DCAM classes

Physics

NCERT Exemplar Problems

Chapter 14

Semiconductor Electronics
 Answers

14.1	(d)
14.2	(b)
14.3	(b)
14.4	(d)
14.5	(b)
14.6	(c)
14.7	(b)
14.8	(c)
14.9	(a), (c)
14.10	(a), (c)
14.11	(b), (c), (d)
14.12	(b), (c)
14.13	(a), (b), (d)

14.14 (b), (d)
14.15 (a), (c), (d)
14.16 (a), (d)
14.17 The size of dopant atoms should be such as not to distort the pure semiconductor lattice structure and yet easily contribute a charge carrier on forming co-valent bonds with Si or Ge.
14.18 The energy gap for Sn is OeV , for C is 5.4 eV , for Si is 1.1 eV and for Ge is 0.7 eV , related to their atomic size.
14.19 No, because the voltmeter must have a resistance very high compared to the junction resistance, the latter being nearly infinite.
14.20

14.21 (i) $10 \times 20 \times 30 \times 10^{-3}=6 \mathrm{~V}$
(ii) If dc supply voltage is 5 V , the output peak will not exceed $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$. Hence, $\mathrm{V}_{\mathrm{o}}=5 \mathrm{~V}$.
14.22 No, the extra power required for amplified output is obtained from the DC source.
14.23 (i) ZENER junction diode and solar cell.
(ii) Zener breakdown voltage
(iii) Q- short circuit current

P- open circuit voltage.
14.24 Energy of incident light photon

$$
h v=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{6 \times 10^{-7} \times 1.6 \times 10^{-19}}=2.06 \mathrm{e} V
$$

For the incident radiation to be detected by the photodiode, energy of incident radiation photon should be greater than the band gap. This is true only for D 2 . Therefore, only D 2 will detect this radiation.
14.25 $\quad I_{B}=\frac{V_{B B}-V_{B E}}{R_{1}}$. If R_{1} is increased, I_{B} will decrease. Since $I_{c}=\beta I_{b}$, it will result in decrease in I_{C} i.e decrease in ammeter and voltmeter readings.
14.26

OR gate gives output according to the truth table.

A	B	C
O	O	O
O	1	1
1	O	1
1	1	1

14.27

Input	Output
A	A
O	1
1	O

14.28 Elemental semiconductor's band-gap is such that emissions are in IR region.
14.29 Truth table

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

AND Gate
$14.30 \quad I_{Z \max }=\frac{P}{V_{Z}}=0.2 \mathrm{~A}=200 \mathrm{~mA}$
$R_{S}=\frac{V_{S}-V_{Z}}{I_{Z \max }}=\frac{2}{0.2}=10 \Omega$.
14.31 I_{3} is zero as the diode in that branch is reverse bised. Resistance in the branch AB and EF are each $(125+25) \Omega=150 \Omega$.

As AB and EF are identical parallel branches, their effective resistance is $\frac{150}{2}=75 \Omega$
\therefore Net resistance in the circuit $=(75+25) \Omega=100 \Omega$.
\therefore Current $I_{1}=\frac{5}{100}=0.05 \mathrm{~A}$.
As resistances of AB and EF are equal, and $I_{1}=I_{2}+I_{3}+I_{4}, I_{3}=0$
$\therefore I_{2}=I_{4}=\frac{0.05}{2}=0.025 \mathrm{~A}$
14.32 As $V_{\mathrm{be}}=0$, potential drop across R_{b} is 10 V .
$\therefore I_{b}=\frac{10}{400 \times 10^{3}}=25 \mu \mathrm{~A}$
Since $\mathrm{V}_{\mathrm{ce}}=0$, potential drop across R_{c}, i.e. $I_{c} R_{c}$ is 10 V .
$\therefore I_{c}=\frac{10}{3 \times 10^{3}}=3.33 \times 10^{-3}=3.33 \mathrm{~m} A$.
$\therefore \beta=\frac{I_{c}}{I_{b}}=\frac{3.33 \times 10^{-3}}{25 \times 10^{-6}}=1.33 \times 10^{2}=133$.
14.33

14.34 From the output characteristics at point $Q, V_{C E}=8 \mathrm{~V} \& I_{C}=4 \mathrm{~mA}$
$V_{C C}=I_{C} R C+V_{C E}$
$R_{c}=\frac{V_{C C}-V_{C E}}{I_{C}}$
$R_{c}=\frac{16-8}{4 \times 10^{-3}}=2 \mathrm{~K} \Omega$
Since,
$V_{B B}=I_{B} R_{B}+V_{B E}$
$R_{B}=\frac{16-0.7}{30 \times 10^{-6}}=510 \mathrm{~K} \Omega$

Now, $\beta=\frac{I_{C}}{I_{B}}=\frac{4 \times 10^{-3}}{30 \times 10^{-6}}=133$

Voltage gain $=A_{V}=-\beta \frac{R_{C}}{R_{B}}$

$$
\begin{aligned}
& =-133 \times \frac{2 \times 10^{3}}{510 \times 10^{3}} \\
& =0.52
\end{aligned}
$$

Power Gain $=A_{p}=\beta \times A_{V}$
$=-\beta^{2} \frac{R_{C}}{R_{B}}$
$=(133)^{2} \times \frac{2 \times 10^{3}}{510 \times 10^{3}}=69$
14.35 When input voltage is greater than 5 V , diode is conducting

When input is less than 5 V , diode is open circuit
14.36 (i) In ' n ' region; number of e^{-}is due to As:

$n_{e}=N_{D}=1 \times 10^{-6} \times 5 \times 10^{28}$ atoms $/ \mathrm{m}^{3}$
$n_{e}=5 \times 10^{22} / \mathrm{m}^{3}$
The minority carriers (hole) is
$n_{h}=\frac{n_{i}^{2}}{n_{e}}=\frac{\left(1.5 \times 10^{16}\right)^{2}}{5 \times 10^{22}}=\frac{2.25 \times 10^{32}}{5 \times 10^{22}}$
$n_{h}=0.45 \times 10 / \mathrm{m}^{3}$
Similarly, when Boron is implanted a 'p' type is created with holes
$n_{h}=\mathrm{N}_{\mathrm{A}}=200 \times 10^{-6} \times 5 \times 10^{28}$
$=1 \times 10^{25} / \mathrm{m}^{3}$
This is far greater than e^{-}that existed in ' n ' type wafer on which Boron was diffused.

Therefore, minority carriers in created 'p' region

$$
\begin{aligned}
& n_{e}= \frac{n_{i}^{2}}{n_{h}} \\
&=\frac{2.25 \times 10^{32}}{1 \times 10^{25}} \\
&=2.25 \times 10^{7} / \mathrm{m}^{3}
\end{aligned}
$$

(ii) Thus, when reverse biased $0.45 \times 10^{10} / \mathrm{m}^{3}$, holes of ' n ' region would contribute more to the reverse saturation current than 2.25 $\times 10^{7} / \mathrm{m}^{3}$ minority e^{-}of p type region.
14.37

14.38

$14.39 I_{C} \approx I_{E} \therefore I_{C}\left(R_{C}+R_{E}\right)+\mathrm{V}_{\mathrm{CE}}=12 \mathrm{~V}$
$R_{E}=9-\mathrm{R}_{\mathrm{C}}=1.2 \mathrm{~K} \Omega$

$$
\begin{aligned}
& \therefore V_{E}=1.2 \mathrm{~V} \\
& V_{B}=V_{E}+V_{B E}=1.7 \mathrm{~V} \\
& I=\frac{V_{B}}{20 \mathrm{~K}}=0.085 \mathrm{~mA} \\
& R_{B}=\frac{12-1.7}{I_{C} / \beta+0.085}=\frac{10.3}{0.01+1.085}=108 \mathrm{~K} \Omega
\end{aligned}
$$

$14.40 \quad I_{E}=I_{C}+I_{B}$

$$
\begin{equation*}
I_{C}=\beta I_{B} \tag{1}
\end{equation*}
$$

$I_{C} R_{C}+V_{C E}+I_{E} R_{E}=V_{C C}$
$R I_{B}+V_{B E}+I_{E} R_{E}=V_{C C}$
From (3) $I_{e} \approx I_{C}=\beta I_{B}$
$\left(R+\beta R_{E}\right)=V_{C C}-V_{B E}, \quad I_{B}=\frac{V_{C C}-V_{B E}}{R+\beta R_{E}}=\frac{11.5}{200} \mathrm{~mA}$
From (2)

$$
\begin{aligned}
& R_{C}+R_{E}=\frac{V_{C C}-V_{C E}}{I_{C}}=\frac{V_{C C}-V_{C E}}{\beta I_{B}}=\frac{2}{11.5}(12-3) \mathrm{K} \Omega=1.56 \mathrm{~K} \Omega \\
& R_{C}=1.56-1=0.56 \mathrm{~K} \Omega
\end{aligned}
$$

