CBSE Class 11 Mathematics

 Important QuestionsChapter 12
Introduction to Three Dimensional Geometry

1 Marks Questions

1. Name the octants in which the following lie. $(5,2,3)$

Ans. I
2. Name the octants in which the following lie. $(-5,4,3)$

Ans. II
3. Find the image of $(-2,3,4)$ in the $y z$ plane

Ans. (2, 3, 4)
4. Find the image of $(5,2,-7)$ in the $x y$ plane

Ans. (5, 2, 7)
5. A point lie on X-axis what are co ordinate of the point

Ans. $(a, 0,0)$
6. Write the name of plane in which x axis and y-axis taken together.

Ans. XY Plane
7. The point $(4,-3,-6)$ lie in which octants

Ans. VIII
8. The point $(2,0,8)$ lie in which plane

Ans. $X Z$
9. A point is in the $X Z$ plane. What is the value of y co-ordinates?

Ans. Zero
10. What is the coordinates of XY plane

Ans. $(x, y, 0)$
11. The point $(-4,2,5)$ lie in which octants.

Ans. II
12. The distance from origin to point (a, b, c) is:

Ans. $\sqrt{a^{2}+b^{2}+c^{2}}$

CBSE Class 12 Mathematics

Important Questions

Chapter 12

Introduction to Three Dimensional Geometry

4 Marks Questions

1.Given that $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear. Find the ratio in which Q divides PR

Ans. Suppose Q divides PR in the ratio $\lambda: 1$. Then coordinator of Q are

$$
\left(\frac{9 \lambda+3}{\lambda+1}, \frac{8 \lambda+2}{\lambda+1}, \frac{-10 \lambda-4}{\lambda+1}\right)
$$

But, coordinates of Q are (5,4,-6). Therefore

$$
\frac{9 \lambda+3}{\lambda+1}=5, \frac{8 \lambda+2}{\lambda+1}=4, \frac{-10 \lambda-4}{\lambda+1}=6
$$

These three equations give
$\lambda=\frac{1}{2}$.
So Q divides PR in the ratio $\frac{1}{2}: 1$ or $1: 2$
2. Determine the points in $x y$ plane which is equidistant from these point $A(2,0,3)$ $B(0,3,2)$ and $C(0,0,1)$

Ans. We know that Z- coordinate of every point on $x y$-plane is zero. So, let $P(x, y, 0)$ be a point in $x y$-plane such that $\mathrm{PA}=\mathrm{PB}=\mathrm{PC}$

Now, $\mathrm{PA}=\mathrm{PB}$
$\Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}$
$\Rightarrow(x-2)^{2}+(y-0)^{2}+(0-3)^{2}=(x-0)^{2}+(y-3)^{2}+(0-2)^{2}$
$\Rightarrow 4 x-6 y=0$ or $2 x-3 y=0$.
$P B=P C$
$\Rightarrow P B^{2}=P C^{2}$
$\Rightarrow(x-0)^{2}+(y-3)^{2}+(0-2)^{2}=(x-0)^{2}+(y-0)^{2}+(0-1)^{2}$
$\Rightarrow-6 y+12=0 \Rightarrow y=2$.

Putting $y=2$ in (i) we obtain $x=3$

Hence the required points $(3,2,0)$.
3. Find the locus of the point which is equidistant from the point $A(0,2,3)$ and $B(2,-2,1)$

Ans. Let $P(x, y, z)$ be any point which is equidistant from $\mathrm{A}(0,2,3)$ and $\mathrm{B}(2,-2,1)$. Then $\mathrm{PA}=\mathrm{PB}$
$\Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}$
$\Rightarrow \sqrt{(x-0)^{2}+(y-2)^{2}+(2-3)^{2}}=\sqrt{(x-2)^{2}+(y+2)^{2}+(z-1)^{2}}$
$\Rightarrow 4 x-8 y-42+4=0$ or $x-2 y-2+1=0$
4. Show that the points $A(0,1,2) B(2,-1,3)$ and $C(1,-3,1)$ are vertices of an isosceles right angled triangle.

Ans. We have
$A B=\sqrt{(2-0)^{2}+(-1-1)^{2}(+3-2)^{2}}=\sqrt{4+4+1}=3$
$B C=\sqrt{(1-2)^{2}+(-3+1)^{2}+(1-3)^{2}}=\sqrt{1+4+4}=3$
And $C A=\sqrt{(1-0)^{2}+(-3-1)^{2}+(1-2)^{2}}=\sqrt{1+16+1}=3 \sqrt{2}$
Clearly $\mathrm{AB}=\mathrm{BC}$ and $\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
Hence, triangle $A B C$ is an isosceles right angled triangle.
5. Using section formula, prove that the three points $A(-2,3,5), B(1,2,3)$, and $C(7,0,-1)$ are collinear.

Ans.Suppose the given points are collinear and C divides AB in the ratio $\lambda: 1$.
Then coordinates of C are

$$
\left(\frac{\lambda-2}{\lambda+1}, \frac{2 \lambda+3}{\lambda+1}, \frac{3 \lambda+5}{\lambda+1}\right)
$$

But, coordinates of C are $(3,0,-1)$ from each of there equations, we get $\lambda=\frac{3}{2}$
Since each of there equation give the same value of V. therefore, the given points are collinear and C divides AB externally in the ratio 3:2.
6. Show that coordinator of the centroid of triangle with vertices $\mathbf{A}\left(x_{1} y_{1} z_{1}\right), \mathbf{B}\left(x_{2} y_{2} z_{2}\right)$, and $\mathbf{C}\left(x_{3} y_{3} z_{3}\right)$ is $\left[\frac{x_{1}+y_{1}+z_{1}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right]$

Ans. Let D be the mid point of AC . Then
Coordinates of D are $\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}, \frac{z_{2}+z_{3}}{2}\right)$.

Let G be the centroid of $\triangle A B C$. Then G , divides AD in the ratio 2:1. So coordinates of D are

$$
\left(\frac{1 \cdot x_{1}+2 \frac{\left(x_{2}+x_{3}\right)}{2}}{1+2}=\frac{1 . y_{1}+2\left(\frac{y_{2}+y_{3}}{2}\right)}{1+2}=\frac{1 \cdot z_{1}+2\left(\frac{z_{2}+z_{3}}{2}\right)}{1+2}\right)
$$

i.e. $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$
7. Prove by distance formula that the points $A(1,2,3), \quad B(-1,-1,-1)$ and $C(3,5,7)$ are collinear.

Ans.Distance

$$
|A B|=\sqrt{(-1-1)^{2}+(-1-2)^{2}+(-1-3)^{2}}=\sqrt{4+9+16}=\sqrt{29}
$$

Distance

$$
|B C|=\sqrt{(3+1)^{2}+(5+1)^{2}+(7+1)^{2}}=\sqrt{16+36+64}=2 \sqrt{29}
$$

Distance

$$
\begin{aligned}
& |A C|=\sqrt{(3-1)^{2}+(5-2)^{2}+(7-3)^{2}}=\sqrt{4+9+16}=\sqrt{29} \\
& \therefore|B C|=|A B|+|A C|
\end{aligned}
$$

\therefore The paints A.B.C. are collinear.
8. Find the co ordinate of the point which divides the join of $P(2,-1,4)$ and $Q(4,3,2)$ in the ratio $2: 5$ (i) internally (ii) externally

Ans.Let paint $R(x, y, z)$ be the required paint.
(i)For internal division

$$
x=\frac{2 \times 4+5 \times 2}{2+5}=\frac{8+10}{7}=\frac{18}{7}
$$

$y=\frac{2 \times 3+5 \times-1}{2+5}=\frac{6-5}{7}=\frac{1}{7}$
$z=\frac{2 \times 2+5 \times 4}{2+5}=\frac{4+20}{7}=\frac{24}{7}$
\therefore Required paint $R\left(\frac{18}{7}, \frac{1}{7}, \frac{24}{7}\right)$
(ii)For external division.
$x=\frac{2 \times 4-5 \times 2}{2-5}=\frac{8-10}{-3}=\frac{-2}{-3}=\frac{2}{3}$
$y=\frac{2 \times 3-5 \times-1}{2-5}=\frac{6+5}{-3}=\frac{11}{-3}$
$z=\frac{2 \times 2-5 \times 4}{2-5}=\frac{4-20}{-3}=\frac{-16}{-3}=\frac{16}{3}$
\therefore Required point $R\left(\frac{2}{3}, \frac{-11}{3}, \frac{16}{3}\right)$
9. Find the co ordinate of a point equidistant from the four points
$0(0,0,0), A(a, 0,0), B(0, b, 0)$ and $C(0,0, c)$
Ans.Let $P(x, y, z)$ be the required point
According to condition
$O P=P A=P B=P C$
Now $O P=P A$
$\Rightarrow O P^{2}=P A^{2}$
$\Rightarrow x^{2}+y^{2}+z^{2}=(x-a)^{2}+(y-0)^{2}+(z-0)^{2}$
$\Rightarrow x^{2}+y^{2}+z^{2}=x^{2}-2 a x+a^{2}+y^{2}+z^{2}$
$2 c a x=a^{2}$
$\therefore x=\frac{a}{2}$
Similarly $O P=P B$
$\Rightarrow y=\frac{b}{2}$
$A\left(x, y, z_{2}\right) \quad B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right) D, E$ and F are mid points of side $B C, C A$, and $A B$ respectively,

Then $\frac{x_{1}+x_{2}}{2}=-1$
$x_{1}+x_{2}=-2 \ldots \ldots$
$\frac{y_{1}+y_{2}}{2}=1$

$$
\begin{equation*}
y_{1}+y_{2}=2 \tag{2}
\end{equation*}
$$

$\frac{z_{1}+z_{2}}{2}=-4$
$z_{1}+z_{2}=-8$.
$\frac{x_{2}+x_{3}}{2}=1$
$x_{2}+x_{3}=2 \ldots \ldots$
$\frac{y_{2}+y_{3}}{2}=2$
$y 2+y 3=4$.

$$
\begin{equation*}
\frac{z_{2}+z_{3}}{2}=-3 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
z_{2}+z_{3}=-6 \tag{6}
\end{equation*}
$$

$\frac{x_{1}+x_{3}}{2}=3$
$x_{1}+x_{3}=6$
$\frac{y_{1}+y_{3}}{2}=0$
$y_{1}+y_{3}=0$.
$\frac{z_{1}+z_{3}}{2}=1$
$z_{1}+z_{3}=2 \ldots \ldots$.
Adding eq (1),(4) and (7) we get
$2\left(x_{1}+x_{2}+x_{3}\right)=-2+2+6$
Adding eq. (2),(5) and (8)
$2\left(y_{1}+y_{2}+y_{3}\right)=6$
$y_{1}+y_{2}+y_{3}=3$
And $O P=P C$
$\Rightarrow z=\frac{c}{2}$
Hence co-ordinate of $P\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$
10. Find the ratio in which the join the $A(2,1,5)$ and $B(3,4,3)$ is divided by the plane $2 x+2 y-2 z=1$ Also find the co-ordinate of the point of division

Ans. Suppose plane $2 x+2 y-2 z=1$ divides $A(2,1,5)$ and $B(3,4,5)$ in the ratio $\lambda: 1$ at pain C

Then co-ordinate of paint C
$\left(\frac{3 \lambda+2}{\lambda+1}, \frac{4 \lambda+1}{\lambda+1} \frac{3 \lambda+5}{\lambda+1}\right)$
\because Point C lies on the plane $2 x+2 y-2 z=1$
\therefore Points C must satisfy the equation of plane
$2\left(\frac{3 \lambda+2}{\lambda+1}\right)+2\left(\frac{4 \lambda+1}{\lambda+1}\right)-2\left(\frac{3 \lambda+5}{\lambda+1}\right)=1$
$\Rightarrow 8 \lambda-4=\lambda+1$
$\Rightarrow \lambda=\frac{5}{7}$
\therefore Required ratio 5:7
11. Find the centroid of a triangle, mid points of whose sides are $(1,2,-3),(3,0,1)$ and ($-1,1,-4$)

Ans. Suppose co-ordinate of vertices of $\triangle A B C$ are

Adding eq. (3), (6) and (9)
$2\left(z_{1}+z_{2}+z_{3}\right)=-8-6+2$
$z_{1}+z_{2}+z_{3}=-6$.

Co-ordinate of centroid
$x=\frac{x_{1}+x_{2}+x_{3}}{3}=\frac{3}{3}=1$
$y=\frac{y_{1}+y_{2}+y_{3}}{3}=\frac{3}{3}=1$
$z=\frac{z_{1}+z_{2}+z_{3}}{3}=\frac{-6}{3}=-2$
(1, 1, -2)
12. The mid points of the sides of a $\triangle A B C$ are given by
$(-2,3,5),(4,-1,7)$ and $(6,5,3)$ find the co ordinate of A, B and C
Ans. Suppose coordinate of point AB.C. are $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$ respectively let D, E and F are mid points of side $B C, C A$ and $A B$ respectively

$\therefore \frac{x_{1}+x_{2}}{2}=6$
$x_{1}+x_{2}=12 \ldots \ldots$.
$\frac{y_{1}+y_{2}}{2}=5$
$y_{1}+y_{2}=10$
$\frac{z_{1}+z_{2}}{2}=3$
$z_{1}+z_{2}=6$
$\frac{x_{2}+x_{3}}{2}=-2$
$x_{2}+x_{3}=-4$.
$\frac{y_{2}+y_{3}}{2}=3$
$y_{2}+y_{3}=6$

$$
\begin{align*}
& \frac{z_{1}+z_{2}}{2}=5 \\
& z_{1}+z_{2}=10 \ldots \tag{6}\\
& \frac{x_{1}+x_{3}}{2}=4 \\
& x_{1}+x_{3}=8 \ldots \tag{7}\\
& \frac{y_{1}+y_{3}}{2}=-1 \\
& y_{1}+y_{3}=-2 . \tag{8}\\
& \frac{z_{1}+z_{3}}{z}=7 \\
& z_{1}+z_{3}=14 \ldots . \tag{9}
\end{align*}
$$

Adding eq. (1), (4) and (7)
$2\left(x_{1}+x_{2}+x_{3}\right)=12-4+8$
$x_{1}+x_{2}+x_{3}=\frac{16}{2}=8$.
Similarly $y_{1}+y_{2}+y_{3}=7$
$z_{1}+z_{2}+z_{3}=15$

Subtracting eq. (1), (4) and (7) from (10)
$x_{3}=-4, \quad x_{1}=12, \quad x_{2}=0$
Now subtracting eq. (2), (5) and (8) from (11)
$y_{3}=-3, \quad y_{1}=1, \quad y_{2}=9$
Similarly $z_{3}=9, \quad z_{1}=5, \quad z_{2}=1$
\therefore co-ordinate of point A, B. and C are
$A(12,0,-4), \quad B(1,9,-3)$, and $C(5,1,9)$
13. Find the co-ordinates of the points which trisects the line segment $P Q$ formed by joining the point $P(4,2,-6)$ and $Q(10,-16,6)$

Ans. Let R and S be the points of trisection of the segment PO. Then

$\therefore P R=R S=S Q$
$\Rightarrow 2 P R=R Q$
$\Rightarrow \frac{P Q}{R Q}=\frac{1}{2}$
$\therefore R$ divides $P Q$ in the ratio $1: 2$
\therefore Co-ordinates of point
$R\left[\frac{1(10)+2 \times 4}{1+2}, \frac{1(-16)+2 \times 2}{1+2}, \frac{1 \times 6+2(-6)}{1+2}\right]$
$=R(6,-4,-2)$
Similarly $P S=2 S Q$
$\Rightarrow \frac{P S}{S Q}=\frac{2}{1}$
$\therefore S$ divider $P Q$ in the ratio 2:1
\therefore co-ordinates of point S
$\left[\frac{2(10)+1(4)}{1+2}, \frac{2(-16)+1(2)}{1+2}, \frac{2(6)+1(-6)}{1+2}\right]$
$\therefore S(8,-10,2)$
14. Show that the point $P(1,2,3), Q(-1,-2,-1), R(2,3,2)$ and $S(4,7,6)$ taken in order form the vertices of a parallelogram. Do these form a rectangle?

Ans.Mid point of PR is $\left(\frac{1+2}{2}, \frac{2+3}{2}, \frac{3+2}{2}\right)$
i.e. $\left(\frac{3}{2}, \frac{5}{2}, \frac{5}{2}\right)$
also mid point of $Q S$ is $\left(\frac{-1+4}{2}, \frac{-2+7}{2}, \frac{-1+6}{2}\right)$
i.e. $\left(\frac{3}{2}, \frac{5}{2}, \frac{5}{2}\right)$

Then PR and QS have same mid points.
$\therefore \mathrm{PR}$ and QS bisect each other. It is a Parallelogram.
Now $P R=\sqrt{(2-1)^{2}+(3-2)^{2}+(2-3)^{2}}=\sqrt{3}$ and
$Q S=\sqrt{(4+1)^{2}+(7+2)^{2}+(6+1)^{2}}=\sqrt{155}$
$\therefore P R \neq Q S$ diagonals an not equal
$\therefore P Q R S$ are not rectangle.
15. A point R with x co-ordinates 4 lies on the line segment joining the points $P(2,-3,4)$ and $Q(8,0,10)$ find the co-ordinates of the point \mathbf{R}

Ans. Let the point. R divides the line segment joining the point P and Q in the ratio $\lambda: 1$, Then co-ordinates of Point R
$\left[\frac{8 \lambda+2}{\lambda+1}, \frac{-3}{\lambda+1}, \frac{10 \lambda+4}{\lambda+1}\right]$
The x co-ordinates of point R is 4
$\Rightarrow \frac{8 \lambda+2}{\lambda+1}=4 \quad, \lambda=\frac{1}{2}$
\therefore co-ordinates of point R

$$
\left[4, \frac{-3}{\frac{1}{2}+1}, \frac{10 \times \frac{1}{2}+4}{\frac{1}{2}+1}\right] \quad \text { i.e. }(4,-2,6)
$$

16. If the points $P(1,0,-6), Q(-3, P, q)$ and $R(-5,9,6)$ are collinear, find the values of P and q

Ans. Given points
$P(1,0,-6), Q(-3, P, q)$ and $R(-5,9,6)$ are collinear
Let point Q divider PR in the ratio $\mathrm{K}: 1$
\therefore co-ordinates of point $P\left(\frac{1-5 K}{K+1}, \frac{0+9 K}{K+1}, \frac{-6+6 K}{K+1}\right)$
$Q(-3, P, q)$
$\frac{1-5 K}{K+1}=-3$
$1-5 K=-3 K-3$
$-2 K=-4$
$K=\frac{-4}{-2}$
$K=2$
\therefore the value of P and q are 6 and 2 .
17. Three consecutive vertices of a parallelogram ABCD are $A(3,-1,2), B(1,2,-4)$ and $C(-1,1,2)$ find forth vertex \mathbf{D}

Ans. Given vertices of 11 gm ABCD
$A(3,-1,2), \quad B(1,2,-4), \quad C(-1,1,2)$
Suppose co-or dine of forth vertex $D(x, y, z)$
Mid point of $A C\left(\frac{3-1}{2}, \frac{-1+1}{2}, \frac{2+2}{2}\right)$
$=(1,0,2)$
Mid point of $B D\left(\frac{x+1}{2}, \frac{y+2}{2}, \frac{-4+z}{2}\right)$
Mid point of $\mathrm{AC}=$ mid point of BD

$$
\begin{aligned}
& \frac{x+1}{2}=1 \Rightarrow x=1 \\
& \frac{y+2}{2}=0 \Rightarrow y=-2
\end{aligned}
$$

$\frac{-4+z}{2}=2 \Rightarrow z=8$
Co-ordinates of point $D(1,-2,8)$
18. If A and B be the points $(3,4,5)$ and $(-1,3,7)$ respectively. Find the eq. of the set points \mathbf{P} such that $P A^{2}+P B^{2}=K^{2}$ where K is a constant

Ans. Let co-ordinates of point P be
(x, y, z)
$P A^{2}=(x-3)^{2}+(y-4)^{2}+(z-5)^{2}$
$=x^{2}-6 x+9+y^{2}-8 y+16+z^{2}-10 z+25$
$=x^{2}+y^{2}+z^{2}-6 x-8 y-10 z+50$
$P B^{2}=(x+1)^{2}+(y-3)^{2}+(z-7)^{2}$
$=x^{2}+2 x+1+y^{2}-6 y+9+z^{2}-14+49$
$=x^{2}+y^{2}+z^{2}+2 x-6 y-14 z+59$
$P A^{2}+P B^{2}=K^{2}$
$2\left(x^{2}+y^{2}+z^{2}\right)-4 x-14 y-24 z+109=K^{2}$
$x^{2}+y^{2}+z^{2}-2 x-7 y-12 z=\frac{K^{2}-109}{2}$

CBSE Class 12 Mathematics

Important Questions

Chapter 12

Introduction to Three Dimensional Geometry

6 Marks Questions

1. Prove that the lines joining the vertices of a tetrahedron to the centroids of the

 opposite faces are concurrent.Ans. Let ABCD be tetrahedron such that the coordinates of its vertices are $A\left(x_{1}, y_{1}, z_{1}\right)$, $B\left(x_{2}, y_{2}, z_{2}\right), C\left(x_{3}, y_{3}, z_{3}\right)$ and $D\left(x_{4}, y_{4}, z_{4}\right)$

The coordinates of the centroids of faces $\mathrm{ABC}, \mathrm{DAB}, \mathrm{DBC}$ and DCA respectively
$G_{1}\left[\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right]$
$G_{2}\left[\frac{x_{1}+x_{2}+x_{4}}{3}, \frac{y_{1}+y_{2}+y_{4}}{3}, \frac{z_{1}+z_{2}+z_{4}}{3}\right]$
$G_{3}\left[\frac{x_{2}+x_{3}+x_{4}}{3}, \frac{y_{2}+y_{3}+y_{4}}{3}, \frac{z_{2}+z_{3}+z_{4}}{3}\right]$
$G_{4}\left[\frac{x_{4}+x_{3}+x_{1}}{3}, \frac{y_{4}+y_{3}+y_{1}}{3}, \frac{z_{4}+z_{3}+z_{1}}{3}\right]$

Now, coordinates of point G dividing DG1 in the ratio 3:1 are

$$
\begin{aligned}
& {\left[\frac{1 x_{4}+3\left(\frac{x_{1}+x_{2}+x_{3}}{3}\right)}{1+3}, \frac{1 . y_{4}+3\left(\frac{y_{1}+y_{2}+y_{3}}{3}\right)}{1+3}, \frac{1 . z_{4}+3\left(\frac{z_{1}+z_{2}+z_{3}}{3}\right)}{1+3}\right]} \\
& =\left[\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}, \frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}, \frac{z_{1}+z_{2}+z_{3}+z_{4}}{4}\right]
\end{aligned}
$$

Similarly the point dividing CG2, AG3 and BG4 in the ratio 3:1 has the same coordinates.
Hence the point $G\left[\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}, \frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}, \frac{z_{1}+z_{2}+z_{3}+z_{4}}{4}\right]$ is common to DG1, CG2, AG3 and BG4.

Hence they are concurrent.
2. The mid points of the sides of a triangle are (1,5,-1), (0,4,-2) and (2,3,4). Find its vertices.

Ans. Suppose vertices of $\triangle \mathrm{ABC}$ are $A\left(x_{1} y_{1} z_{1}\right), B\left(x_{2} y_{2} z_{2}\right)$ and $C\left(x_{3} y_{3} z_{3}\right)$ respectively Given coordinates of mid point of side BC, CA, and AB respectively are $\mathrm{D}(1,5,-1), \mathrm{E}(0,4,-2)$ and
$F(2,3,4)$

$\therefore \frac{x_{2}+x_{3}}{2}=1 \quad \frac{y_{2}+y_{3}}{2}=5 \quad \frac{z_{2}+z_{3}}{2}=-1$
$x_{2}+x_{3}=2 \ldots \ldots(i)$
$\frac{x_{1}+x_{3}}{2}=0$
$y_{2}+y_{3}=10 \ldots \ldots$
$\frac{y_{1}+y_{3}}{2}=4$
$z_{2}+z_{3}=2 \ldots \ldots$
$\frac{z_{1}+z_{3}}{2}=-2$
$x_{1}+x_{3}=0$
$\frac{x_{1}+x_{2}}{2}=2$
$y_{1}+y_{2}=8$.
$\frac{y_{1}+y_{2}}{2}=3$
$z_{1}+z_{3}=-4$. \qquad
$\frac{z_{1}+z_{2}}{2}=4$
$x_{1}+x_{2}=4$.
$y_{1}+y_{2}=6$. \qquad
$z_{1}+z_{2}=8$
Adding eq. (i),(iv), \&(vii)
$2\left(x_{1}+x_{2}+x_{3}\right)=6$
$x_{1}+x_{2}+x_{3}=3$
Subtracting eq. (i), (iv), \& (vii) from (x) we get
$x_{1}=1, x_{2}=3, x_{3}=-1$
Similarly, adding eq. (ii), (v) and (viii)
$y_{1}+y_{2}+y_{3}=12 \ldots \ldots .(\mathrm{xi})$
Subtracting eq. (ii), (v) and (viii) from (xi)
$y_{1}=2, y_{2}=4, y_{3}=6$
Similarly $z_{1}+z_{2}+z_{3}=3$
$z_{1}=1, \quad z_{2}=7, \quad z_{3}=-5$
\therefore Coordinates of vertices of $\triangle \mathrm{ABC}$ are $\mathrm{A}(1,3,-1), \mathrm{B}(2,4,6)$ and $\mathrm{C}(1,7,-5)$
3. Let $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ be two points in space find co ordinate of point R

which divides P and Q in the ratio $m_{1}: m_{2}$ by geometrically

Ans. Let co-ordinate of Point R be (x, y, z) which divider line segment joining the point $P Q$ in the ratio $m_{1}: m_{2}$

Clearly $\triangle P R L^{\prime} \sim \triangle Q R M^{\prime} \quad[B y$ AA sinilsrity]

$\therefore \frac{P L^{\prime}}{M Q^{\prime}}=\frac{P R}{R Q}$
$\Rightarrow \frac{L L^{\prime}-L P}{M Q-M M^{\prime}}=\frac{m_{1}}{m_{2}}$
$\Rightarrow \frac{N R-L P}{M Q-N R}=\frac{m_{1}}{m_{2}} \quad\left[\begin{array}{l}\because L L^{\prime}=N R \\ \text { and } M M^{\prime}=N R\end{array}\right]$
$\Rightarrow \frac{z-z_{1}}{z_{2}-z}=\frac{m_{1}}{m_{2}}$
$\Rightarrow z=\frac{m_{1}, z_{2}+m_{2} z_{1}}{m_{1}+m_{2}}$

Similarly $x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}$ and
$y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}$
4. Show that the plane $a x+b y+c z+d=0$ divides the line joining the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ in the ratio $\frac{a x_{1}+b y_{1}+c z_{1}+d}{a x_{2}+b y_{2}+c z_{2}+d} \mathbf{s}$

Ans. Suppose the plane $a x+b y+c z+d=0$ divides the line joining the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ in the ratio $\lambda: 1$
$\therefore x=\frac{\lambda x_{2}+x_{1}}{\lambda+1}, \quad y=\frac{\lambda y_{2}+y_{1}}{\lambda+1}, \quad z=\frac{\lambda z_{2}+z_{1}}{\lambda+1}$
\because Plane $a x+b y+c z+d=0$ Passing through (x, y, z)
$\therefore Q \frac{\left(\lambda x_{2}+x_{1}\right)}{\lambda+1}+b \frac{\left(\lambda y_{2}+y_{1}\right)}{\lambda+1}+c \frac{\left(\lambda z_{2}+z_{1}\right)}{\lambda+1}+d=0$
$a\left(\lambda x_{2}+x_{1}\right)+b\left(\lambda y_{2}+y_{1}\right)+c\left(\lambda z_{2}+z_{1}\right)+d(\lambda+1)=0$
$\lambda\left(a x_{2}+b y_{2}+c z_{2}+d\right)+\left(a x_{1}+b y_{1}+c z_{1}+d\right)=0$
$\lambda=-\frac{\left(a x_{1}+b y_{1}+c z_{1}+d\right)}{\left(a x_{2}+b y_{2}+c z_{2}+d\right)}$
Hence Proved.
5. Prove that the points $0(0,0,0), A(2,0,0), B(1, \sqrt{3}, 0)$, and $C\left(1, \frac{1}{\sqrt{3}}, \frac{2 \sqrt{2}}{\sqrt{3}}\right)$ are the vertices of a regular tetrahedron.

Ans. To prove O, A, B, C are vertices of regular tetrahedron.

We have to show that
$|\mathrm{OA}|=|\mathrm{OB}|=|\mathrm{OC}|=|\mathrm{AB}|=|\mathrm{BC}|=|\mathrm{CA}|$
$|\mathrm{OA}|=\sqrt{(0-2)^{2}+0^{2}+0^{2}}=2$ unit
$|\mathrm{OB}|=\sqrt{(0-1)^{2}+(0-\sqrt{3})^{2}+0^{2}}=\sqrt{1+3}=\sqrt{4}=2$ unit
$|O C|=\sqrt{(0-1)^{2}+\left(0-\frac{1}{\sqrt{3}}\right)+\left(0-\frac{2 \sqrt{2}}{3}\right)^{2}}$
$=\sqrt{1+\frac{1}{3}+\frac{8}{3}}$
$=\sqrt{\frac{12}{3}}=\sqrt{4}=2$ unit
$|\mathrm{AB}|=\sqrt{(2-1)^{2}+(0-\sqrt{3})^{2}+(10-0)^{2}}=\sqrt{1+3+0}$
$=\sqrt{4}=2$ unit
$|B C|=\sqrt{(1-1)^{2}+\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)^{2}+\left(0-\frac{2 \sqrt{2}}{\sqrt{3}}\right)^{2}}$
$=\sqrt{0+\left(\frac{2}{\sqrt{3}}\right)^{2}+\frac{8}{3}}$
$=\sqrt{\frac{12}{3}}=2$ unit
$|\mathrm{CA}|=\sqrt{(1-2)^{2}+\left(\frac{1}{\sqrt{3}}-0\right)^{2}+\left(\frac{2 \sqrt{2}}{\sqrt{3}}-0\right)^{2}}$
$=\sqrt{1+\frac{1}{3}+\frac{8}{3}}$
$=\sqrt{\frac{12}{3}}=2$ unit
$\therefore|\mathrm{AB}|=|\mathrm{BC}|=|\mathrm{CA}|=|\mathrm{OA}|=|\mathrm{OB}|=|\mathrm{OC}|=2$ unit
$\therefore \mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ are vertices of a regular tetrahedron.
6. If A and B are the points $(-2,2,3)$ and $(-1,4,-3)$ respectively, then find the locus of P such that $\mathbf{3}|\mathrm{PA}|=2|\mathrm{~PB}|$

Ans. Given points $A(-2,2,3)$ and $B(-1,4,-3)$
Supper co-ordinates of point $P(x, y, z)$
$|\mathrm{PA}|=\sqrt{(x+2)^{2}+(y-2)^{2}+(2-3)^{2}}$
$|\mathrm{PA}|=\sqrt{x^{2}+y^{2}+z^{2}+4 x-4 y-6 z+17}$
$|\mathrm{PB}|=\sqrt{(x+1)^{2}+(y-4)^{2}+(z+3)^{2}}$
$|\mathrm{PB}|=\sqrt{x 2+y 2+z 2+2 x-8 y+6 z+26}$
$\because 3|\mathrm{PA}|=2|\mathrm{~PB}|$
$9 \mathrm{PA} 2=4 \mathrm{~PB} 2$
$9\left(x^{2}+y^{2}+z^{2}+4 x-4 y-6 z+17\right)=4\left(x^{2}+y^{2}+z^{2}+2 x-8 y+6 z+26\right)$
$5 x^{2}+5 y^{2}+5 z^{2}+28 x-4 y-30 z+49=0$

Introduction to 3-D Geometry

1. Locate the following points:
(i) $(1,-1,3)$.
(ii) $(-1,2,4)$
(iii) $(-2,-4,-7)$
(iv) $(-4,2,-5)$.
2. Name the octant in which each of the following points lies.
(i) $(1,2,3)$,
(ii) $(4,-2,3)$,
(iil) $(4,-2,-5)$
(iv) $(4,2,-5)$
(v) $(-4,2,5)$
(vi) $(-3,-1,6)$
(vii) $(2,-4,-7)$ (viii) $(-4,2,-5)$.
3. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be the feet of perpendiculars from a point P on the x, y, z-axis respectively. Find the coordinates of A, B and C in each of the following where the point P is :
(i) $\mathrm{A}=(3,4,2)$
(ii) $(-5,3,7)$
(iii) $(4,-3,-5)$
4. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be the feet of perpendiculars from a point P on the $x y, y z$ and $z x-$ planes respectively. Find the coordinates of A, B, C in each of the following where the point P is
(i) $(3,4,5)$
(ii) $(-5,3,7)$
(iii) $(4,-3,-5)$.
5. How far apart are the points $(2,0,0)$ and $(-3,0,0)$?
6. Find the distance from the origin to $(6,6,7)$.
7. Show that if $x^{2}+y^{2}=1$, then the point $\left(x, y, \sqrt{1-x^{2}-y^{2}}\right)$ is at a distance 1 unit from the origin.
8. Show that the point $\mathrm{A}(1,-1,3), \mathrm{B}(2,-4,5)$ and $(5,-13,11)$ are collinear.
9. Three consecutive vertices of a parallelogram ABCD are $\mathrm{A}(6,-2,4), \mathrm{B}(2,4,-8)$, $\mathrm{C}(-2,2,4)$. Find the coordinates of the fourth vertex.
[Hint: Diagonals of a parallelogram have the same mid-point.]
10. Show that the triangle $A B C$ with vertices $A(0,4,1), B(2,3,-1)$ and $C(4,5,0)$ is right angled.
11. Find the third vertex of triangle whose centroid is origin and two vertices are $(2,4,6)$ and $(0,-2,-5)$.
12. Find the centroid of a triangle, the mid-point of whose sides are $\mathrm{D}(1,2,-3)$. $E(3,0,1)$ and $F(-1,1,-4)$.
13. The mid-points of the sides of a triangle are $(5,7,11),(0,8,5)$ and $(2,3,-1)$. Find its vertices.
14. Three vertices of a Parallelogram ABCD are $\mathrm{A}(1,2,3), \mathrm{B}(-1,-2,-1)$ and $\mathrm{C}(2,3,2)$. Find the fourth vertex D .
15. Find the coordinate of the points which trisect the line segment joining the points

A $(2,1,-3)$ and $B(5,-8,3)$.
16. If the origin is the centriod of a triangle ABC having vertices $\mathrm{A}(a, 1,3)$, $\mathrm{B}(-2, b,-5)$ and $\mathrm{C}(4,7, c)$, find the values of a, b, c.
17. Let $A(2,2,-3), B(5,6,9)$ and $C(2,7,9)$ be the vertices of a triangle. The internal bisector of the angle A meets BC at the point D. Find the coordinates of D.
18. Show that the three points $\mathbf{A}(2,3,4), B(-1,2,-3)$ and $C(-4,1,-10)$ are collinear and find the ratio in which C divides $A B$.
19. The mid-point of the sides of a triangle are $(1,5,-1),(0,4,-2)$ and $(2,3,4)$. Find its vertices. Also find the centriod of the triangle.
20. Prove that the points $(0,-1,-7),(2,1,-9)$ and $(6,5,-13)$ are collinear. Find the ratio in which the first point divides the join of the other two.
21. What are the coordinates of the vertices of a cube whose edge is 2 units, one of whose vertices coincides with the origin and the three edges passing through the origin, coincides with the positive direction of the axes through the origin?

Objective Type Questions

Choose the correct answer from the given four options inidcated against each of the Exercises from 22 (M.C.Q.).
22. The distance of point $P(3,4,5)$ from the $y z$-plane is
(A) 3 units
(B) 4 units
(C) 5 units
(D) 550
23. What is the length of foot of perpendicular drawn from the point $P(3,4,5)$ on y-axis
(A) $\sqrt{41}$
(B) $\sqrt{34}$
(C) 5
(D) none of these
24. Distance of the point $(3,4,5)$ from the origin $(0,0,0)$ is
(A) $\sqrt{50}$
(B) 3
(C) 4
(D) 5
25. If the distance between the points $(a, 0,1)$ and $(0,1,2)$ is $\sqrt{27}$, then the value of a is
(A) 5
(B) ± 5
(C) -5
(D) none of these
26. x-axis is the intersection of two planes
(A) $x y$ and $x z$
(B) $y z$ and $z x$
(C) $x y$ and $y z$
(D) none of these
27. Equation of y-axis is considered as
(A) $x=0, y=0$
(B) $y=0, z=0$
(C) $z=0, x=0$
(D) none of these
28. The point $(-2,-3,-4)$ lies in the
(A) First octant
(B) Seventh octant
(C) Second octant
(D) Eighth octant
29. A plane is parallel to $y z$-plane so it is perpendicular to :
(A) x-axis
(B) y-axis
(C) z-axis
(D) none of these
30. The locus of a point for which $y=0, z=0$ is
(A) equation of x-axis
(B) equation of y-axis
(C) equation at z-axis
(D) none of these
31. The locus of a point for which $x=0$ is
(A) $x y$-plane
(B) $y z$-plane
(C) $2 x$-plane
(D) none of these
32. If a parallelopiped is formed by planes drawn through the points $(5,8,10)$ and $(3,6,8)$ parallel to the coordinate planes, then the length of diagonal of the parallelopiped is
(A) $2 \sqrt{3}$
(B) $3 \sqrt{2}$
(C) $\sqrt{2}$
(D) $\sqrt{3}$
33. L is the foot of the perpendicular drawn from a point $P(3,4,5)$ on the $x y$-plane. The coordinates of point L are
(A) $(3,0,0)$
(B) $(0,4,5)$
(C) $(3,0,5)$
(D) none of these
34. L is the foot of the perpendicular drawn from a point $(3,4,5)$ on x-axis. The coordinates of L are
(A) $(3,0,0)$
(B) $(0,4,0)$
(C) $(0,0,5)$
(D) none of these

