Physics

NCERT Exemplar Problems

Chapter 12

12.1 (c)

12.2 (c)
12.3 (a)
(a)
12.4 (a)
12.5 (a)
12.6 (a)
12.7 (a)
12.8 (a), (c)
12.9 (a), (b)
12.10 (a), (b)
12.11 (b), (d)
12.12 (b), (d)
12.13 (c), (d)
12.14 Einstein's mass-energy equivalence gives $E=m c^{2}$. Thus the mass of a H -atom is $m_{p}+m_{e}-\begin{gathered}B \\ c^{2}\end{gathered}$ where $\mathrm{B} \approx 13.6 \mathrm{eV}$ is the binding energy.
12.15 Because both the nuclei are very heavy as compared to electron mass.
12.16 Because electrons interact only electromagnetically.
12.17 Yes, since the Bohr formula involves only the product of the charges.
12.18 No, because accoding to Bohr model, $E_{n}=-\frac{13.6}{n^{2}}$,
and electons having different energies belong to different levels having different values of n. So, their angular momenta will be different, as $m v r=\frac{n h}{2 \pi}$.
12.19 The ' m ' that occurs in the Bohr formula $E_{n}=-\frac{m e^{4}}{8 \varepsilon_{0} n^{2} h^{2}}$ is the reduced mass. For H-atom $m \approx m_{\mathrm{e}}$. For positronium $m \approx m_{e} / 2$. Hence for a positonium $E_{1} \approx-6.8 \mathrm{eV}$.
12.20 For a nucleus with charge 2 e and electrons of charge $-e$, the levels are $E_{n}=-\frac{4 m e^{4}}{8 \varepsilon_{0}{ }^{2} n^{2} h^{2}}$. The ground state will have two electrons each of energy E, and the total ground state energy would by $-(4 \times 13.6) \mathrm{eV}$.
$12.21 v=$ velocity of electron
$a_{0}=\quad$ Bohr radius.
\therefore Number of revolutions per unit time $=\frac{2 \pi a_{0}}{v}$
\therefore Current $=\frac{2 \pi a_{0}}{v} e$.
$12.22 v_{\mathrm{mn}}=c R Z^{2}\left[\frac{1}{(n+p)^{2}}-\frac{1}{n^{2}}\right]$,
where $m=n+p,(p=1,2,3, \ldots)$ and R is Rydberg constant.
For $p \ll n$.

$$
\begin{aligned}
& v_{m n}=c R Z^{2}\left[\frac{1}{n^{2}}\left(1+\frac{p}{n}\right)^{-2}-\frac{1}{n^{2}}\right] \\
& v_{m n}=c R Z^{2}\left[\frac{1}{n^{2}}-\frac{2 p}{n^{3}}-\frac{1}{n^{2}}\right] \\
& v_{m n}=c R Z^{2} \frac{2 p}{n^{3}} ;\left(\frac{2 c R Z^{2}}{n^{3}}\right) p
\end{aligned}
$$

Thus, v_{mn} are approximately in the order $1,2,3 \ldots \ldots \ldots$.
12.23 H_{γ} in Balmer series corresponds to transition $n=5$ to $n=2$. So the electron in ground state $n=1$ must first be put in state $n=5$. Energy required $=E_{1}-E_{5}=13.6-0.54=13.06 \mathrm{eV}$.

If angular momentum is conserved, angular momentum of photon $=$ change in angular momentum of electron $=L_{5}-L_{2}=5 \mathrm{~h}-2 \mathrm{~h}=3 \mathrm{~h}=3 \times 1.06 \times 10^{-34}$ $=3.18 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$.
12.24 Reduced mass for $H=\mu_{H}=\frac{m_{e}}{1+\frac{m_{e}}{M}} ; m_{e}\left(1-\frac{m_{e}}{M}\right)$

Reduced mass for $D=\mu_{D} ; m_{e}\left(1-\frac{m_{e}}{2 M}\right)=m_{e}\left(1-\frac{m_{e}}{2 M}\right)\left(1+\frac{m_{e}}{2 M}\right)$
$h v_{i j}=\left(E_{i}-E_{j}\right) \alpha \mu$. Thus, $\lambda_{i j} \alpha \frac{1}{\mu}$
If for Hydrogen/Deuterium the wavelength is $\lambda_{H} / \lambda_{D}$
$\frac{\lambda_{D}}{\lambda_{H}}=\frac{\mu_{H}}{\mu_{D}} ;\left(1+\frac{m_{e}}{2 M}\right)^{-1} ;\left(1-\frac{1}{2 \times 1840}\right)$
$\lambda_{D}=\lambda_{H} \times(0.99973)$
Thus lines are $1217.7 \AA, 1027.7 \AA, 974.04 \AA, 951.143 \AA$.
12.25 Taking into account the nuclear motion, the stationary state energies shall be, $E_{n}=-\frac{\mu Z^{2} e^{4}}{8 \varepsilon_{0}^{2} h^{2}}\left(\frac{1}{n^{2}}\right)$. Let μ_{H} be the reduced mass of Hydrogen and μ_{D} that of Deutrium. Then the frequency of the $1^{\text {st }}$ Lyman line in Hydrogen is $h v_{H}=\frac{\mu_{H} e^{4}}{8 \varepsilon_{0}^{2} h^{2}}\left(1-\frac{1}{4}\right)=\frac{3}{4} \frac{\mu_{H} e^{4}}{8 \varepsilon_{0}^{2} h^{2}}$. Thus the wavelength of the transition is $\lambda_{H}=\frac{3}{4} \frac{\mu_{H} e^{4}}{8 \varepsilon_{0}^{2} h^{3} c}$. The wavelength of the transition for the same line in Deutrium is $\lambda_{D}=\frac{3}{4} \frac{\mu_{D} e^{4}}{8 \varepsilon_{0}^{2} h^{3} c}$.

$$
\therefore \Delta \lambda=\lambda_{D}-\lambda_{H}
$$

Hence the percentage difference is

$$
\begin{aligned}
& 100 \times \frac{\Delta \lambda}{\lambda_{H}}=\frac{\lambda_{D}-\lambda_{H}}{\lambda_{H}} \times 100=\frac{\mu_{D}-\mu_{H}}{\mu_{H}} \times 100 \\
& =\frac{\frac{m_{e} M_{D}}{\left(m_{e}+M_{D}\right)}-\frac{m_{e} M_{H}}{\left(m_{e}+M_{H}\right)}}{m_{e} M_{H} /\left(m_{e}+M_{H}\right)} \times 100 \\
& =\left[\left(\frac{m_{e}+M_{H}}{m_{e}+M_{D}}\right) \frac{M_{D}}{M_{H}}-1\right] \times 100
\end{aligned}
$$

Since $m_{\mathrm{e}} \ll M_{H}<M_{D}$

$$
\begin{aligned}
& \frac{\Delta \lambda}{\lambda_{H}} \times 100=\left[\frac{M_{H}}{M_{D}} \times \frac{M_{D}}{M_{H}}\left(\frac{1+m_{e} / M_{H}}{1+m_{e} / M_{D}}\right)-1\right] \times 100 \\
&=\left[\left(1+m_{e} / M_{H}\right)\left(1+m_{e} / M_{D}\right)^{-1}-1\right] \times 100 \\
& ;\left[\left(1+\frac{m_{e}}{M_{H}}-\frac{m_{e}}{M_{D}}-1\right] \times 100\right. \\
& \approx m_{e}\left[\frac{1}{M_{H}}-\frac{1}{M_{D}}\right] \times 100 \\
&=9.1 \times 10^{-31}\left[\frac{1}{1.6725 \times 10^{-27}}-\frac{1}{3.3374 \times 10^{-27}}\right] \times 100 \\
&=9.1 \times 10^{-4}[0.5979-0.2996] \times 100 \\
&=2.714 \times 10^{-2} \%
\end{aligned}
$$

12.26 For a point nucleus in H -atom:

Ground state: $m v r=\mathrm{h}, \frac{m v^{2}}{r_{B}}=-\frac{e^{2}}{r_{B}{ }^{2}} \cdot \frac{1}{4 \pi \varepsilon_{0}}$
$\therefore m \frac{\mathrm{~h}^{2}}{m^{2} r_{B}{ }^{2}} \cdot 1$
$\therefore \frac{\hbar^{2}}{m} \cdot \frac{4 \pi \varepsilon_{0}}{e^{2}}=r_{B}=0.51 \AA$
Potential energy

$$
-\left(\frac{e^{2}}{4 \pi r_{0}}\right) \cdot \frac{1}{r_{B}}=-27.2 e V ; K \cdot E=\frac{m v^{2}}{2}=\frac{1}{2} m \cdot \frac{\hbar^{2}}{m^{2} r_{B}^{2}}=\frac{\hbar}{2 m r_{B}^{2}}=+13.6 \mathrm{eV}
$$

For an spherical nucleus of radius R,
If $R<r_{\mathrm{B}}$, same result.
If $R \gg r_{\mathrm{B}}$: the electron moves inside the sphere with radius $r_{B}^{\prime}\left(r_{B}^{\prime}=\right.$ new Bohr radius $)$.

Charge inside $r_{B}^{\prime 4}=e\left(\frac{r_{B}^{\prime 3}}{R^{3}}\right)$

$$
\begin{aligned}
& \therefore r_{B}^{\prime}=\frac{\mathrm{h}^{2}}{m}\left(\frac{4 \pi \varepsilon_{0}}{e^{2}}\right) \frac{R^{3}}{r_{B}^{\prime 3}} \\
& r_{B}^{\prime 4}=(0.51 \mathrm{~A}) \cdot R^{3} \cdot \quad R=10 \AA \\
& =510(\mathrm{~A})^{4} \\
& \therefore r_{B}^{\prime} \approx(510)^{1 / 4} \mathrm{~A}<R . \\
& K . E=\frac{1}{2} m v^{2}=\frac{m}{2} \cdot \frac{\mathrm{~h}}{m^{2} r_{B}^{\prime 2}}=\frac{\mathrm{h}}{2 m} \cdot \frac{1}{r_{B}^{\prime 2}} \\
& =\left(\frac{\mathrm{h}^{2}}{2 m r_{B}^{2}}\right) \cdot\left(\frac{r_{B}^{2}}{r_{B}^{\prime 2}}\right)=(13.6 \mathrm{eV}) \frac{(0.51)^{2}}{(510)^{1 / 2}}=\frac{3.54}{22.6}=0.16 \mathrm{eV} \\
& P \cdot E=+\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right) \cdot\left(\frac{r_{B}^{\prime 2}-3 R^{2}}{2 R^{3}}\right) \\
& =+(27.2 \mathrm{eV}) \cdot \frac{-141}{1000}=-3.83 \mathrm{eV} \\
& =+\left(\frac{e^{2}}{4 \pi \varepsilon_{0}} \cdot \frac{1}{r_{B}}\right) \cdot\left(\frac{r_{B}\left(r_{B}^{\prime 2}-3 R^{2}\right.}{R^{3}}\right) \\
& =+(27.2 \mathrm{eV})\left[\frac{0.51(\sqrt{510}-300)}{1000}\right] \\
& =+10 .
\end{aligned}
$$

12.27 As the nucleus is massive, recoil momentum of the atom may be neglected and the entire energy of the transition may be considered transferred to the Auger electron. As there is a single valence electron in Cr , the energy states may be thought of as given by the Bohr model.

The energy of the nth state $E_{n}=-Z^{2} R \frac{1}{n^{2}}$ where R is the Rydberg constant and $Z=24$.

The energy released in a transition from 2 to 1 is $\Delta E=Z^{2} R\left(1-\frac{1}{4}\right)=\frac{3}{4} Z^{2} R$. The energy required to eject a $n=4$ electron is $E_{4}=Z^{2} R \frac{1}{16}$.

Thus the kinetic energy of the Auger electron is

$$
\begin{aligned}
& K . E=Z^{2} R\left(\begin{array}{l}
3 \\
4
\end{array}-\frac{1}{16}\right)=\frac{1}{16} Z^{2} R \\
& =\frac{11}{16} \times 24 \times 24 \times 13.6 \mathrm{eV} \\
& =5385.6 \mathrm{eV}
\end{aligned}
$$

$12.28 m_{\mathrm{p}} c^{2}=10^{-6} \times$ electron mass $\times c^{2}$

$$
\begin{aligned}
& \approx 10^{-6} \times 0.5 \mathrm{MeV} \\
& \approx 10^{-6} \times 0.5 \times 1.6 \times 10^{-13} \\
& \approx 0.8 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

$\frac{\mathrm{h}}{m_{p} c}=\frac{\mathrm{hc}}{m_{p} c^{2}}=\frac{1 \mathrm{O}^{-34} \times 3 \times 10^{8}}{0.8 \times 10^{-19}} \approx 4 \times 10^{-7} \mathrm{~m} \gg$ Bohr radius.
$|\mathbf{F}|=\frac{e^{2}}{4 \pi \varepsilon_{0}}\left[\frac{1}{r^{2}}+\frac{\lambda}{r}\right] \exp (-\lambda r)$
where $\lambda^{-1}=\frac{\hbar}{m_{p} c} \approx 4 \times 10^{-7} \mathrm{~m} \gg r_{B}$
$\therefore \lambda \ll \frac{1}{r_{B}}$ i.e $\lambda r_{B} \ll 1$
$U(r)=-\frac{e^{2}}{4 \pi \varepsilon_{0}} \cdot \stackrel{\exp (-\lambda r)}{r}$
$m v r=\mathrm{h} \therefore v=\frac{\mathrm{h}}{m r}$
Also : $\frac{m v^{2}}{r}=\approx\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)\left[\frac{1}{r^{2}}+\frac{\lambda}{r}\right]$
$\therefore \frac{\mathrm{h}^{2}}{m r^{3}}=\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)\left[\frac{1}{r^{2}}+\frac{\lambda}{r}\right]$
$\therefore \frac{\mathrm{h}^{2}}{m}=\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)\left[r+\lambda r^{2}\right]$

If $\lambda=0 ; r=r_{B}=\frac{\mathrm{h}}{m} \cdot \frac{4 \pi \varepsilon_{0}}{e^{2}}$
$\frac{\mathrm{h}^{2}}{m}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \cdot r_{B}$
Since $\lambda^{-1} \gg r_{B}$, put $r=r_{B}+\delta$

$$
\begin{aligned}
& \therefore r_{B}=r_{B}+\delta+\lambda\left(r_{B}^{2}+\delta^{2}+2 \delta r_{B}\right) ; \text { negect } \delta^{2} \\
& \text { or } 0=\lambda r_{B}^{2}+\delta\left(1+2 \lambda r_{B}\right) \\
& \delta=\frac{-\lambda r_{B}^{2}}{1+2 \lambda r_{B}} \approx \lambda r_{B}^{2}\left(1-2 \lambda r_{B}\right)=-\lambda r_{B}^{2} \text { since } \lambda r_{B} \ll 1
\end{aligned}
$$

$$
\therefore V(r)=-\frac{e^{2}}{4 \pi \varepsilon_{0}} \cdot \frac{\exp \left(-\lambda \delta-\lambda r_{B}\right)}{r_{B}+\delta}
$$

$$
\therefore V(r)=-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r_{B}}\left[\left(1-\frac{\delta}{r_{B}}\right) \cdot\left(1-\lambda r_{B}\right)\right]
$$

$$
\cong(-27.2 \mathrm{eV}) \text { remains unchanged. }
$$

$K \cdot E=-\frac{1}{2} m v^{2}=\frac{1}{2} m \cdot \frac{\mathrm{~h}^{2}}{m r^{2}}=\frac{\mathrm{h}^{2}}{2\left(r_{B}+\delta\right)^{2}}=\frac{\mathrm{h}^{2}}{2 r_{B}{ }^{2}}\left(1-\frac{2 \delta}{r_{B}}\right)$
$=(13.6 \mathrm{eV})\left[1+2 \lambda r_{B}\right]$
Total energy $=\quad-\frac{e^{2}}{4 \pi \varepsilon_{0} r_{B}}+\frac{\mathrm{h}^{2}}{2 r_{B}{ }^{2}}\left[1+2 \lambda r_{B}\right]$

$$
=-27.2+13.6\left[1+2 \lambda r_{B}\right] \mathrm{eV}
$$

Change in energy $=13.6 \times 2 \lambda r_{B} \mathrm{eV}=27.2 \lambda r_{B} \mathrm{eV}$
12.29 Let $\varepsilon=2+\delta$

$$
\begin{aligned}
& F=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0}} \cdot \frac{R_{0}^{\delta}}{r^{2+\delta}}=\wedge \frac{R_{0}^{\delta}}{r^{2+\delta}}, \text { where } \frac{q_{1} q_{2}}{4 \pi_{0} \varepsilon}=\wedge, \wedge=\left(1.6 \times 10^{-19}\right)^{2} \times 9 \times 10^{9} \\
& =23.04 \times 10^{-29}
\end{aligned}
$$

$$
\begin{array}{r}
=\frac{m v^{2}}{r} \\
v^{2}=\frac{\wedge R_{0}^{\delta}}{m r^{1+\delta}}
\end{array}
$$

(i) $m v r=n \mathrm{~h}, r=\frac{n \mathrm{~h}}{m v}=\frac{n \mathrm{~h}}{m}\left[\frac{m}{\wedge R_{0}^{\delta}}\right]^{1 / 2} r^{1 / 2+\delta / 2}$

Solving this for r, we get $r_{n}=\left[\frac{n^{2} \hbar^{2}}{m \wedge R_{0}^{\delta}}\right]^{\frac{1}{1-\delta}}$
For $n=1$ and substituting the values of constant, we get

$$
r_{1}=\left[\frac{\hbar^{2}}{m \wedge R_{0}^{\delta}}\right]^{\frac{1}{1-\delta}}
$$

$$
r_{1}=\left[\frac{1.05^{2} \times 10^{-68}}{9.1 \times 10^{-31} \times 2.3 \times 10^{-28} \times 10^{+19}}\right]^{\frac{1}{2.9}}=8 \times 10^{-11}=0.08 \mathrm{~nm}
$$

$$
(<0.1 \mathrm{~nm})
$$

(ii) $v_{n}=\frac{n \hbar}{m r_{n}}=n \hbar\left(\frac{m \wedge R_{0}^{\delta}}{n^{2} \hbar^{2}}\right)^{\frac{1}{1-\delta}}$. For $n=1, v_{1}=\frac{\hbar}{m r_{1}}=1.44 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(iii) K.E. $=\frac{1}{2} m v_{1}^{2}=9.43 \times 10^{-19} \mathrm{~J}=5.9 \mathrm{eV}$
P.E. till $R_{0}=-\frac{\wedge}{R_{0}}$
P.E. from R_{0} to $\mathrm{r}=+\wedge R_{0}^{\delta} \int_{R_{0}}^{r} \frac{d r}{r^{2+\delta}}=+\frac{\wedge R_{0}^{\delta}}{-1-\delta}\left[\frac{1}{r^{1+\delta}}\right]_{R_{0}}^{r}$
$=-\frac{\wedge R_{0}^{\delta}}{1+\delta}\left[\frac{1}{r^{1+\delta}}-\frac{1}{R_{0}{ }^{1+\delta}}\right]$
$=-\frac{\wedge}{1+\delta}\left[\frac{R_{0}^{\delta}}{r^{1+\delta}}-\frac{1}{R_{0}}\right]$
P.E. $=-\frac{\wedge}{1+\delta}\left[\frac{R_{0}^{\delta}}{r^{1+\delta}}-\frac{1}{R_{0}}+\frac{1+\delta}{R_{0}}\right]$

$$
\left.\begin{array}{rl}
\text { P.E. } & =-\frac{\wedge}{-0.9}\left[\frac{R_{0}^{-1.9}}{r^{-0.9}}-1.9\right. \\
R_{0}
\end{array}\right] \quad \begin{aligned}
& =\frac{2.3}{0.9} \times 10^{-18}\left[(0.8)^{0.9}-1.9\right] \mathrm{J}=-17.3 \mathrm{eV}
\end{aligned}
$$

Total energy is $(-17.3+5.9)=-11.4 \mathrm{eV}$.

