty)$
(D) none of these

Solution B is the correct answer.
Example 32 Differential coefficient of $\sec \left(\tan ^{-1} x\right)$ w.r.t. x is
(A) $\frac{x}{\sqrt{1+x^{2}}}$
(B) $\frac{x}{1+x^{2}}$
(C) $x \sqrt{1+x^{2}}$
(D) $\frac{1}{\sqrt{1+x^{2}}}$

Solution (A) is the correct answer.
Example 33 If $u=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ and $v=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$, then $\frac{d u}{d v}$ is
(A) $\frac{1}{2}$
(B) x
(C) $\frac{1-x^{2}}{1+x^{2}}$
(D) 1

Solution (D) is the correct answer.
Example 34 The value of c in Rolle's Theorem for the function $f(x)=e^{x} \sin x$, $x \in[0, \pi]$ is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$
(D) $\frac{3 \pi}{4}$

Solution (D) is the correct answer.
Example 35 The value of c in Mean value theorem for the function $f(x)=x(x-2)$, $x \in[1,2]$ is
(A) $\frac{3}{2}$
(B) $\frac{2}{3}$
(C) $\frac{1}{2}$
(D) $\frac{3}{2}$

Solution (A) is the correct answer.
Example 36 Match the following
COLUMN-I

COLUMN-II

(A) If a function $f(x) \begin{array}{lll}\frac{\sin 3 x}{x}, \text { if } x & 0 & \text { (a) }|x| \\ \frac{k}{2}, \text { if } x & 0\end{array}$
is continuous at $x=0$, then k is equal to
(B) Every continuous function is differentiable
(b) True
(C) An example of a function which is continuous
(c) 6
everywhere but not differentiable at exactly one point
(D) The identity function i.e. $f(x)=x \forall x \in \mathrm{R}$ is a
(d) False continuous function
Solution $\mathrm{A} \rightarrow c, \mathrm{~B} \rightarrow d$,

$$
\mathrm{C} \rightarrow a, \mathrm{D} \rightarrow b
$$

Fill in the blanks in each of the Examples 37 to 41.
Example 37 The number of points at which the function $f(x)=\frac{1}{\log |x|}$ is discontinuous is \qquad .
Solution The given function is discontinuous at $x=0, \pm 1$ and hence the number of points of discontinuity is 3 .

Example 38 If $f(x)=\left\{\begin{array}{l}a x+1 \text { if } x \geq 1 \\ x+2 \text { if } x<1\end{array}\right.$ is continuous, then a should be equal to \qquad .
Solution $a=2$

Example 39 The derivative of $\log _{10} x$ w.r.t. x is \qquad .
Solution $\left(\log _{10} e\right) \frac{1}{x}$.
Example 40 If $y=\sec ^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)+\sin ^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)$, then $\frac{d y}{d x}$ is equal to \qquad .
Solution 0.
Example 41 The deriative of $\sin x$ w.r.t. $\cos x$ is \qquad .
Solution $-\cot x$
State whether the statements are True or False in each of the Exercises 42 to 46.
Example 42 For continuity, at $x=a$, each of $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$ is equal to $f(a)$.
Solution True.
Example $43 y=|x-1|$ is a continuous function.
Solution True.
Example 44 A continuous function can have some points where limit does not exist.
Solution False.
Example $45|\sin x|$ is a differentiable function for every value of x.

Solution False.
Example $46 \cos |x|$ is differentiable everywhere.
Solution True.

5.3 EXERCISE

Short Answer (S.A.)

1. Examine the continuity of the function

$$
f(x)=x^{3}+2 x^{2}-1 \text { at } x=1
$$

Find which of the functions in Exercises 2 to 10 is continuous or discontinuous at the indicated points:
2. $f(x)=\left\{\begin{array}{l}3 x+5, \text { if } x \geq 2 \\ x^{2}, \text { if } x<2\end{array}\right.$
at $x=2$
4. $f(x)= \begin{cases}\frac{2 x^{2}-3 x-2}{x-2} & , \text { if } x \neq 2 \\ 5, & \text { if } x=2\end{cases}$ at $x=2$
6. $f(x)= \begin{cases}|x| \cos \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}$
at $x=0$
8. $f(x)=\left\{\begin{array}{l}\frac{e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}, \text { if } x \neq 0 \\ 0, \quad \text { if } x=0\end{array}\right.$ at $x=0$
3. $f(x)= \begin{cases}\frac{1-\cos 2 x}{x^{2}}, & \text { if } x \neq 0 \\ 5, & \text { if } x=0\end{cases}$
at $x=0$
5. $f(x)= \begin{cases}\frac{|x-4|}{2(x-4)}, & \text { if } x \neq 4 \\ 0, & \text { if } x=4\end{cases}$ at $x=4$
7. $f(x)=\left\{\begin{array}{l}|x-a| \sin \frac{1}{x-a}, \text { if } x \neq 0 \\ 0, \quad \text { if } x=a\end{array}\right.$ at $x=a$
9. $f(x)=\left\{\begin{array}{l}\frac{x^{2}}{2}, \text { if } 0 \leq x \leq 1 \\ 2 x^{2}-3 x+\frac{3}{2}, \text { if } 1<x \leq 2\end{array}\right.$
at $x=1$
10. $f(x)=|x|+|x-1|$ at $x=1$

Find the value of k in each of the Exercises 11 to 14 so that the function f is continuous at the indicated point:

13. $f(x) \begin{array}{lllll}\frac{\sqrt{1 k x} \sqrt{1 k x}}{x} & \text { if } & 1 & x & 0\end{array} \quad \begin{array}{lllll}\frac{2 x 1}{x 1} & & \text { if } 0 & x & 1\end{array}$ at $x=0$
14. $f(x)=\left\{\begin{array}{ll}\frac{1-\cos k x}{x \sin x}, & \text { if } x \neq 0 \\ \frac{1}{2} & \text {, if } x=0\end{array}\right.$ at $x=0$
15. Prove that the function f defined by

$$
f(x)= \begin{cases}\frac{x}{|x|+2 x^{2}}, & x \neq 0 \\ k, & x=0\end{cases}
$$

remains discontinuous at $x=0$, regardless the choice of k.
16. Find the values of a and b such that the function f defined by

$$
f(x)= \begin{cases}\frac{x-4}{|x-4|}+a & , \text { if } x<4 \\ a+b & , \text { if } x=4 \\ \frac{x-4}{|x-4|}+b, & \text { if } x>4\end{cases}
$$

is a continuous function at $x=4$.
17. Given the function $f(x)=\frac{1}{x+2}$. Find the points of discontinuity of the composite function $y=f(f(x))$.
18. Find all points of discontinuity of the function $f(t)=\frac{1}{t^{2}+t-2}$, where $t=\frac{1}{x-1}$.
19. Show that the function $f(x)=|\sin x+\cos x|$ is continuous at $x=\pi$.

Examine the differentiability of f, where f is defined by
20. $f(x)=\left\{\begin{array}{lll}x[x], & , \text { if } 0 \leq x<2 \\ (x-1) x, & \text { if } 2 \leq x<3\end{array}\right.$
at $x=2$.
21. $f(x)=\left\{\begin{array}{lll}x^{2} \sin \frac{1}{x} & , \text { if } \quad x \neq 0 \\ 0 & \text {, if } \quad x=0\end{array}\right.$ at $x=0$.
22. $f(x)=\left\{\begin{array}{lll}1+x & , \text { if } & x \leq 2 \\ 5-x & , \text { if } & x>2\end{array}\right.$ at $x=2$.
23. Show that $f(x)=|x-5|$ is continuous but not differentiable at $x=5$.
24. A function $f: \mathbf{R} \rightarrow \mathbf{R}$ satisfies the equation $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbf{R}$, $f(x) \neq 0$. Suppose that the function is differentiable at $x=0$ and $f^{\prime}(0)=2$. Prove that $f^{\prime}(x)=2 f(x)$.
Differentiate each of the following w.r.t. x (Exercises 25 to 43) :
25. $2^{\cos ^{2} x}$
26. $\frac{8^{x}}{x^{8}}$
27. $\log \left(x+\sqrt{x^{2}+a}\right)$
28. $\log \left[\log \left(\log x^{5}\right)\right]$
29. $\sin \sqrt{x}+\cos ^{2} \sqrt{x}$
30. $\sin ^{n}\left(a x^{2}+b x+c\right)$
31. $\cos (\tan \sqrt{x+1})$
32. $\sin x^{2}+\sin ^{2} x+\sin ^{2}\left(x^{2}\right)$ 33. $\sin ^{-1}\left(\frac{1}{\sqrt{x+1}}\right)$
34. $(\sin x)^{\cos x}$
35. $\sin ^{m} x \cdot \cos ^{n} x$
36. $(x+1)^{2}(x+2)^{3}(x+3)^{4}$
37. $\cos ^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right), \frac{-\pi}{4}<x<\frac{\pi}{4}$
38. $\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right),-\frac{\pi}{4}<x<\frac{\pi}{4}$
39. $\tan ^{-1}(\sec x+\tan x),-\frac{\pi}{2}<x<\frac{\pi}{2}$
40. $\tan ^{-1}\left(\frac{a \cos x-b \sin x}{b \cos x+a \sin x}\right),-\frac{\pi}{2}<x<\frac{\pi}{2}$ and $\frac{a}{b} \tan x>-1$
41. $\sec ^{-1}\left(\frac{1}{4 x^{3}-3 x}\right), 0<x<\frac{1}{\sqrt{2}}$
42. $\tan ^{-1} \frac{3 a^{2} x x^{3}}{a^{3} 3 a x^{2}}, \frac{1}{\sqrt{3}} \frac{x}{a} \frac{1}{\sqrt{3}}$
43. $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right),-1<x<1, x \neq 0$

Find $\frac{d y}{d x}$ of each of the functions expressed in parametric form in Exercises from 44 to 48 .
44. $x=t+\frac{1}{t}, y=t-\frac{1}{t} \quad$ 45. $x=e^{\theta}\left(\theta+\frac{1}{\theta}\right), y=e^{-\theta}\left(\theta-\frac{1}{\theta}\right)$
46. $x=3 \cos \theta-2 \cos ^{3} \theta, y=3 \sin \theta-2 \sin ^{3} \theta$.
47. $\sin x=\frac{2 t}{1+t^{2}}, \tan y=\frac{2 t}{1-t^{2}}$.
48. $x=\frac{1+\log t}{t^{2}}, \quad y=\frac{3+2 \log t}{t}$.
49. If $x=e^{\cos 2 t}$ and $y=e^{\sin 2 t}$, prove that $\frac{d y}{d x}=\frac{-y \log x}{x \log y}$.
50. If $x=a \sin 2 t(1+\cos 2 t)$ and $y=b \cos 2 t(1-\cos 2 t)$, show that $\left(\frac{d y}{d x}\right)_{\text {att }=\frac{\pi}{4}}=\frac{b}{a}$.
51. If $x=3 \sin t-\sin 3 t, y=3 \cos t-\cos 3 t$, find $\frac{d y}{d x}$ at $t=\frac{\pi}{3}$.
52. Differentiate $\frac{x}{\sin x}$ w.r.t. $\sin x$.
53. Differentiate $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ w.r.t. $\tan ^{-1} x$ when $x \neq 0$.

Find $\frac{d y}{d x}$ when x and y are connected by the relation given in each of the Exercises 54 to 57 .
54. $\sin (x y)+\frac{x}{y}=x^{2}-y$
55. $\sec (x+y)=x y$
56. $\tan ^{-1}\left(x^{2}+y^{2}\right)=a$
57. $\left(x^{2}+y^{2}\right)^{2}=x y$
58. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$, then show that $\frac{d y}{d x} \cdot \frac{d x}{d y}=1$.
59. If $x=e^{\frac{x}{y}}$, prove that $\frac{d y}{d x}=\frac{x-y}{x \log x}$.
60. If $y^{x}=e^{y-x}$, prove that $\frac{d y}{d x}=\frac{(1+\log y)^{2}}{\log y}$.
61. If $y=(\cos x)^{(\cos x)^{(\cos x) \ldots \infty}}$, show that $\frac{d y}{d x}=\frac{y^{2} \tan x}{y \log \cos x-1}$.
62. If $x \sin (a+y)+\sin a \cos (a+y)=0$, prove that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$.
63. If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$, prove that $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$.
64. If $y=\tan ^{-1} x$, find $\frac{d^{2} y}{d x^{2}}$ in terms of y alone.

Verify the Rolle's theorem for each of the functions in Exercises 65 to 69 .
65. $f(x)=x(x-1)^{2}$ in $[0,1]$.
66. $f(x)=\sin ^{4} x+\cos ^{4} x$ in $\left[0, \frac{\pi}{2}\right]$.
67. $f(x)=\log \left(x^{2}+2\right)-\log 3$ in $[-1,1]$.
68. $f(x)=x(x+3) e^{-x / 2}$ in $[-3,0]$.
69. $f(x)=\sqrt{4-x^{2}}$ in $[-2,2]$.
70. Discuss the applicability of Rolle's theorem on the function given by

$$
f(x) \quad \begin{array}{lllll}
x^{2} & 1, \text { if } & 0 & x & 1 \\
3 & x & \text {, if } & 1 & x
\end{array} \quad 2 .
$$

71. Find the points on the curve $y=(\cos x-1)$ in $[0,2 \pi]$, where the tangent is parallel to x-axis.
72. Using Rolle's theorem, find the point on the curve $y=x(x-4), x \in[0,4]$, where the tangent is parallel to x-axis.

Verify mean value theorem for each of the functions given Exercises 73 to 76.
73. $f(x)=\frac{1}{4 x-1}$ in $[1,4]$.
74. $f(x)=x^{3}-2 x^{2}-x+3$ in $[0,1]$.
75. $f(x)=\sin x-\sin 2 x$ in $[0, \pi]$.
76. $f(x)=\sqrt{25-x^{2}}$ in $[1,5]$.
77. Find a point on the curve $y=(x-3)^{2}$, where the tangent is parallel to the chord joining the points $(3,0)$ and $(4,1)$.
78. Using mean value theorem, prove that there is a point on the curve $y=2 x^{2}-5 x+3$ between the points $A(1,0)$ and $B(2,1)$, where tangent is parallel to the chord $A B$. Also, find that point.

Long Answer (L.A.)

79. Find the values of p and q so that

$$
f(x)= \begin{cases}x^{2}+3 x+p, & \text { if } x \leq 1 \\ q x+2 & \text {, if } x>1\end{cases}
$$

is differentiable at $x=1$.
80. If $x^{m} \cdot y^{n}=(x+y)^{m+n}$, prove that
(i) $\frac{d y}{d x}=\frac{y}{x}$ and (ii) $\frac{d^{2} y}{d x^{2}}=0$.
81. If $x=\sin t$ and $y=\sin p t$, prove that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+p^{2} y=0$.
82. Find $\frac{d y}{d x}$, if $y=x^{\tan x}+\sqrt{\frac{x^{2}+1}{2}}$.

Objective Type Questions

Choose the correct answers from the given four options in each of the Exercises 83 to 96 .
83. If $f(x)=2 x$ and $g(x)=\frac{x^{2}}{2}+1$, then which of the following can be a discontinuous function
(A) $f(x)+g(x)$
(B) $f(x)-g(x)$
(C) $f(x) \cdot g(x)$
(D) $\frac{g(x)}{f(x)}$
84. The function $f(x)=\frac{4-x^{2}}{4 x-x^{3}}$ is
(A) discontinuous at only one point
(B) discontinuous at exactly two points
(C) discontinuous at exactly three points
(D) none of these
85. The set of points where the function f given by $f(x)=|2 x-1| \sin x$ is differentiable is
(A) \mathbf{R}
(B) $\mathbf{R}-\left\{\frac{1}{2}\right\}$
(C) $(0, \infty)$
(D) none of these
86. The function $f(x)=\cot x$ is discontinuous on the set
(A) $\{x=n \pi: n \in \mathbf{Z}\}$
(B) $\{x=2 n \pi: n \in \mathbf{Z}\}$
(C) $\left\{x=(2 n+1) \frac{\pi}{2} ; n \in \mathbf{Z}\right\}$
(iv) $\left\{x=\frac{n \pi}{2} ; n \in \mathbf{Z}\right\}$
87. The function $f(x)=e^{|x|}$ is
(A) continuous everywhere but not differentiable at $x=0$
(B) continuous and differentiable everywhere
(C) not continuous at $x=0$
(D) none of these.
88. If $f(x)=x^{2} \sin \frac{1}{x}$, where $x \neq 0$, then the value of the function f at $x=0$, so that the function is continuous at $x=0$, is
(A) 0
(B) -1
(C) 1
(D) none of these
89. If $f(x)=\left\{\begin{array}{ll}m x+1 & , \text { if } x \leq \frac{\pi}{2} \\ \sin x+n, & \text { if } x>\frac{\pi}{2}\end{array}\right.$, is continuous at $x=\frac{\pi}{2}$, then
(A) $m=1, n=0$
(B) $m=\frac{n \pi}{2}+1$
(C) $n=\frac{m \pi}{2}$
(D) $m=n=\frac{\pi}{2}$
90. Let $f(x)=|\sin x|$. Then
(A) f is everywhere differentiable
(B) f is everywhere continuous but not differentiable at $x=n \pi, n \in \mathbf{Z}$.
(C) f is everywhere continuous but not differentiable at $x=(2 \mathrm{n}+1) \frac{\pi}{2}$, $n \in \mathbf{Z}$.
(D) none of these
91. If $y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)$, then $\frac{d y}{d x}$ is equal to
(A) $\frac{4 x^{3}}{1-x^{4}}$
(B) $\frac{-4 x}{1-x^{4}}$
(C) $\frac{1}{4-x^{4}}$
(D) $\frac{-4 x^{3}}{1-x^{4}}$
92. If $y=\sqrt{\sin x+y}$, then $\frac{d y}{d x}$ is equal to
(A) $\frac{\cos x}{2 y-1}$
(B) $\frac{\cos x}{1-2 y}$
(C) $\frac{\sin x}{1-2 y}$
(D) $\frac{\sin x}{2 y-1}$
93. The derivative of $\cos ^{-1}\left(2 x^{2}-1\right)$ w.r.t. $\cos ^{-1} x$ is
(A) 2
(B) $\frac{-1}{2 \sqrt{1-x^{2}}}$
(C) $\frac{2}{x}$
(D) $1-x^{2}$
94. If $x=t^{2}, y=t^{3}$, then $\frac{d^{2} y}{d x^{2}}$ is
(A) $\frac{3}{2}$
(B) $\frac{3}{4 t}$
(C) $\frac{3}{2 t}$
(D) $\frac{3}{2 t}$
95. The value of c in Rolle's theorem for the function $f(x)=x^{3}-3 x$ in the interval $[0, \sqrt{3}]$ is
(A) 1
(B) -1
(C) $\frac{3}{2}$
(D) $\frac{1}{3}$
96. For the function $f(x)=x+\frac{1}{x}, x \in[1,3]$, the value of c for mean value theorem is
(A) 1
(B) $\sqrt{3}$
(C) 2
(D) none of these

Fill in the blanks in each of the Exercises 97 to 101:
97. An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is \qquad .
98. Derivative of x^{2} w.r.t. x^{3} is \qquad .
99. If $f(x)=|\cos x|$, then $f^{\prime} \overline{4}=$ \qquad .
100. If $f(x)=|\cos x-\sin x|$, then $f^{\prime} \overline{3}=$ \qquad .
101. For the curve $\sqrt{x} \sqrt{y} 1, \frac{d y}{d x}$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$ is \qquad .

State True or False for the statements in each of the Exercises 102 to 106.
102. Rolle's theorem is applicable for the function $f(x)=|x-1|$ in [0, 2].
103. If f is continuous on its domain D , then $|f|$ is also continuous on D .
104. The composition of two continuous function is a continuous function.
105. Trigonometric and inverse - trigonometric functions are differentiable in their respective domain.
106. If $f . g$ is continuous at $x=a$, then f and g are separately continuous at $x=a$.

