Unit 12(Introduction To Three Dimensional Geometry)

Short Answer Type Questions

Q1. Locate the following points:
(i) $(1,-1,3)$,
(ii) $(-1,2,4)$
(iii) $(-2,-4,-7)$
(iv) $(-4,2,-5)$

Sol: Given, coordinates
(i) $(1,-1,3)$,
(ii) $(-1,2,4)$
(iii) $(-2,-4,-7)$
(iv) $(-4,2,-5)$

Q2. Name the octant in which each of the following points lies.
(i) $(1,2,3)$
(ii) $(4,-2,3)$
(iii) $(4,-2,-5)$
(iv) $(4,2,-5)$
(v) $(-4,2,5)$
(vi) $(-3,-1,6)$
(vii) $(2,-4,-7)$
(viii) $(-4,2,-5)$

Sol: We know that the sign of the coordinates of a point determine the octant in which the point lies. The following table shows the signs of the coordinates in eight octants.

Octants	I	II	III	IV	V	VI	VII	VIII
Coordinates	I	+	-	-	+	+	-	-
+								
x	+	+	-	-	+	+	-	-
y	+	+	+	+	-	-	-	-
z								

(i) $(1,2,3)$ lies in first quadrant \quad (ii) $(4,-2,3)$ lies in fourth octant
(iii) $(4,-2,-5)$ lies in eighth octant
(v) $(-4,2,5)$ lies in second octant
(vi) $(-3,-1,6)$ lies in third octant
(vii) $(3,-4,-7)$ lies in eighth octant (viii) $(-4,2,-5)$ lies in sixth octant.

Q3. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be the feet of perpendiculars from a point P on the $\mathrm{x}, \mathrm{y}, \mathrm{z}$-axes respectively. Find the coordinates of A, B and C in each of the following where the point P is:
(i) $(3,4,2)$
(ii) $(-5,3,7)$
(iii) $(4,-3,-5)$

Sol: We know that, on x-axis, $y, z=0$, on y-axis, $x, z=0$ and on z-axis, $x, y=0$. Thus, the feet of
perpendiculars from given point P on the axis are as follows.
(i) $\mathrm{A}(3,0,0), 5(0,4,0), \mathrm{C}(0,0,2)$
(ii) $A(-5,0,0), B(0,3,0), C(0,0,7)$
(iii) $A(4,0,0), 5(0,-3,0), C(0,0,-5)$

Q4. Let A, B, C be the feet of perpendiculars from a point P on the $x y, y z$ and $z x$ - planes respectively. Find the coordinates of A, B, C in each of the following where the point P is
(i) $(3,4,5)$
(ii) $(-5,3,7)$
(iii) $(4,-3,-5)$.

Sol: We know that, on $x y$-plane $z=0$, on $y z$-plane, $x=0$ and on $z x-p l a n e, ~ y=0$. Thus, the coordinates of feet of perpendicular on the $x y, y z$ and $z x$-planes from the given point are as follows:
(i) $A(3,4,0), 5(0,4,5), C(3,0,5)$
(ii) $A(-5,3,0), 5(0,3,7), C(-5,0,7)$
(iii) $A(4,-3,0), 5(0,-3,-5), C(4,0,-5)$

Q5. How far apart are the points $(2,0,0)$ and $(-3,0,0)$?
Sol: Given points are A $(2,0,0)$ and $5(-3,0,0)$.
$\mathrm{AB}=|2-(-3)|=5$

Q6. Find the distance from the origin to $(6,6,7)$.
Sol: Distance form origin to the point $(6,6,7)$

$$
=\sqrt{(0-6)^{2}+(0-6)^{2}+(0-7)^{2}}=\sqrt{36+36+49}=\sqrt{121}=11
$$

7. Show that if $x^{2}+y^{2}=1$, then the point $\left(x, y, \sqrt{1-x^{2}-y^{2}}\right)$ is at a distance 1 unit from the origin.

Sol. Given that, $x^{2}+y^{2}=1$
\therefore Distance of the point $\left(x, y, \sqrt{1-x^{2}-y^{2}}\right)$ from origin is given as

$$
d=\sqrt{x^{2}+y^{2}+\left(\sqrt{1-x^{2}-y^{2}}\right)^{2}}=\sqrt{x^{2}+y^{2}+1-x^{2}-y^{2}}=1
$$

Q8. Show that the point $, 4(1,-1,3), 6(2,-4,5)$ and $(5,-13,11)$ are collinear.
Sol: Given points are , 4(1, -1, 3), 6(2, -4, 5) and $C(5,-13,11)$.

$$
\begin{aligned}
& A B=\sqrt{(1-2)^{2}+(-1+4)^{2}+(3-5)^{2}}=\sqrt{1+9+4}=\sqrt{14} \\
& B C=\sqrt{(2-5)^{2}+(-4+13)^{2}+(5-11)^{2}}=\sqrt{9+81+36}=3 \sqrt{14} \\
& A C=\sqrt{(1-5)^{2}+(-1+13)^{2}+(3-11)^{2}}=\sqrt{16+144+64}=4 \sqrt{13} \\
& \text { Now, } A B+B C=\sqrt{14}+3 \sqrt{14}=4 \sqrt{14}=A C
\end{aligned}
$$

Therefore, the points A, B and C are collinear.

Q9. Three consecutive vertices of a parallelogram ABCD are .4(6, -2,4), $6(2,4,-8), \mathrm{C}(-2,2,4)$.
Find the coordinates of the fourth vertex.
Sol: Let the coordinates of the fourth vertex D be (x, y, z).

Mid-point of diagonal $A C$ is $P\left(\frac{6-2}{2}, \frac{-2+2}{2}, \frac{4+4}{2}\right) \equiv P(2,0,4)$
Also, mid-point of $B D$ is $P\left(\frac{x+2}{2}, \frac{y+4}{2}, \frac{z-8}{2}\right)$.
Now, $P\left(\frac{x+2}{2}, \frac{y+4}{2}, \frac{z-8}{2}\right) \equiv P(2,0,4)$
One equating coordinates, we get

$$
\begin{aligned}
& \frac{x+2}{2}=2 \Rightarrow x=2 \\
& \frac{y+4}{2}=0 \Rightarrow y=-4 \\
& \frac{z-8}{2}=4 \Rightarrow z=16
\end{aligned}
$$

So, the coordinate of fourth vertex D are given as $(2,-4,16)$.

Q10 .Show that the triangle ABC with vertices . $4(0,4,1), 6(2,3,-1)$ and $C(4,5,0)$ is right angled.
Sol: The vertices of $\Delta A B C$ are $A(0,4,1), 5(2,3,-1)$ and $C(4,5,0)$.
Now, $\quad A B=\sqrt{(0-2)^{2}+(4-3)^{2}+(1+1)^{2}}=\sqrt{4+1+4}=3$

$$
\begin{aligned}
& B C=\sqrt{(2-4)^{2}+(3-5)^{2}+(-1-0)^{2}}=\sqrt{4+4+1}=3 \\
& A C=\sqrt{(0-4)^{2}+(4-5)^{2}+(1-0)^{2}}=\sqrt{16+1+1}=\sqrt{18}
\end{aligned}
$$

Clearly, $A C^{2}=A B^{2}+B C^{2}$
Therefore, $\triangle A B C$ is a right angled triangle.

Q11. Find the third vertex of triangle whose centroid is origin and two vertices are $(2,4,6)$ and ($0,-2,-5$).
Sol: Let the third or unknown vertex of $\triangle A B C$ be $A(x, y, z)$.
Other vertices of triangle are $5(2,4,6)$ and $C(0,-2,-5)$
The centroid is $G(0,0,0)$.

$$
\therefore \quad(0,0,0) \equiv\left(\frac{2+0+x}{3}, \frac{4-2+y}{3}, \frac{6-5+z}{3}\right)
$$

On comparing coordinates, we get

$$
\begin{aligned}
& \frac{2+x}{3}=0, \frac{2+y}{3}=0 \text { and } \frac{1+z}{3}=0 \\
\Rightarrow \quad & x=-2, y=-2 \text { and } z=-1
\end{aligned}
$$

Q12. Find the centroid of a triangle, the mid-point of whose sides are $D(1,2,-3), E(3,0, I)$ and F(-I, 1,-4).
Sol: Given that, mid-points of sides of AABC are $D(1,2,-3), E(3,0,1)$ and $F(-1,1,-4)$.
Now from the geometry of centroid, we know that the centroid of $\triangle D E F$ is same as the centroid of $\triangle A B C$.
\therefore Centroid of $\triangle A B C$ is $G\left(\frac{1+3-1}{3}, \frac{2+0+1}{3}, \frac{-3+1-4}{3}\right) \equiv G(1,1,-2)$
13. The mid-points of the sides of a triangle are $(5,7,11),(0,8,5)$ and $(2,3,-1)$.

Find its vertices.
Sol. Given that mid points of the sides of $\triangle A B C$ are $D(5,7,11), E(0,8,5)$ and $F(2,3,-1)$.
Let the vertices of triangle be $A\left(x_{1}, y_{1}, z_{1}\right)$, $B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$.
Mid-point of $A C$ is E.

$\therefore \quad\left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}, \frac{z_{1}+z_{3}}{2}\right)=(0,8,5)$
So, $C\left(x_{3}, y_{3}, z_{3}\right) \equiv C\left(-x_{1}, 16-y_{1}, 10-z_{1}\right)$
Mid-point of $A B$ is F.
$\therefore \quad\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right) \equiv(2,3,-1)$
So, $B\left(x_{2}, y_{2}, z_{2}\right) \equiv B\left(4-x_{1}, 6-y_{1},-2-z_{1}\right)$
Mid-point of $B C$ is D
$\therefore \quad \frac{-x_{1}+4-x_{1}}{2}=5, \frac{16-y_{1}+6-y_{1}}{2}=7, \frac{10-z_{1}-2-z_{1}}{2}=11$
$\Rightarrow \quad x_{1}=-3, y_{1}=4$ and $z_{1}=-7$
$\therefore \quad A \equiv(-3,4,-7)$
So, $B \equiv(7,2,5)$
[Using (ii)]
and $C \equiv(3,12,17)$

Q14. Three vertices of a Parallelogram $A B C D$ are $A(\backslash, 2,3), B(-A,-2,-1)$ and $C(2,3,2)$. Find the fourth vertex
Sol: Let the fourth vertex of the parallelogram $D(x, y, z)$.
Mid-point of BD
$\therefore \quad\left(\frac{1+2}{2}, \frac{2+3}{2}, \frac{3+2}{2}\right) \equiv\left(\frac{x-1}{2}, \frac{y-2}{2}, \frac{z-1}{2}\right)$
$\therefore \quad \frac{3}{2}=\frac{x-1}{2} \Rightarrow x=4$;
$\frac{5}{2}=\frac{y-2}{2} \Rightarrow y=7 ;$ and
$\frac{5}{2}=\frac{z-1}{2} \Rightarrow z=6$

So, the coordinates of fourth vertex are $(4,7,6)$.
Q15. Find the coordinate of the points which trisect the line segment joining the points.$A(2$, $1,-3)$ and $B(5,-8,3)$.
Sol. Let $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ trisect line segment $A B$.

Since point P divides $A B$ in the ratio $1: 2$ internally, we have

$$
\begin{aligned}
P\left(x_{1}, y_{1}, z_{1}\right) & \equiv P\left(\frac{1(5)+2(2)}{1+2}, \frac{1(-8)+2(1)}{1+2}, \frac{1(3)+2(-3)}{1+2}\right) \\
& \equiv P(3,-2,-1)
\end{aligned}
$$

Since point Q divides $A B$ in the ratio $2: 1$ internally, we have

$$
\begin{aligned}
Q\left(x_{2}, y_{2}, z_{2}\right) & \equiv Q\left(\frac{2(5)+1(2)}{2+1}, \frac{2(-8)+1(1)}{2+1}, \frac{2(3)+1(-3)}{2+1}\right) \\
& \equiv Q(4,-5,1)
\end{aligned}
$$

$C(4,7, c)$, find the values of a, b, c.
Sol: Vertices of AABC are $A(a, 1,3), B(-2, b,-5)$ and $C(4,7, c)$.
Also, the centroid is $\mathrm{G}(0,0,0)$.

$$
\begin{array}{ll}
\therefore & G(0,0,0) \equiv G\left(\frac{a-2+4}{3}, \frac{1+b+7}{3}, \frac{3-5+c}{3}\right) \\
\therefore & 0=\frac{a+2}{3} \Rightarrow a=-2 ; \\
& 0=\frac{b+8}{3} \Rightarrow b=-8 ; \text { and } \\
& 0=\frac{c-2}{3} \Rightarrow c=2
\end{array}
$$

Q17. Let $A(2,2,-3), 5(5,6,9)$ and $C(2,7,9)$ be the vertices of a triangle. The internal bisector of the angle A meets $B C$ at the point Find the coordinates of D.
Sol. Let the coordinates of D be (x, y, z).

$$
\begin{aligned}
& A B=\sqrt{(5-2)^{2}+(6-2)^{2}+(9+3)^{2}}=\sqrt{9+16+144}=\sqrt{169}=13 \\
& A C=\sqrt{(2-2)^{2}+(7-2)^{2}+(9+3)^{2}}=\sqrt{0+25+144}=\sqrt{169}=13
\end{aligned}
$$

Thus, $A B C$ is isosceles triangle with $A B=A C$.
So, angle bisector $A D$ bisects $B C$ or we can say that D is mid-point of $B C$.
$\therefore \quad D \equiv\left(\frac{5+2}{2}, \frac{6+7}{2}, \frac{9+9}{2}\right) \equiv\left(\frac{7}{2}, \frac{13}{2}, 9\right)$

Long Answer Type Questions

Q18. Show that the three points $A(2,3,4), 5(-1,2,-3)$ and $C(-4,1,-10)$ are collinear and find the ratio in which Cdivides
Sol: Given points are $A(2,3,4), B(-1,2,-3)$ and $C(-4,1,-10)$

$$
\begin{aligned}
& A B=\sqrt{(2+1)^{2}+(3-2)^{2}+(4+3)^{2}}=\sqrt{9+1+49}=\sqrt{59} \\
& B C=\sqrt{(-1+4)^{2}+(2-1)^{2}+(-3+10)^{2}}=\sqrt{9+1+49}=\sqrt{59} \\
& A C=\sqrt{(2+4)^{2}+(3-1)^{2}+(4+10)^{2}}=\sqrt{36+4+196}=\sqrt{236}=2 \sqrt{59}
\end{aligned}
$$

Now, $\quad A B+B C=\sqrt{59}+\sqrt{59}=2 \sqrt{59}=A C$
Hence, the points A, B and C are collinear.
Also, $A C: B C=2 \sqrt{59}: \sqrt{59}=2: 1$
So, C divides $A B$ in the ratio $2: 1$ externally.

Q19. The mid-point of the sides of a triangle are $(1,5,-1),(0,4,-2)$ and $(2,3,4)$. Find its vertices. Also, find the centroid of the triangle.
Sol: Given that mid-points of the sides of AABC are $D(1,5,-1), E(0,4,-2)$ and $F(2,3,4)$.

$$
(2,3,4)
$$

Let the vertices of triangle be $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$.
Mid-point of $A C$ is E.
$\therefore \quad\left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}, \frac{z_{1}+z_{3}}{2}\right) \equiv(0,4,-2)$
So, $C\left(x_{3}, y_{3}, z_{3}\right) \equiv C\left(-x_{1}, 8-y_{1},-4-z_{1}\right)$
Mid-point of $A B$ is F.
$\therefore \quad\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right) \equiv(2,3,4)$
So, $B\left(x_{2}, y_{2}, z_{2}\right) \equiv B\left(4-x_{1}, 6-y_{1}, 8-z_{1}\right)$
Mid-point of $B C$ is D.
$\therefore \quad \frac{-x_{1}+4-x_{1}}{2}=1, \frac{8-y_{1}+6-y_{1}}{2}=5, \frac{-4-z_{1}+8-z_{1}}{2}=-1$
$\Rightarrow \quad x_{1}=1, y_{1}=2$ and $z_{1}=3$
$\therefore \quad A \equiv(1,2,3)$
So, $B \equiv(3,4,5) \quad$ [Using (ii)]
and $C \equiv(-1,6,-7) \quad[$ Using (i)]
Centroid, $G \equiv\left(\frac{1+3-1}{3}, \frac{2+4+6}{3}, \frac{3+5-7}{3}\right) \equiv\left(1,4, \frac{1}{3}\right)$

Q20. Prove that the points $(0,-1,-7),(2,1,-9)$ and $(6,5,-13)$ are collinear. Find the ratio in which the first point divides the join of the other two.
Sol: Given points are $4(0,-1,-7), 8(2,1,-9)$ and $C(6,5,-13)$.

$$
\begin{aligned}
& A B=\sqrt{(0-2)^{2}+(-1-1)^{2}+(-7+9)^{2}}=\sqrt{4+4+4}=2 \sqrt{3} \\
& B C=\sqrt{(2-6)^{2}+(1-5)^{2}+(-9+13)^{2}}=\sqrt{16+16+16}=4 \sqrt{3} \\
& A C=\sqrt{(0-6)^{2}+(-1-5)^{2}+(-7+13)^{2}}=\sqrt{36+36+36}=6 \sqrt{3} \\
& \text { Now, } \quad A B+B C=2 \sqrt{3}+4 \sqrt{3}=6 \sqrt{3}=A C
\end{aligned}
$$

Hence, the points A, B and C are collinear,

$$
A B: A C=2 \sqrt{3}: 6 \sqrt{3}=1: 3
$$

So, point A divides $B C$ in $1: 3$ externally.

Q21. What are the coordinates of the vertices of a cube whose edge is 2 units, one of whose vertices coincides with the origin and the three edges passing through the origin, coincides with the positive direction of the axes through the origin?
Sol: The coordinate of the cube whose edge is 2 units, are:
$(2,0,0),(2,2,0),(0,2,0),(0,2,2),(0,0,2),(2,0,2),(0,0,0)$ and $(2,2,2)$

Objective Type Questions

Q22. The distance of point $P(3,4,5)$ from the $y z$-plane is
(a) 3 units
(b) 4 units
(c) 5 units
(d) 550

Sol: (a) Given point is $P\{3,4,5)$.
Distance of P from yz -plane $=\mid \mathrm{x}$ coordinate of $\mathrm{P} \mid=3$

Q23. What is the length of foot of perpendicular drawn from the point $P(3,4,5)$ on y-axis?
(a) $\sqrt{41}$
(b) $\sqrt{34}$
(c) 5
(d) none of these

Sol. (b) We know that, on the y-axis $x=0$ and $z=0$.
\therefore Point $A \equiv(0,4,0)$

$$
\therefore \quad P A=\sqrt{(0-3)^{2}+(4-4)^{2}+(0-5)^{2}}=\sqrt{9+0+25}=\sqrt{34}
$$

Q24. Distance of the point $(3,4,5)$ from the origin $(0,0,0)$ is
(a) $\sqrt{50}$
(b) 3
(c) 4
(d) 5

Sol. (a) Given points are $P(3,4,5)$ and $O(0,0,0)$.
$\therefore \quad O P=\sqrt{(0-3)^{2}+(0-4)^{2}+(0-5)^{2}}=\sqrt{9+16+25}=\sqrt{50}$

Q25. If the distance between the points $(a, 0,1)$ and $(0,1,2)$ is $\sqrt{ } 27$, then the value of a is
(a) 5
(b) ± 5
(c) -5
(d) none of these

Sol. (b) Given points are $A(a, 0,1)$ and $B(0,1,2)$.

$$
\begin{array}{ll}
\therefore & A B=\sqrt{(a-0)^{2}+(0-1)^{2}+(1-2)^{2}}=\sqrt{27} \quad \text { (given) } \\
\Rightarrow & 27=a^{2}+2 \quad \Rightarrow a^{2}=25 \quad \Rightarrow \quad a= \pm 5
\end{array}
$$

Q26. x-axis is the intersection of two planes
(a) $x y$ and $x z$
(b) $y z$ and $z x$
(c) $x y$ and $y z$
(d) none of these

Sol: (a) We know that, on the $x y$ and $x z$-planes, the line of intersection is x-axis.

Q27. Equation of Y-axis is considered as
(a) $x=0, y=0$
(b) $y=0, z=0$
(c) $z=0, x=0$
(d) none of these

Sol:(c) On the j-axis, $x=0$ and $z=0$.

Q28. The point $(-2,-3,-4)$ lies in the
(a) First octant
(b) Seventh octant
(c) Second octant
(d) Eighth octant

Sol: (b) The point ($-2,-3,-4$) lies in seventh octant.

Q29. A plane is parallel to yz-plane so it is perpendicular to
(a) x-axis
(b) y-axis
(c) z-axis
(d) none of these

Sol: (a) A plane parallel to yz-plane is perpendicular to x-axis.

Q30. The locus of a point for which $y=0, z=0$ is
(a) equation of x-axis
(b) equation of y-axis
(c) equation at z -axis
(d) none of these

Sol: (a) We know that, equation of the x-axis is: $y=0, z=0$ So, the locus of the point is equation of x-axis.

Q31. The locus of a point for which $x=0$ is
(a) xy-plane
(b) yz-plane
(c) zx -plane
(d) none of these

Sol: (b) On the $y z$-plane, $x=0$, hence the locus of the point is $y z$-plane.

Q32. If a parallelepiped is formed by planes drawn through the points $(5,8,10)$ and $(3,6,8)$ parallel to the coordinate planes, then the length of diagonal of the parallelepiped is
(a) $2 \sqrt{3}$
(b) $3 \sqrt{2}$
(c) $\sqrt{2}$
(d) $\sqrt{3}$

Sol. (a) Given parallelepiped passes through $A(5,8,10)$ and $B(3,6,8)$
\therefore Length of the diagonal,

$$
A B=\sqrt{(5-3)^{2}+(8-6)^{2}+(10-8)^{2}}=\sqrt{4+4+4}=2 \sqrt{3}
$$

Q33. L is the foot of the perpendicular drawn from a point $P(3,4,5)$ on the $x y$-plane. The coordinates of point L are
(a) $(3,0,0)$
(b) $(0,4,5)$
(c) $(3,0,5)$
(d) none of these

Sol: (d) We know that on the $x y$-plane, $z=0$.
Hence, the coordinates of the points L are $(3,4,0)$.

Q34. L is the foot of the perpendicular drawn from a point $(3,4,5)$ on x-axis. The coordinates of L are
(a) $(3,0,0)$
(b) $(0,4,0)$
(c) $(0,0,5)$
(d) none of these

Sol: (a) On the x-axis, $y=0$ and $z=0$.
Hence, the required coordinates are $(3,0,0)$.

Fill in the Blanks Type Questions
Q35. The three axes $\mathrm{OX}, \mathrm{OY}, \mathrm{OZ}$ determine \qquad .
Sol: The three axes OX, OY and OZ determine three coordinate planes.

Q36. The three planes determine a rectangular parallelepiped which has \qquad of rectangular faces.
Sol.
As shown in the figure rectangular parallelepiped is determined by three planes $A B B^{\prime} A^{\prime}, A A^{\prime} D^{\prime} D, A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.
In this parallelepiped we have three pairs of rectangular faces, viz., $\left(A B B^{\prime} A^{\prime}\right.$, $\left.D C C^{\prime} D^{\prime}\right),\left(A B C D, A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right),\left(A D D^{\prime} A^{\prime}\right.$, $B C C^{\prime} B^{\prime}$)

Q37. The coordinates of a point are the perpendicular distance from the \qquad on the respective axes.
Sol: Given points

Q38. The three coordinate planes divide the space into \qquad parts.
Sol: Eight

Q39. If a point P lies in yz-plane, then the coordinates of a point on yz-plane is of the form \qquad -
Sol: We know that, on yz-plane, $x=0 . S o$, the coordinates of the required point are $(0, y, z)$.

Q40. The equation of $y z$-plane is \qquad .
Sol: On yz-plane for any point x-coordinate is zero.
So, $y z$-plane is locus of point such that $x=0$, which is its equation.

Q41. If the point P lies on z-axis, then coordinates of P are of the form \qquad -
Sol: On the z -axis, $\mathrm{x}=0$ and $\mathrm{y}=0$.
So, the required coordinates are of the form $(0,0, z)$.

Q42. The equation of z-axis, are \qquad —.

Sol: Any point on the z-axis is taken as $(0,0, z)$.
So, for any point on z-axis, we have $x=0$ and $y=0$, which together represents its equation.
Q43. A line is parallel to $x y$-plane if all the points on the line have equal \qquad _.

Sol: A line is parallel to $x y$-plane if each point $P(x, y, z)$ on it is at same distance from $x y$-plane.
Distance of point P from $x y$ plane is ' z '
So, line is parallel to $x y$-plane if all the points on the line have equal z-coordinate.

Q44. A line is parallel to x-axis if all the points on the line have equal \qquad _.
Sol: A line is parallel to x-axis if each point on it maintains constant distance from y-axis and z-axis.
So, each point has equal y and z-coordinates. .

Q45. $\mathrm{x}=\mathrm{a}$ represents a plane parallel to .
Sol: Locus of point $P(x, y, z)$ is $x=a$.
Therefore, each point P has constant x-coordinate.
Now, x is distance of point P from $y z$-plane.
So, here plane $\mathrm{x}=\mathrm{a}$ is at constant distance 'a' from yz-plane and parallel to _yz-plane.
Q46. The plane parallel to yz-plane is perpendicular to \qquad .

Sol: The plane parallel to $y z$-plane is perpendicular to x-axis.

Q47. The length of the longest piece of a string that can be stretched straight in a rectangular room whose dimensions are 10, 13 and 8 units are_ \qquad .
Sol: Given dimensions are: $a=10,6=13$ andc $=8$.
Required length of the string $=y j a^{2}+b^{2}+c^{2}=\wedge 100+169+64=-7333$

Q48. If the distance between the points $(a, 2,1)$ and $(1,-1,1)$ is 5 , then a \qquad .
Sol: Given points are ($a, 2,1$) and ($1,-1,1$).
$\therefore \quad \sqrt{(a-1)^{2}+(2+1)^{2}+(1-1)^{2}}=5$ (Given)
$\Rightarrow(a-1)^{2}+9+0=25 \Rightarrow a^{2}-2 a-15=0 \Rightarrow(a-5)(a+3)=0$
$\therefore \quad a=5$ or -3

Q49. If the mid-points of the sides of a triangle $A B ; B C ; C A$ are $D(I, 2,-3), E(3,0,1)$ and $F(-I$, $1,-4)$, then the centroid of the triangle $A B C$ is \qquad -.

Sol: Given that, mid-points of sides of AABC are $D(1,2,-3), E(3,0,1)$ and $F(-1,1,-4)$.
Now, from the geometry of centroid, we know that the centroid of $\triangle D E F$ is same as the centroid of $\triangle A B C$.
\therefore Centroid of $\triangle A B C \equiv G\left(\frac{1+3-1}{3}, \frac{2+0+1}{3}, \frac{-3+1-4}{3}\right) \equiv G(1,1,-2)$

Matching Column Type Questions

Q50. Match each item given under the column C_{1} to its correct answer given under column C_{2}.

Column C,		Column C_{2}	
(a)	In xy-plane	(i)	1st octant
(b)	Point ($2,3,4$) lies in the	(ii)	vz-plane
(c)	Locus of the points having x coordinate 0 is	(iii)	z-coordinate is zero
(d)	A line is parallel to x-axis if and only	(iv)	z-axis
(e)	If $x=0, y=0$ taken together will represent the	(v)	plane parallel to xy-plane
(f)	$z=c$ represent the plane	(vi)	if all the points on the line have equal y and z -coordinates.
(g)	Planes $\mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{b}$ represent the line	(vii)	from the point on the respective axis.
00	Coordinates of a point are the distances from the origin to the feet of perpendiculars	(viii)	parallel to z-axis
(i)	A ball is the solid region in the space	(ix)	disc
G)	Region in the plane enclosed by a circle is known as a	00	sphere

Sol: (a) In xy-plane, z-coordinate is zero.
(b) The point $(2,3,4)$ lies in 1 st octant.
(c) Locus of the points having x-coordinate zero is yz-plane.
(d) A line is parallel to x-axis if and only if all the points on the line have equal y and $z-$ coordinates.
(e) $x=0, y=0$ represent z-axis
(f) $z=c$ represents the plane parallel to $x y$-plane.

(g) The plane $x=a$ is parallel to $y z$-plane.

Plane $y=b$ is parallel to $x z$-plane.
So, planes $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$ is line of intersection of these planes.
Now, line of intersection of $y z$-plane and $x z$-plane is z-axis.
So, line of intersection of planes $x=a$ andy $=b$ is line parallel to z-axis.
(h) Coordinates of a point are the distances from the origin to the feet of perpendicular from the point on the respective axis.
(i) A ball is the solid region in the space enclosed by a sphere.
(j) The region in the plane enclosed by a circle is known as a disc.

Hence, the correct matches are:
(a) - (iii), (b) - (i), (c) - (ii), (d) - (vi), (e) - (iv),
(f) - (v), (g) - (viii), (h) - (vii), (i) - (x), (j) - (ix),

