Mathematics

(Chapter - 3) (Trigonometric Functions)
 (Class - XI)

Exercise 3.1

Question 1:

Find the radian measures corresponding to the following degree measures:
(i) 25°
(ii) $-47^{\circ} 30^{\prime}$
(iii) 240°
(iv) 520°

Answer 1:

(i) 25°

We know that $180^{\circ}=п$ radian
$\therefore 25^{\circ}=\frac{\pi}{180} \times 25$ radian $=\frac{5 \pi}{36}$ radian
(ii) $-47^{\circ} 30^{\prime}$
$-47^{\circ} 30^{\prime}-47 \frac{1}{2}$
$=\frac{-95}{2}$ deqree

Since $180^{\circ}=\pi$ radian
$\frac{-95}{2}$ deg ree $=\frac{\pi}{180} \times\left(\frac{-95}{2}\right)$ radian $=\left(\frac{-19}{36 \times 2}\right) \pi$ radian $=\frac{-19}{72} \pi$ radian
$\therefore-47^{\circ} 30^{\prime}=\frac{-19}{72} \pi$ radian

(iii) 240°

We know that $180^{\circ}=п$ radian
$\therefore 240^{\circ}=\frac{\pi}{180} \times 240$ radian $=\frac{4}{3} \pi$ radian
(iv) 520°

We know that $180^{\circ}=\pi$ radian
$\therefore 520^{\circ}=\frac{\pi}{180} \times 520$ radian $=\frac{26 \pi}{9}$ radian

Question 2:

Find the degree measures corresponding to the following radian measures

$$
\left(\text { Use } \pi=\frac{22}{7}\right)
$$

(i) $\frac{11}{16}$
(ii) - 4
(iii) $\frac{5 \pi}{3}$ (iv) $\frac{7 \pi}{6}$

Answer 2:

(i) $\frac{11}{16}$

We know that n radian $=180^{\circ}$

$$
\begin{aligned}
\therefore \frac{11}{16} \text { radain } & =\frac{180}{\pi} \times \frac{11}{16} \text { deg ree }=\frac{45 \times 11}{\pi \times 4} \text { deg ree } \\
& =\frac{45 \times 11 \times 7}{22 \times 4} \text { deg ree }=\frac{315}{8} \text { deg ree } \\
& =39 \frac{3}{8} \text { deg ree } \\
& =39^{\circ}+\frac{3 \times 60}{8} \text { min utes } \quad\left[1^{\circ}=60^{\prime}\right] \\
& =39^{\circ}+22^{\prime}+\frac{1}{2} \text { min utes } \\
& =39^{\circ} 22^{\prime} 30^{\prime \prime} \quad\left[1^{\prime}=60^{\prime \prime}\right]
\end{aligned}
$$

(ii) - 4

We know that n radian $=180^{\circ}$

$$
\begin{aligned}
&-4 \text { radian }=\frac{180}{\pi} \times(-4) \text { deg ree }=\frac{180 \times 7(-4)}{22} \text { deg ree } \\
&=\frac{-2520}{11} \text { deg ree }=-229 \frac{1}{11} \text { deg ree } \\
&=-229^{\circ}+\frac{1 \times 60}{11} \text { min utes } \quad\left[1^{\circ}=60^{\prime}\right] \\
&=-229^{\circ}+5^{\prime}+\frac{5}{11} \text { min utes } \\
&=-229^{\circ} 5^{\prime} 27^{\prime \prime} \quad \\
& {\left[1^{\prime}=60^{\prime \prime}\right] }
\end{aligned}
$$

(iii) $\frac{5 \pi}{3}$

We know that n radian $=180^{\circ}$

$$
\therefore \frac{5 \pi}{3} \text { radian }=\frac{180}{\pi} \times \frac{5 \pi}{3} \text { deg ree }=300^{\circ}
$$

(iv) $\frac{7 \pi}{6}$

We know that n radian $=180^{\circ}$
$\therefore \frac{7 \pi}{6}$ radian $=\frac{180}{\pi} \times \frac{7 \pi}{6}=210^{\circ}$

Question 3:

A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Answer 3:

Number of revolutions made by the wheel in 1 minute $=360$
\therefore Number of revolutions made by the wheel in 1 second $=\frac{360}{60}=6$

In one complete revolution, the wheel turns an angle of 2π radian.
Hence, in 6 complete revolutions, it will turn an angle of 6×2 n radian, i.e., 12 п radian

Thus, in one second, the wheel turns an angle of 12π radian.

Question 4:

Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm .
(Use $\pi=\frac{22}{7}$)

Answer 4:

We know that in a circle of radius r unit, if an arc of length / unit subtends an angle θ radian at the centre, then

$$
\theta=\frac{1}{\mathrm{r}}
$$

Therefore, forr $=100 \mathrm{~cm}, \mathrm{I}=22 \mathrm{~cm}$, we have

$$
\begin{aligned}
\theta & =\frac{22}{100} \text { radian }=\frac{180}{\pi} \times \frac{22}{100} \text { deg ree }=\frac{180 \times 7 \times 22}{22 \times 100} \text { deg ree } \\
& =\frac{126}{10} \text { deg ree }=12 \frac{3}{5} \text { deg ree }=12^{\circ} 36^{\prime} \quad\left[1^{\circ}=60^{\prime}\right]
\end{aligned}
$$

Thus, the required angle is $12^{\circ} 36^{\prime}$.

Question 5:

In a circle of diameter 40 cm , the length of a chord is 20 cm . Find the length of minor arc of the chord.

Answer 5:

Diameter of the circle $=40 \mathrm{~cm}$
\therefore Radius (r) of the circle $=\frac{40}{2} \mathrm{~cm}=20 \mathrm{~cm}$

Let $A B$ be a chord (length $=20 \mathrm{~cm}$) of the circle.

In $\triangle O A B, O A=O B=$ Radius of circle $=20 \mathrm{~cm}$
Also, $A B=20 \mathrm{~cm}$
Thus, $\triangle O A B$ is an equilateral triangle.
$\therefore \theta=60^{\circ}=\frac{\pi}{3}$ radian

We know that in a circle of radius r unit, if an arc of length / unit subtends an angle θ

$$
\begin{gathered}
\theta=\frac{l}{r} \\
\frac{\pi}{3}=\frac{\overparen{\mathrm{AB}}}{20} \Rightarrow \overparen{\mathrm{AB}}=\frac{20 \pi}{3} \mathrm{~cm}
\end{gathered}
$$

Thus, the length of the minor arc of the chord is $\frac{20 \pi}{3} \mathrm{~cm}$

Question 6:

If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Answer 6:

Let the radii of the two circles be r_{1} and r_{2}. Let an arc of length / subtend an angle of 60° at the centre of the circle of radius r_{1}, while let an arc of length / subtend an angle of 75° at the centre of the circle of radius r_{2}.

Now, $60^{\circ}=\frac{\pi}{3}$ radian and $75^{\circ}=\frac{5 \pi}{12}$ radian

We know that in a circle of radius r unit, if an arc of length / unit subtends an angle θ

$$
\theta=\frac{l}{r} \text { or } l=r \theta
$$

$\therefore l=\frac{r_{1} \pi}{3}$ and $l=\frac{r_{2} 5 \pi}{12}$
$\Rightarrow \frac{r_{1} \pi}{3}=\frac{r_{2} 5 \pi}{12}$
$\Rightarrow r_{1}=\frac{r_{2} 5}{4}$
$\Rightarrow \frac{r_{1}}{r_{2}}=\frac{5}{4}$
Thus, the ratio of the radii is $5: 4$.

Question 7:

Find the angle in radian though which a pendulum swings if its length is 75 cm and the tip describes an arc of length
(i) 10 cm
(ii) 15 cm
(iii) 21 cm

Answer 7:
We know that in a circle of radius r unit, if an arc of length / unit subtends an angle θ radian at the centre, then $\theta=\frac{l}{r}$ It is given that $r=75 \mathrm{~cm}$
(i) Here, $I=10 \mathrm{~cm}$
$\theta=\frac{10}{75}$ radian $=\frac{2}{15}$ radian
(ii) Here, $I=15 \mathrm{~cm}$
$\theta=\frac{15}{75}$ radian $=\frac{1}{5}$ radian
(iii) Here, $I=21 \mathrm{~cm}$
$\theta=\frac{21}{75}$ radian $=\frac{7}{25}$ radian

Mathematics

(Chapter - 3) (Trigonometric Functions)
 (Class - XI)

Exercise 3.2

Question 1:

Find the values of other five trigonometric functions if $\cos x=-\frac{1}{2}, x$ lies in third quadrant.

Answer 1:

$$
\begin{aligned}
& \cos x=-\frac{1}{2} \\
& \therefore \sec x=\frac{1}{\cos x}=\frac{1}{\left(-\frac{1}{2}\right)}=-2 \\
& \sin ^{2} x+\cos ^{2} x=1 \\
& \Rightarrow \sin ^{2} x=1-\cos ^{2} x \\
& \Rightarrow \sin ^{2} x=1-\left(-\frac{1}{2}\right)^{2} \\
& \Rightarrow \sin ^{2} x=1-\frac{1}{4}=\frac{3}{4} \\
& \Rightarrow \sin x= \pm \frac{\sqrt{3}}{2}
\end{aligned}
$$

Since x lies in the $3^{\text {rd }}$ quadrant, the value of $\sin x$ will be negative.
$\therefore \sin x=-\frac{\sqrt{3}}{2}$
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(-\frac{\sqrt{3}}{2}\right)}=-\frac{2}{\sqrt{3}}$
$\tan x=\frac{\sin x}{\cos x}=\frac{\left(-\frac{\sqrt{3}}{2}\right)}{\left(-\frac{1}{2}\right)}=\sqrt{3}$
$\cot x=\frac{1}{\tan x}=\frac{1}{\sqrt{3}}$

Question 2:

Find the values of other five trigonometric functions if $\sin x=\frac{3}{5}, x$ lies in second quadrant.

Answer 2:

$\sin x=\frac{3}{5}$
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(\frac{3}{5}\right)}=\frac{5}{3}$
$\sin ^{2} x+\cos ^{2} x=1$
$\Rightarrow \cos ^{2} x=1-\sin ^{2} x$
$\Rightarrow \cos ^{2} x=1-\left(\frac{3}{5}\right)^{2}$
$\Rightarrow \cos ^{2} x=1-\frac{9}{25}$
$\Rightarrow \cos ^{2} x=\frac{16}{25}$
$\Rightarrow \cos x= \pm \frac{4}{5}$
Since x lies in the $2^{\text {nd }}$ quadrant, the value of $\cos x$ will be negative
$\therefore \cos x=-\frac{4}{5}$
$\sec x=\frac{1}{\cos x}=\frac{1}{\left(-\frac{4}{5}\right)}=-\frac{5}{4}$
$\tan x=\frac{\sin x}{\cos x}=\frac{\left(\frac{3}{5}\right)}{\left(-\frac{4}{5}\right)}=-\frac{3}{4}$
$\cot x=\frac{1}{\tan x}=-\frac{4}{3}$

Question 3:

Find the values of other five trigonometric functions if $\cot x=\frac{3}{4}, x$ lies in third quadrant.

Answer 3:

$\cot x=\frac{3}{4}$
$\tan x=\frac{1}{\cot x}=\frac{1}{\left(\frac{3}{4}\right)}=\frac{4}{3}$
$1+\tan ^{2} x=\sec ^{2} x$
$\Rightarrow 1+\left(\frac{4}{3}\right)^{2}=\sec ^{2} x$
$\Rightarrow 1+\frac{16}{9}=\sec ^{2} x$
$\Rightarrow \frac{25}{9}=\sec ^{2} x$
$\Rightarrow \sec x= \pm \frac{5}{3}$
Since x lies in the $3^{\text {rd }}$ quadrant, the value of $\sec x$ will be negative.
$\therefore \sec x=-\frac{5}{3}$
$\cos x=\frac{1}{\sec x}=\frac{1}{\left(-\frac{5}{3}\right)}=-\frac{3}{5}$
$\tan x=\frac{\sin x}{\cos x}$
$\Rightarrow \frac{4}{3}=\frac{\sin x}{\left(\frac{-3}{5}\right)}$
$\Rightarrow \sin x=\left(\frac{4}{3}\right) \times\left(\frac{-3}{5}\right)=-\frac{4}{5}$
$\operatorname{cosec} x=\frac{1}{\sin x}=-\frac{5}{4}$

Question 4:

Find the values of other five trigonometric functions if $\sec x=\frac{13}{5}, x$ lies in fourth quadrant.

Answer 4:

$\sec x=\frac{13}{5}$
$\cos x=\frac{1}{\sec x}=\frac{1}{\left(\frac{13}{5}\right)}=\frac{5}{13}$
$\sin ^{2} x+\cos ^{2} x=1$
$\Rightarrow \sin ^{2} x=1-\cos ^{2} x$
$\Rightarrow \sin ^{2} x=1-\left(\frac{5}{13}\right)^{2}$
$\Rightarrow \sin ^{2} x=1-\frac{25}{169}=\frac{144}{169}$
$\Rightarrow \sin x= \pm \frac{12}{13}$
Since x lies in the $4^{\text {th }}$ quadrant, the value of $\sin x$ will be negative.
$\therefore \sin x=-\frac{12}{13}$
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(-\frac{12}{13}\right)}=-\frac{13}{12}$
$\tan x=\frac{\sin x}{\cos x}=\frac{\left(\frac{-12}{13}\right)}{\left(\frac{5}{13}\right)}=-\frac{12}{5}$
$\cot x=\frac{1}{\tan x}=\frac{1}{\left(-\frac{12}{5}\right)}=-\frac{5}{12}$

Question 5:

Find the values of other five trigonometric functions if $\tan x=-\frac{5}{12}, x$ lies in second quadrant.

Answer 5:

$$
\begin{aligned}
& \tan x=-\frac{5}{12} \\
& \cot x=\frac{1}{\tan x}=\frac{1}{\left(-\frac{5}{12}\right)}=-\frac{12}{5} \\
& 1+\tan ^{2} x=\sec ^{2} x \\
& \Rightarrow 1+\left(-\frac{5}{12}\right)^{2}=\sec ^{2} x \\
& \Rightarrow 1+\frac{25}{144}=\sec ^{2} x \\
& \Rightarrow \frac{169}{144}=\sec ^{2} x \\
& \Rightarrow \sec x= \pm \frac{13}{12}
\end{aligned}
$$

Since x lies in the $2^{\text {nd }}$ quadrant, the value of $\sec x$ will be negative.

$$
\begin{aligned}
& \therefore \sec x=-\frac{13}{12} \\
& \cos x=\frac{1}{\sec x}=\frac{1}{\left(-\frac{13}{12}\right)}=-\frac{12}{13} \\
& \tan x=\frac{\sin x}{\cos x} \\
& \Rightarrow-\frac{5}{12}=\frac{\sin x}{\left(-\frac{12}{13}\right)} \\
& \Rightarrow \sin x=\left(-\frac{5}{12}\right) \times\left(-\frac{12}{13}\right)=\frac{5}{13} \\
& \operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(\frac{5}{13}\right)}=\frac{13}{5}
\end{aligned}
$$

Question 6:

Find the value of the trigonometric function $\sin 765^{\circ}$

Answer 6:

It is known that the values of $\sin x$ repeat after an interval of 2π or 360°.

$$
\therefore \sin 765^{\circ}=\sin \left(2 \times 360^{\circ}+45^{\circ}\right)=\sin 45^{\circ}=\frac{1}{\sqrt{2}}
$$

Question 7:

Find the value of the trigonometric function $\operatorname{cosec}\left(-1410^{\circ}\right)$

Answer 7:

It is known that the values of cosec x repeat after an interval of 2π or 360°.

$$
\begin{aligned}
\therefore \operatorname{cosec}\left(-1410^{\circ}\right) & =\operatorname{cosec}\left(-1410^{\circ}+4 \times 360^{\circ}\right) \\
& =\operatorname{cosec}\left(-1410^{\circ}+1440^{\circ}\right) \\
& =\operatorname{cosec} 30^{\circ}=2
\end{aligned}
$$

Question 8:

Find the value of the trigonometric function $\tan \frac{19 \pi}{3}$

Answer 8:

It is known that the values of $\tan x$ repeat after an interval of n or 180°.
$\therefore \tan \frac{19 \pi}{3}=\tan 6 \frac{1}{3} \pi=\tan \left(6 \pi+\frac{\pi}{3}\right)=\tan \frac{\pi}{3}=\tan 60^{\circ}=\sqrt{3}$

Question 9:

Find the value of the trigonometric function $\sin \left(-\frac{11 \pi}{3}\right)$

Answer 9:

It is known that the values of $\sin x$ repeat after an interval of 2π or 360°.
$\therefore \sin \left(-\frac{11 \pi}{3}\right)=\sin \left(-\frac{11 \pi}{3}+2 \times 2 \pi\right)=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$

Question 10:

Find the value of the trigonometric function $\cot \left(-\frac{15 \pi}{4}\right)$

Answer 10:

It is known that the values of $\cot x$ repeat after an interval of n or 180°.
$\therefore \cot \left(-\frac{15 \pi}{4}\right)=\cot \left(-\frac{15 \pi}{4}+4 \pi\right)=\cot \frac{\pi}{4}=1$

Mathematics

(Chapter - 3) (Trigonometric Functions)
 (Class - XI)

Exercise 3.3

Question 1:

$$
\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}=-\frac{1}{2}
$$

Answer 1:

L.H.S. $=\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}$

$$
\begin{aligned}
& =\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}-(1)^{2} \\
& =\frac{1}{4}+\frac{1}{4}-1=-\frac{1}{2} \\
& =\text { R.H.S. }
\end{aligned}
$$

Question 2:

Prove that $2 \sin ^{2} \frac{\pi}{6}+\operatorname{cosec}^{2} \frac{7 \pi}{6} \cos ^{2} \frac{\pi}{3}=\frac{3}{2}$

Answer 2:

L.H.S. $=2 \sin ^{2} \frac{\pi}{6}+\operatorname{cosec}^{2} \frac{7 \pi}{6} \cos ^{2} \frac{\pi}{3}$

$$
\begin{aligned}
& =2\left(\frac{1}{2}\right)^{2}+\operatorname{cosec}^{2}\left(\pi+\frac{\pi}{6}\right)\left(\frac{1}{2}\right)^{2} \\
& =2 \times \frac{1}{4}+\left(-\operatorname{cosec} \frac{\pi}{6}\right)^{2}\left(\frac{1}{4}\right) \\
& =\frac{1}{2}+(-2)^{2}\left(\frac{1}{4}\right) \\
& =\frac{1}{2}+\frac{4}{4}=\frac{1}{2}+1=\frac{3}{2} \\
& =\text { R.H.S. }
\end{aligned}
$$

Question 3:

Prove that $\quad \cot ^{2} \frac{\pi}{6}+\operatorname{cosec} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6}=6$

Answer 3:

L.H.S. $=\cot ^{2} \frac{\pi}{6}+\operatorname{cosec} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6}$

$$
\begin{aligned}
& =(\sqrt{3})^{2}+\operatorname{cosec}\left(\pi-\frac{\pi}{6}\right)+3\left(\frac{1}{\sqrt{3}}\right)^{2} \\
& =3+\operatorname{cosec} \frac{\pi}{6}+3 \times \frac{1}{3} \\
& =3+2+1=6 \\
& =\text { R.H.S }
\end{aligned}
$$

Question 4:

Prove that $\quad 2 \sin ^{2} \frac{3 \pi}{4}+2 \cos ^{2} \frac{\pi}{4}+2 \sec ^{2} \frac{\pi}{3}=10$

Answer 4:

L.H.S $=2 \sin ^{2} \frac{3 \pi}{4}+2 \cos ^{2} \frac{\pi}{4}+2 \sec ^{2} \frac{\pi}{3}$

$=2\left\{\sin \left(\pi-\frac{\pi}{4}\right)\right\}^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+2(2)^{2}$
$=2\left\{\sin \frac{\pi}{4}\right\}^{2}+2 \times \frac{1}{2}+8$
$=2\left(\frac{1}{\sqrt{2}}\right)^{2}+1+8$
$=1+1+8$
$=10$
$=$ R.H.S

Question 5:

Find the value of:
(i) $\sin 75^{\circ}$
(ii) $\tan 15^{\circ}$

Answer 5:

(i) $\sin 75^{\circ}=\sin \left(45^{\circ}+30^{\circ}\right)$
$=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}$
$[\sin (x+y)=\sin x \cos y+\cos x \sin y]$
$=\left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right)+\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)$
$=\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
(ii) $\tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right)$

$$
\begin{aligned}
& =\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}} \\
& =\frac{1-\frac{1}{\sqrt{3}}}{1+1\left(\frac{1}{\sqrt{3}}\right)}=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}} \\
& =\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{\left(\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}\right]}{(\sqrt{3}+1)(\sqrt{3}-1)}=\frac{3+1-2 \sqrt{3}}{(\sqrt{3})^{2}-(1)^{2}} \\
& =\frac{4-2 \sqrt{3}}{3-1}=2-\sqrt{3}
\end{aligned}
$$

Question 6:

Prove that: $\quad \cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)=\sin (x+y)$

Answer 6:

$$
\begin{aligned}
& \cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right) \\
&= \frac{1}{2}\left[2 \cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)\right]+\frac{1}{2}\left[-2 \sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)\right] \\
&= \frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}+\cos \left\{\left(\frac{\pi}{4}-x\right)-\left(\frac{\pi}{4}-y\right)\right\}\right] \\
&+\frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}-\cos \left\{\left(\frac{\pi}{4}-x\right)-\left(\frac{\pi}{4}-y\right)\right\}\right] \\
& {[\because 2 \cos A \cos B=\cos (A+B)+\cos (A-B)] } \\
&-2 \sin A \sin B=\cos (A+B)-\cos (A-B)] \\
&= 2 \times \frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}\right] \\
&= \cos \left[\frac{\pi}{2}-(x+y)\right] \\
&= \sin (x+y) \\
&= R \cdot H \cdot S
\end{aligned}
$$

Question 7:

Prove that: $\quad \frac{\tan \left(\frac{\pi}{4}+x\right)}{\tan \left(\frac{\pi}{4}-x\right)}=\left(\frac{1+\tan x}{1-\tan x}\right)^{2}$

Answer 7:

It is known that

$$
\begin{aligned}
& \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \text { and } \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B} \\
& \text { L.H.S. }^{1}=\frac{\tan \left(\frac{\pi}{4}+x\right)}{\tan \left(\frac{\pi}{4}-x\right)}=\frac{\left(\frac{\tan \frac{\pi}{4}+\tan x}{1-\tan \frac{\pi}{4} \tan x}\right)}{\left(\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \tan x}\right)}=\frac{\left(\frac{1+\tan x}{1-\tan x}\right)}{\left(\frac{1-\tan x}{1+\tan x}\right)}=\left(\frac{1+\tan x}{1-\tan x}\right)^{2}=\text { R.H.S. }
\end{aligned}
$$

Question 8:

Prove that

$$
\frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)}=\cot ^{2} x
$$

Answer 8:

$$
\begin{aligned}
\text { L.H.S. } & =\frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)} \\
& =\frac{[-\cos x][\cos x]}{(\sin x)(-\sin x)} \\
& =\frac{-\cos ^{2} x}{-\sin ^{2} x} \\
& =\cot ^{2} x \\
& =\text { R.H.S. }
\end{aligned}
$$

Question 9:

$\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]=1$

Answer 9:

L.H.S. $=\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]$

$$
\begin{aligned}
& =\sin x \cos x[\tan x+\cot x] \\
& =\sin x \cos x\left(\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right) \\
& =(\sin x \cos x)\left[\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x}\right] \\
& =1=\text { R.H.S. }
\end{aligned}
$$

Question 10:

Prove that $\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x=\cos x$

Answer 10:

L.H.S. $=\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x$

$$
\begin{aligned}
& =\frac{1}{2}[2 \sin (n+1) x \sin (n+2) x+2 \cos (n+1) x \cos (n+2) x] \\
& =\frac{1}{2}\left[\begin{array}{l}
\cos \{(n+1) x-(n+2) x\}-\cos \{(n+1) x+(n+2) x\} \\
+\cos \{(n+1) x+(n+2) x\}+\cos \{(n+1) x-(n+2) x\}
\end{array}\right] \\
& {\left[\begin{array}{l}
\because-2 \sin A \sin B=\cos (A+B)-\cos (A-B) \\
2 \cos A \cos B=\cos (A+B)+\cos (A-B)
\end{array}\right]} \\
& =\frac{1}{2} \times 2 \cos \{(n+1) x-(n+2) x\} \\
& =\cos (-x)=\cos x=\text { R.H.S. }
\end{aligned}
$$

Question 11:

Prove that $\quad \cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \sin x$

Answer 11:

It is known that $\quad \cos \mathrm{A}-\cos \mathrm{B}=-2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cdot \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
\therefore L.H.S. $=\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)$

$$
\begin{aligned}
& =-2 \sin \left\{\frac{\left(\frac{3 \pi}{4}+x\right)+\left(\frac{3 \pi}{4}-x\right)}{2}\right\} \cdot \sin \left\{\frac{\left(\frac{3 \pi}{4}+x\right)-\left(\frac{3 \pi}{4}-x\right)}{2}\right\} \\
& =-2 \sin \left(\frac{3 \pi}{4}\right) \sin x \\
& =-2 \sin \left(\pi-\frac{\pi}{4}\right) \sin x \\
& =-2 \sin \frac{\pi}{4} \sin x \\
& =-2 \times \frac{1}{\sqrt{2}} \times \sin x \\
& =-\sqrt{2} \sin x \\
& =\text { R.H.S. }
\end{aligned}
$$

Question 12:

Prove that $\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$

Answer 12:

It is known that

$$
\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right), \sin \mathrm{A}-\sin \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)
$$

\therefore L.H.S. $=\sin ^{2} 6 x-\sin ^{2} 4 x$
$=(\sin 6 x+\sin 4 x)(\sin 6 x-\sin 4 x)$
$=\left[2 \sin \left(\frac{6 x+4 x}{2}\right) \cos \left(\frac{6 x-4 x}{2}\right)\right]\left[2 \cos \left(\frac{6 x+4 x}{2}\right) \cdot \sin \left(\frac{6 x-4 x}{2}\right)\right]$
$=(2 \sin 5 x \cos x)(2 \cos 5 x$
$\sin x)=(2 \sin 5 x \cos 5 x)(2$
$\sin x \cos x)$
$=\sin 10 x \sin 2 x$
= R.H.S.

Question 13:

Prove that $\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$

Answer 13:

It is known that

$$
\cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right), \cos \mathrm{A}-\cos \mathrm{B}=-2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)
$$

\therefore L.H.S. $=\cos ^{2} 2 x-\cos ^{2} 6 x$
$=(\cos 2 x+\cos 6 x)(\cos 2 x-6 x)$
$=\left[2 \cos \left(\frac{2 x+6 x}{2}\right) \cos \left(\frac{2 x-6 x}{2}\right)\right]\left[-2 \sin \left(\frac{2 x+6 x}{2}\right) \sin \frac{(2 x-6 x)}{2}\right]$
$=[2 \cos 4 x \cos (-2 x)][-2 \sin 4 x \sin (-2 x)]$
$=[2 \cos 4 x \cos 2 x][-2 \sin 4 x(-\sin 2 x)]$

$=(2 \sin 4 x \cos 4 x)(2 \sin 2 x \cos 2 x)$
$=\sin 8 x \sin 4 x=$ R.H.S.

Question 14:

Prove that $\sin 2 x+2 \sin 4 x+\sin 6 x=4 \cos ^{2} x \sin 4 x$

Answer 14:

L.H.S. $=\sin 2 x+2 \sin 4 x+\sin 6 x$
$=[\sin 2 x+\sin 6 x]+2 \sin 4 x$
$=\left[2 \sin \left(\frac{2 x+6 x}{2}\right)\left(\frac{2 x-6 x}{2}\right)\right]+2 \sin 4 x$
$\left[\because \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]$
$=2 \sin 4 x \cos (-2 x)+2 \sin 4 x$
$=2 \sin 4 x \cos 2 x+2 \sin 4 x$
$=2 \sin 4 x(\cos 2 x+1)$
$=2 \sin 4 x\left(2 \cos ^{2} x-1+1\right)$
$=2 \sin 4 x\left(2 \cos ^{2} x\right)$
$=4 \cos ^{2} x \sin$
$4 x=$ R.H.S.

Question 15:

Prove that $\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)$

Answer 15:

L.H.S $=\cot 4 x(\sin 5 x+\sin 3 x)$
$=\frac{\cot 4 x}{\sin 4 x}\left[2 \sin \left(\frac{5 x+3 x}{2}\right) \cos \left(\frac{5 x-3 x}{2}\right)\right]$
$\left[\because \sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)\right]$
$=\left(\frac{\cos 4 x}{\sin 4 x}\right)[2 \sin 4 x \cos x]$
$=2 \cos 4 x \cos x$
R.H.S. $=\cot x(\sin 5 x-\sin 3 x)$
$=\frac{\cos x}{\sin x}\left[2 \cos \left(\frac{5 x+3 x}{2}\right) \sin \left(\frac{5 x-3 x}{2}\right)\right]$
$\left[\because \sin \mathrm{A}-\sin \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)\right]$
$=\frac{\cos x}{\sin x}[2 \cos 4 x \sin x]$
$=2 \cos 4 x \cdot \cos x$
L.H.S. = R.H.S.

Question 16:

Prove that $\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=-\frac{\sin 2 x}{\cos 10 x}$

Answer 16:

It is known that

$$
\cos \mathrm{A}-\cos \mathrm{B}=-2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right), \sin \mathrm{A}-\sin \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)
$$

$$
\begin{aligned}
\therefore \text { L.H.S } & =\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x} \\
& =\frac{-2 \sin \left(\frac{9 x+5 x}{2}\right) \cdot \sin \left(\frac{9 x-5 x}{2}\right)}{2 \cos \left(\frac{17 x+3 x}{2}\right) \cdot \sin \left(\frac{17 x-3 x}{2}\right)} \\
& =\frac{-2 \sin 7 x \cdot \sin 2 x}{2 \cos 10 x \cdot \sin 7 x} \\
& =-\frac{\sin 2 x}{\cos 10 x} \\
& =\text { R.H.S. }
\end{aligned}
$$

Question 17:

Prove that: $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$

Answer 17:

It is known that

$$
\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right), \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)
$$

\therefore L.H.S. $=\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}$

$$
\begin{aligned}
& =\frac{2 \sin \left(\frac{5 x+3 x}{2}\right) \cdot \cos \left(\frac{5 x-3 x}{2}\right)}{2 \cos \left(\frac{5 x+3 x}{2}\right) \cdot \cos \left(\frac{5 x-3 x}{2}\right)} \\
& =\frac{2 \sin 4 x \cdot \cos x}{2 \cos 4 x \cdot \cos x} \\
& =\frac{\sin 4 x}{\cos 4 x} \\
& =\tan 4 x=\text { R.H.S. }
\end{aligned}
$$

Question 18:

Prove that $\quad \frac{\sin x-\sin y}{\cos x+\cos y}=\tan \frac{x-y}{2}$

Answer 18:

It is known that

$$
\sin \mathrm{A}-\sin \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right), \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)
$$

$$
\therefore \text { L.H.S. }=\frac{\sin x-\sin y}{\cos x+\cos y}
$$

$$
=\frac{2 \cos \left(\frac{x+y}{2}\right) \cdot \sin \left(\frac{x-y}{2}\right)}{2 \cos \left(\frac{x+y}{2}\right) \cdot \cos \left(\frac{x-y}{2}\right)}
$$

$$
=\frac{\sin \left(\frac{x-y}{2}\right)}{\cos \left(\frac{x-y}{2}\right)}
$$

$$
=\tan \left(\frac{x-y}{2}\right)=\text { R.H.S. }
$$

Question 19:

Prove that $\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x$

Answer 19:

It is known that
$\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right), \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
\therefore L.H.S. $=\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}$
$=\frac{2 \sin \left(\frac{x+3 x}{2}\right) \cos \left(\frac{x-3 x}{2}\right)}{2 \cos \left(\frac{x+3 x}{2}\right) \cos \left(\frac{x-3 x}{2}\right)}$
$=\frac{\sin 2 x}{\cos 2 x}$
$=\tan 2 \mathrm{x}$
$=$ R.H.S

Question 20:

Prove that $\quad \frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$

Answer 20:

It is known that

$$
\sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right), \cos ^{2} A-\sin ^{2} A=\cos 2 A
$$

\therefore L.H.S. $=\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}$

$$
\begin{aligned}
& =\frac{2 \cos \left(\frac{x+3 x}{2}\right) \sin \left(\frac{x-3 x}{2}\right)}{-\cos 2 x} \\
& =\frac{2 \cos 2 x \sin (-x)}{-\cos 2 x} \\
& =-2 \times(-\sin x) \\
& =2 \sin x=\text { R.H.S. }
\end{aligned}
$$

Question 21:

Prove that $\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x$

Answer 21:

L.H.S. $=\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}$

$$
\begin{aligned}
& =\frac{(\cos 4 x+\cos 2 x)+\cos 3 x}{(\sin 4 x+\sin 2 x)+\sin 3 x} \\
& =\frac{2 \cos \left(\frac{4 x+2 x}{2}\right) \cos \left(\frac{4 x-2 x}{2}\right)+\cos 3 x}{2 \sin \left(\frac{4 x+2 x}{2}\right) \cos \left(\frac{4 x-2 x}{2}\right)+\sin 3 x} \\
& {\left[\because \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right), \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]} \\
& =\frac{2 \cos 3 x \cos x+\cos 3 x}{2 \sin 3 x \cos x+\sin 3 x} \\
& =\frac{\cos 3 x(2 \cos x+1)}{\sin 3 x(2 \cos x+1)} \\
& =\cot 3 x=\text { R.H.S. }
\end{aligned}
$$

Question 22:

Prove that $\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1$

Answer 22:

L.H.S. $=\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x$
$=\cot x \cot 2 x-\cot 3 x(\cot 2 x+\cot x)$
$=\cot x \cot 2 x-\cot (2 x+x)(\cot 2 x+\cot x)$
$=\cot x \cot 2 x-\left[\frac{\cot 2 x \cot x-1}{\cot x+\cot 2 x}\right](\cot 2 x+\cot x)$
$\left[\because \cot (A+B)=\frac{\cot A \cot B-1}{\cot A+\cot B}\right]$

$=\cot x \cot 2 x-(\cot 2 x \cot x-1)=1=$ R.H.S.

Question 23:
Prove that

$$
\tan 4 x=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}
$$

Answer 23:

It is known that. $\quad \tan 2 \mathrm{~A}=\frac{2 \tan \mathrm{~A}}{1-\tan ^{2} \mathrm{~A}}$
\therefore L.H.S. $=\tan 4 x=\tan 2(2 x)$

$$
\begin{aligned}
& =\frac{2 \tan 2 x}{1-\tan ^{2}(2 x)} \\
& =\frac{2\left(\frac{2 \tan x}{1-\tan ^{2} x}\right)}{1-\left(\frac{2 \tan x}{1-\tan ^{2} x}\right)^{2}}
\end{aligned}
$$

$$
=\frac{\left(\frac{4 \tan x}{1-\tan ^{2} x}\right)}{\left[1-\frac{4 \tan ^{2} x}{\left(1-\tan ^{2} x\right)^{2}}\right]}
$$

$$
=\frac{\left(\frac{4 \tan x}{1-\tan ^{2} x}\right)}{\left[\frac{\left(1-\tan ^{2} x\right)^{2}-4 \tan ^{2} x}{\left(1-\tan ^{2} x\right)^{2}}\right]}
$$

$$
=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{\left(1-\tan ^{2} x\right)^{2}-4 \tan ^{2} x}
$$

$$
=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1+\tan ^{4} x-2 \tan ^{2} x-4 \tan ^{2} x}
$$

$$
=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}=\text { R.H. }
$$

Question 24:

Prove that: $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$

Answer 24:

L.H.S. $=\cos 4 x$
$=\cos 2(2 x)$
$=1-2 \sin ^{2} 2 x\left[\cos 2 A=1-2 \sin ^{2} A\right]$
$=1-2(2 \sin x \cos x)^{2}[\sin 2 A=2 \sin A \cos A]$
$=1-8 \sin ^{2} x$
$\cos ^{2} x=$ R.H.S.

Question 25:

Prove that: $\cos 6 x=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$

Answer 25:

L.H.S. $=\cos 6 x$
$=\cos 3(2 x)$
$=4 \cos ^{3} 2 x-3 \cos 2 x\left[\cos 3 A=4 \cos ^{3} A-3 \cos A\right]$
$=4\left[\left(2 \cos ^{2} x-1\right)^{3}-3\left(2 \cos ^{2} x-1\right)\left[\cos 2 x=2 \cos ^{2} x-1\right]\right.$
$=4\left[\left(2 \cos ^{2} x\right)^{3}-(1)^{3}-3\left(2 \cos ^{2} x\right)^{2}+3\left(2 \cos ^{2} x\right)\right]-6 \cos ^{2} x+3$
$=4\left[8 \cos ^{6} x-1-12 \cos ^{4} x+6 \cos ^{2} x\right]-6 \cos ^{2} x+3$
$=32 \cos ^{6} x-4-48 \cos ^{4} x+24 \cos ^{2} x-6 \cos ^{2} x+3$
$=32 \cos ^{6} x-48 \cos ^{4} x+18$
$\cos ^{2} x-1=$ R.H.S.

Mathematics

(Chapter - 3) (Trigonometric Functions)
 (Class - XI)

Exercise 3.4

Question 1:

Find the principal and general solutions of the equation $\tan x=\sqrt{3}$

Answer 1:

$\tan x=\sqrt{3}$
It is known that $\tan \frac{\pi}{3}=\sqrt{3}$ and $\tan \left(\frac{4 \pi}{3}\right)=\tan \left(\pi+\frac{\pi}{3}\right)=\tan \frac{\pi}{3}=\sqrt{3}$

Therefore, the principal solutions are $x=\frac{\pi}{3}$ and $\frac{4 \pi}{3}$.
Now, $\tan x=\tan \frac{\pi}{3}$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi+\frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
Therefore, the general solution is

$$
\mathrm{x}=\mathrm{n} \pi+\frac{\pi}{3}, \text { where } \mathrm{n} \in \mathrm{Z}
$$

Question 2:

Find the principal and general solutions of the equation $\sec x=2$

Answer 2:

$\sec \mathrm{x}=2$
It is known that $\sec \frac{\pi}{3}=2$ and $\sec \frac{5 \pi}{3}=\sec \left(2 \pi-\frac{\pi}{3}\right)=\sec \frac{\pi}{3}=2$

Therefore, the principal solutions are

$$
x=\frac{\frac{\pi}{3}}{\text { and }} \frac{5 \pi}{3} .
$$

Now, $\sec x=\sec \frac{\pi}{3}$
$\Rightarrow \cos x=\cos \frac{\pi}{3} \quad\left[\sec x=\frac{1}{\cos x}\right]$
$\Rightarrow \mathrm{x}=2 \mathrm{n} \pi \pm \frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$

Therefore, the general solution is $\mathrm{x}=2 \mathrm{n} \pi \pm \frac{\pi}{3} \quad$, where $n \in \mathbf{Z}$

Question 3:

Find the principal and general solutions of the equation

Answer 3:

$\cot x=-\sqrt{3}$
It is known that $\cot \frac{\pi}{6}=\sqrt{3}$
$\therefore \cot \left(\pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$ and $\cot \left(2 \pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$
i.e., $\cot \frac{5 \pi}{6}=-\sqrt{3}$ and $\cot \frac{11 \pi}{6}=-\sqrt{3}$

Therefore, the principal solutions are $\quad x=\frac{5 \pi}{6}$ and $\frac{11 \pi}{6}$.
Now, $\cot x=\cot \frac{5 \pi}{6}$
$\Rightarrow \tan x=\tan \frac{5 \pi}{6} \quad\left[\cot x=\frac{1}{\tan x}\right]$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi+\frac{5 \pi}{6}$, where $\mathrm{n} \in \mathrm{Z}$

Therefore, the general solution is $\mathrm{x}=\mathrm{n} \pi+\frac{5 \pi}{6}$, where $\mathrm{n} \in \mathrm{Z}$

Question 4:

Find the general solution of $\operatorname{cosec} x=-2$

Answer 4:

$\operatorname{cosec} x=-2$
It is known that
$\operatorname{cosec} \frac{\pi}{6}=2$
$\therefore \operatorname{cosec}\left(\pi+\frac{\pi}{6}\right)=-\operatorname{cosec} \frac{\pi}{6}=-2$ and $\operatorname{cosec}\left(2 \pi-\frac{\pi}{6}\right)=-\operatorname{cosec} \frac{\pi}{6}=-2$
i.e., $\operatorname{cosec} \frac{7 \pi}{6}=-2$ and $\operatorname{cosec} \frac{11 \pi}{6}=-2$

Therefore, the principal solutions are

$$
x=\frac{7 \pi}{6} \text { and } \frac{11 \pi}{6}
$$

Now, $\operatorname{cosec} x=\operatorname{cosec} \frac{7 \pi}{6}$
$\Rightarrow \sin x=\sin \frac{7 \pi}{6} \quad\left[\operatorname{cosec} x=\frac{1}{\sin x}\right]$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{7 \pi}{6}$, where $\mathrm{n} \in \mathrm{Z}$

Therefore, the general solution is $\mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{7 \pi}{6}$, where $\mathrm{n} \in \mathrm{Z}$

Question 5:

Find the general solution of the equation $\cos 4 x=\cos 2 x$

Answer 5:

$$
\begin{aligned}
& \cos 4 x=\cos 2 x \\
& \Rightarrow \cos 4 x-\cos 2 x=0 \\
& \Rightarrow-2 \sin \left(\frac{4 x+2 x}{2}\right) \sin \left(\frac{4 x-2 x}{2}\right)=0 \\
& {\left[\because \cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)\right]} \\
& \Rightarrow \sin 3 x \sin x=0 \\
& \Rightarrow \sin 3 x=0 \quad \text { or } \quad \sin x=0 \\
& \therefore 3 x=n \pi \quad \text { or } \quad x=n \pi, \text { where } n \in Z \\
& \Rightarrow x=\frac{n \pi}{3} \quad \text { or } \quad x=n \pi, \text { where } n \in Z
\end{aligned}
$$

Question 6:

Find the general solution of the equation $\cos 3 x+\cos x-\cos 2 x=0$

Answer 6:

$$
\begin{aligned}
& \cos 3 x+\cos x-\cos 2 x=0 \\
& \Rightarrow 2 \cos \left(\frac{3 \mathrm{x}+\mathrm{x}}{2}\right) \cos \left(\frac{3 \mathrm{x}-\mathrm{x}}{2}\right)-\cos 2 \mathrm{x}=0 \quad\left[\cos \mathrm{~A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)\right] \\
& \Rightarrow 2 \cos 2 \mathrm{x} \cos \mathrm{x}-\cos 2 \mathrm{x}=0 \\
& \Rightarrow \cos 2 \mathrm{x}(2 \cos \mathrm{x}-1)=0 \\
& \Rightarrow \cos 2 \mathrm{x}=0 \quad \text { or } \quad 2 \cos \mathrm{x}-1=0 \\
& \Rightarrow \cos 2 x=0 \quad \text { or } \quad \cos x=\frac{1}{2} \\
& \therefore 2 \mathrm{x}=(2 \mathrm{n}+1) \frac{\pi}{2} \quad \text { or } \quad \cos \mathrm{x}=\cos \frac{\pi}{3} \text {, where } \mathrm{n} \in \mathrm{Z} \\
& \Rightarrow \mathrm{x}=(2 \mathrm{n}+1) \frac{\pi}{4} \quad \text { or } \quad \mathrm{x}=2 \mathrm{n} \pi \pm \frac{\pi}{3}, \text { where } \mathrm{n} \in \mathrm{Z}
\end{aligned}
$$

Question 7:

Find the general solution of the equation $\sin 2 x+\cos x=0$

Answer 7:

$$
\begin{aligned}
& \sin 2 x+\cos x=0 \\
& \Rightarrow 2 \sin x \cos x+\cos x=0 \\
& \Rightarrow \cos x(2 \sin x+1)=0 \\
& \Rightarrow \cos x=0 \quad \text { or } \quad 2 \sin x+1=0
\end{aligned}
$$

Now, $\cos x=0 \Rightarrow \cos x=(2 n+1) \frac{\pi}{2}$, where $n \in Z$
$2 \sin \mathrm{x}+1=0$
$\Rightarrow \sin x=\frac{-1}{2}=-\sin \frac{\pi}{6}=\sin \left(\pi+\frac{\pi}{6}\right)=\sin \left(\pi+\frac{\pi}{6}\right)=\sin \frac{7 \pi}{6}$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{7 \pi}{6}$, where $\mathrm{n} \in \mathrm{Z}$

Therefore, the general solution is $(2 n+1) \frac{\pi}{2}$ or $n \pi+(-1)^{n} \frac{7 \pi}{6}, n \in Z$

Question 8:

Find the general solution of the equation $\sec ^{2} 2 x=1-\tan 2 x$

Answer 8:

$$
\begin{aligned}
& \sec ^{2} 2 x=1-\tan 2 x \\
& \Rightarrow 1+\tan ^{2} 2 x=1-\tan 2 x \\
& \Rightarrow \tan ^{2} 2 x+\tan 2 x=0 \\
& \Rightarrow \tan 2 x(\tan 2 x+1)=0 \\
& \Rightarrow \tan 2 x=0 \quad \text { or } \quad \tan 2 x+1=0
\end{aligned}
$$

Now, $\tan 2 \mathrm{x}=0$
$\Rightarrow \tan 2 \mathrm{x}=\tan 0$
$\Rightarrow 2 \mathrm{x}=\mathrm{n} \pi+0$, where $\mathrm{n} \in \mathrm{Z}$
$\Rightarrow \mathrm{x}=\frac{\mathrm{n} \pi}{2}$, where $\mathrm{n} \in \mathrm{Z}$
$\tan 2 \mathrm{x}+1=0$
$\Rightarrow \tan 2 x=-1=-\tan \frac{\pi}{4}=\tan \left(\pi-\frac{\pi}{4}\right)=\tan \frac{3 \pi}{4}$
$\Rightarrow 2 \mathrm{x}=\mathrm{n} \pi+\frac{3 \pi}{4}$, where $\mathrm{n} \in \mathrm{Z}$
$\Rightarrow x=\frac{\mathrm{n} \pi}{2}+\frac{3 \pi}{8}$, where $\mathrm{n} \in \mathrm{Z}$

Therefore, the general solution is $\frac{\mathrm{n} \pi}{2}$ or $\frac{\mathrm{n} \pi}{2}+\frac{3 \pi}{8}, \mathrm{n} \in \mathrm{Z}$

Question 9:

Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$

Answer 9:

$\sin x+\sin 3 x+\sin 5 x=0$
$(\sin x+\sin 5 x)+\sin 3 x=0$
$\Rightarrow\left[2 \sin \left(\frac{\mathrm{x}+5 \mathrm{x}}{2}\right) \cos \left(\frac{\mathrm{x}-5 \mathrm{x}}{2}\right)\right]+\sin 3 \mathrm{x}=0 \quad\left[\sin \mathrm{~A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)\right]$
$\Rightarrow 2 \sin 3 \mathrm{x} \cos (-2 \mathrm{x})+\sin 3 \mathrm{x}=0$
$\Rightarrow 2 \sin 3 \mathrm{x} \cos 2 \mathrm{x}+\sin 3 \mathrm{x}=0$
$\Rightarrow \sin 3 x(2 \cos 2 x+1)=0$
$\Rightarrow \sin 3 \mathrm{x}=0 \quad$ or $\quad 2 \cos 2 \mathrm{x}+1=0$

Now, $\sin 3 x=0 \Rightarrow 3 x=n \pi$, where $n \in Z$
i.e., $x=\frac{n \pi}{3}$, where $n \in Z$
$2 \cos 2 \mathrm{x}+1=0$
$\Rightarrow \cos 2 x=\frac{-1}{2}=-\cos \frac{\pi}{3}=\cos \left(\pi-\frac{\pi}{3}\right)$
$\Rightarrow \cos 2 x=\cos \frac{2 \pi}{3}$
$\Rightarrow 2 \mathrm{x}=2 \mathrm{n} \pi \pm \frac{2 \pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi \pm \frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$

Therefore, the general solution is $\frac{n \pi}{3}$ or $n \pi \pm \frac{\pi}{3}, n \in Z$

Mathematics

(Chapter - 3) (Trigonometric Functions)
 (Class - XI)

Miscellaneous Exercise on chapter 3

Question 1:

Prove that: $\quad 2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0$

Answer 1:

L.H.S.

$$
\begin{aligned}
& =2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13} \\
& =2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \left(\frac{\frac{3 \pi}{13}+\frac{5 \pi}{13}}{2}\right) \cos \left(\frac{\frac{3 \pi}{13}-\frac{5 \pi}{13}}{2}\right)\left[\cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)\right] \\
& =2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \left(\frac{-\pi}{13}\right) \\
& =2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \frac{\pi}{13} \\
& =2 \cos \frac{\pi}{13}\left[\cos \frac{9 \pi}{13}+\cos \frac{4 \pi}{13}\right] \\
& =2 \cos \frac{\pi}{13}\left[2 \cos \left(\frac{\frac{9 \pi}{13}+\frac{4 \pi}{13}}{2}\right) \cos \left(\frac{\frac{9 \pi}{13}-\frac{4 \pi}{13}}{2}\right)\right] \\
& =2 \cos \frac{\pi}{13}\left[2 \cos \frac{\pi}{2} \cos \frac{5 \pi}{26}\right] \\
& =2 \cos \frac{\pi}{13} \times 2 \times 0 \times \cos \frac{5 \pi}{26} \\
& =0=\text { R.H.S }
\end{aligned}
$$

Question 2:

Prove that: $(\sin 3 x+\sin x) \sin x+(\cos 3 x-\cos x) \cos x=0$

Answer 2:

L.H.S.
$=(\sin 3 x+\sin x) \sin x+(\cos 3 x-\cos x) \cos x$
$=\sin 3 \mathrm{x} \sin \mathrm{x}+\sin ^{2} \mathrm{x}+\cos 3 \mathrm{x} \cos \mathrm{x}-\cos ^{2} \mathrm{x}$
$=\cos 3 x \cos x+\sin 3 x \sin x-\left(\cos ^{2} x-\sin ^{2} x\right)$
$=\cos (3 x-x)-\cos 2 x \quad[\cos (A-B)=\cos A \cos B+\sin A \sin B]$
$=\cos 2 \mathrm{x}-\cos 2 \mathrm{x}$
$=0$
$=$ RH.S.

Question 3:

Prove that: $\quad(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}=4 \cos ^{2} \frac{x+y}{2}$

Answer 3:

$$
\begin{aligned}
& \text { L.H.S. }=(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2} \\
& =\cos ^{2} x+\cos ^{2} y+2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y-2 \sin x \sin y \\
& =\left(\cos ^{2} x+\sin ^{2} x\right)+\left(\cos ^{2} y+\sin ^{2} y\right)+2(\cos x \cos y-\sin x \sin y) \\
& =1+1+2 \cos (x+y) \quad[\cos (A+B)=(\cos A \cos B-\sin A \sin B)] \\
& =2+2 \cos (x+y) \\
& =2[1+\cos (x+y)] \\
& =2\left[1+2 \cos ^{2}\left(\frac{x+y}{2}\right)-1\right] \quad\left[\cos 2 A=2 \cos ^{2} A-1\right] \\
& =4 \cos ^{2}\left(\frac{x+y}{2}\right)=\text { R.H.S. }
\end{aligned}
$$

Question 4:

Prove that: $\quad(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2} \frac{x-y}{2}$

Answer 4:

L.H.S.
$=(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}$
$=\cos ^{2} x+\cos ^{2} y-2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y-2 \sin x \sin y$
$=\left(\cos ^{2} x+\sin ^{2} x\right)+\left(\cos ^{2} y+\sin ^{2} y\right)-2[\cos x \cos y+\sin x \sin y]$
$=1+1-2[\cos (x-y)] \quad[\cos (A-B)=\cos A \cos B+\sin A \sin B]$
$=2[1-\cos (x-y)]$
$=2\left[1-\left\{1-2 \sin ^{2}\left(\frac{x-y}{2}\right)\right\}\right] \quad\left[\cos 2 A=1-2 \sin ^{2} A\right]$
$=4 \sin ^{2}\left(\frac{x-y}{2}\right)=$ R.H.S.

Question 5:

Prove that: $\quad \sin x+\sin 3 x+\sin 5 x+\sin 7 x=4 \cos x \cos 2 x \sin 4 x$

Answer 5:

It is known that

$$
\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cdot \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right) .
$$

L.H.S. $=\sin x+\sin 3 x+\sin 5 x+\sin 7 x$
$=(\sin x+\sin 5 x)+(\sin 3 x+\sin 7 x)$
$=2 \sin \left(\frac{x+5 x}{2}\right) \cdot \cos \left(\frac{x-5 x}{2}\right)+2 \sin \left(\frac{3 x+7 x}{2}\right) \cos \left(\frac{3 x-7 x}{2}\right)$
$=2 \sin 3 x \cos (-2 x)+2 \sin 5 x \cos (-2 x)$
$=2 \sin 3 \mathrm{x} \cos 2 \mathrm{x}+2 \sin 5 \mathrm{x} \cos 2 \mathrm{x}$
$=2 \cos 2 x[\sin 3 x+\sin 5 x]$
$=2 \cos 2 x\left[2 \sin \left(\frac{3 x+5 x}{2}\right) \cdot \cos \left(\frac{3 x-5 x}{2}\right)\right]$
$=2 \cos 2 x[2 \sin 4 x \cdot \cos (-x)]$
$=4 \cos 2 x \sin 4 x \cos x=$ R.H.S.

Question 6:

Prove that: $\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}=\tan 6 x$

Answer 6:

It is known that

$$
\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right), \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)
$$

L.H.S. $=\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}$

$$
\begin{aligned}
& =\frac{\left[2 \sin \left(\frac{7 x+5 x}{2}\right) \cdot \cos \left(\frac{7 x-5 x}{2}\right)\right]+\left[2 \sin \left(\frac{9 x+3 x}{2}\right) \cdot \cos \left(\frac{9 x-3 x}{2}\right)\right]}{\left[2 \cos \left(\frac{7 x+5 x}{2}\right) \cdot \cos \left(\frac{7 x-5 x}{2}\right)\right]+\left[2 \cos \left(\frac{9 x+3 x}{2}\right) \cdot \cos \left(\frac{9 x-3 x}{2}\right)\right]} \\
& =\frac{[2 \sin 6 x \cdot \cos x]+[2 \sin 6 x \cdot \cos 3 x]}{[2 \cos 6 x \cdot \cos x]+[2 \cos 6 x \cdot \cos 3 x]} \\
& =\frac{2 \sin 6 x[\cos x+\cos 3 x]}{2 \cos 6 x[\cos x+\cos 3 x]}
\end{aligned}
$$

$=\tan 6 x$
$=$ R.H.S.

Question 7:

Prove that: $\quad \sin 3 x+\sin 2 x-\sin x=4 \sin x \cos \frac{x}{2} \cos \frac{3 x}{2}$

Answer 7:

L.H.S. $=\sin 3 x+\sin 2 x-\sin x$
$=\sin 3 x+(\sin 2 x-\sin x)$
$=\sin 3 x+\left[2 \cos \left(\frac{2 x+x}{2}\right) \sin \left(\frac{2 x-x}{2}\right)\right] \quad\left[\sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)\right]$
$=\sin 3 x+\left[2 \cos \left(\frac{3 x}{2}\right) \sin \left(\frac{x}{2}\right)\right]$
$=\sin 3 x+2 \cos \frac{3 x}{2} \sin \frac{x}{2}$
$=2 \sin \frac{3 x}{2} \cdot \cos \frac{3 x}{2}+2 \cos \frac{3 x}{2} \sin \frac{x}{2} \quad[\sin 2 A=2 \sin A \cdot \cos B]$
$=2 \cos \left(\frac{3 x}{2}\right)\left[\sin \left(\frac{3 x}{2}\right)+\sin \left(\frac{x}{2}\right)\right]$
$=2 \cos \left(\frac{3 \mathrm{x}}{2}\right)\left[2 \sin \left\{\frac{\left(\frac{3 \mathrm{x}}{2}\right)+\left(\frac{\mathrm{x}}{2}\right)}{2}\right\} \cos \left\{\frac{\left(\frac{3 \mathrm{x}}{2}\right)-\left(\frac{\mathrm{x}}{2}\right)}{2}\right\}\right]\left[\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)\right]$
$=2 \cos \left(\frac{3 x}{2}\right) \cdot 2 \sin x \cos \left(\frac{x}{2}\right)$
$=4 \sin x \cos \left(\frac{x}{2}\right) \cos \left(\frac{3 x}{2}\right)=$ R.H.S

Question 8:

Find $\sin x / 2, \cos x / 2$ and $\tan x / 2$, if $\tan x=-\frac{4}{3}, x$ in quadrant II

Answer 8:

Here, x is in quadrant II.
i.e., $\quad \frac{\pi}{2}<x<\pi$
$\Rightarrow \frac{\pi}{4}<\frac{x}{2}<\frac{\pi}{2}$

Therefore, $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$
are lies in first quadrant.
It is given that $\tan x=-\frac{4}{3}$.
$\sec ^{2} x=1+\tan ^{2} x=1+\left(\frac{-4}{3}\right)^{2}=1+\frac{16}{9}=\frac{25}{9}$
$\therefore \cos ^{2} x=\frac{9}{25}$
$\Rightarrow \cos x= \pm \frac{3}{5}$
As x is in quadrant II, $\cos x$ is negative.

$$
\cos x=\frac{-3}{5}
$$

Now, $\cos x=2 \cos ^{2} \frac{x}{2}-1$
$\Rightarrow \frac{-3}{5}=2 \cos ^{2} \frac{x}{2}-1$
$\Rightarrow 2 \cos ^{2} \frac{x}{2}=1-\frac{3}{5}$
$\Rightarrow 2 \cos ^{2} \frac{x}{2}=\frac{2}{5}$
$\Rightarrow \cos ^{2} \frac{x}{2}=\frac{1}{5}$
$\Rightarrow \cos \frac{x}{2}=\frac{1}{\sqrt{5}} \quad\left[\because \cos \frac{x}{2}\right.$ is positive $]$
$\therefore \cos \frac{x}{2}=\frac{\sqrt{5}}{5}$
$\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}=1$
$\Rightarrow \sin ^{2} \frac{x}{2}+\left(\frac{1}{\sqrt{5}}\right)^{2}=1$
$\Rightarrow \sin ^{2} \frac{x}{2}=1-\frac{1}{5}=\frac{4}{5}$
$\Rightarrow \sin \frac{x}{2}=\frac{2}{\sqrt{5}} \quad\left[\because \sin \frac{x}{2}\right.$ is positive $]$
$\therefore \sin \frac{x}{2}=\frac{2 \sqrt{5}}{5}$
$\tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\frac{\left(\frac{2}{\sqrt{5}}\right)}{\left(\frac{1}{\sqrt{5}}\right)}=2$

Thus, the respective values of $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ are $\frac{2 \sqrt{5}}{5}, \frac{\sqrt{5}}{5}$, and 2 .

Question 9:

Find, $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ for $\cos x=-\frac{1}{3}, x$ in quadrant III

Answer 9:

Here, x is in quadrant III.

$$
\begin{aligned}
& \text { i.e., } \pi<x<\frac{3 \pi}{2} \\
& \Rightarrow \frac{\pi}{2}<\frac{x}{2}<\frac{3 \pi}{4}
\end{aligned}
$$

Therefore, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$
are negative, where $\sin \frac{x}{2}$ as is positive.

It is given that $\cos x=-\frac{1}{3}$.
$\cos x=1-2 \sin ^{2} \frac{x}{2}$
$\Rightarrow \sin ^{2} \frac{x}{2}=\frac{1-\cos x}{2}$
$\Rightarrow \sin ^{2} \frac{x}{2}=\frac{1-\left(-\frac{1}{3}\right)}{2}=\frac{\left(1+\frac{1}{3}\right)}{2}=\frac{\frac{4}{3}}{2}=\frac{2}{3}$
$\Rightarrow \sin \frac{x}{2}=\frac{\sqrt{2}}{\sqrt{3}} \quad\left[\because \sin \frac{x}{2}\right.$ is positive $]$
$\therefore \sin \frac{x}{2}=\frac{\sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{6}}{3}$
Now
$\cos x=2 \cos ^{2} \frac{x}{2}-1$

$$
\begin{aligned}
& \Rightarrow \cos ^{2} \frac{x}{2}=\frac{1+\cos x}{2}=\frac{1+\left(-\frac{1}{3}\right)}{2}=\frac{\left(\frac{3-1}{3}\right)}{2}=\frac{\left(\frac{2}{3}\right)}{2}=\frac{1}{3} \\
& \Rightarrow \cos \frac{x}{2}=-\frac{1}{\sqrt{3}} \\
& \therefore \cos \frac{x}{2}=-\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{-\sqrt{3}}{3} \\
& \tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\frac{\left(\frac{\sqrt{2}}{\sqrt{3}}\right)}{\left(\frac{-1}{\sqrt{3}}\right)}=-\sqrt{2}
\end{aligned}
$$

Thus, the respective values of $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ are $\frac{\sqrt{6}}{3}, \frac{-\sqrt{3}}{3}$, and $-\sqrt{2}$

Question 10:

Find $\quad \sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ for $\sin x=\frac{1}{4}, x$ in quadrant II

Answer 10:

Here, x is in quadrant II.

$$
\begin{aligned}
& \text { i.e., } \frac{\pi}{2}<x<\pi \\
& \Rightarrow \frac{\pi}{4}<\frac{x}{2}<\frac{\pi}{2}
\end{aligned}
$$

Therefore, $\sin \frac{x}{2}, \cos \frac{x}{2}, \quad \tan \frac{x}{2}$ are all positive.

It is given that $\sin \mathrm{x}=\frac{1}{4}$.

$$
\begin{aligned}
& \cos ^{2} x=1-\sin ^{2} x=1-\left(\frac{1}{4}\right)^{2}=1-\frac{1}{16}=\frac{15}{16} \\
& \Rightarrow \cos x=-\frac{\sqrt{15}}{4} \\
& {[\cos x \text { is negative in quadrant II }]}
\end{aligned}
$$

$$
\sin ^{2} \frac{x}{2}=\frac{1-\cos x}{2}=\frac{1-\left(-\frac{\sqrt{15}}{4}\right)}{2}=\frac{4+\sqrt{15}}{8}
$$

$$
\Rightarrow \sin \frac{x}{2}=\sqrt{\frac{4+\sqrt{15}}{8}} \quad\left[\because \sin \frac{x}{2} \text { is positive }\right]
$$

$$
=\sqrt{\frac{4+\sqrt{15}}{8} \times \frac{2}{2}}
$$

$$
=\sqrt{\frac{8+2 \sqrt{15}}{16}}
$$

$$
=\frac{\sqrt{8+2 \sqrt{15}}}{4}
$$

$\cos ^{2} \frac{x}{2}=\frac{1+\cos x}{2}=\frac{1+\left(-\frac{\sqrt{15}}{4}\right)}{2}=\frac{4-\sqrt{15}}{8}$
$\Rightarrow \cos \frac{\mathrm{x}}{2}=\sqrt{\frac{4-\sqrt{15}}{8}} \quad\left[\because \cos \frac{\mathrm{x}}{2}\right.$ is positive $]$

$$
\begin{aligned}
& =\sqrt{\frac{4-\sqrt{15}}{8} \times \frac{2}{2}} \\
& =\sqrt{\frac{8-2 \sqrt{15}}{16}} \\
& =\frac{\sqrt{8-2 \sqrt{15}}}{4}
\end{aligned}
$$

$$
\begin{aligned}
\tan \frac{x}{2} & =\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\frac{\left(\frac{\sqrt{8+2 \sqrt{15}}}{4}\right)}{\left.\frac{\sqrt{8-2 \sqrt{15}}}{4}\right)}=\frac{\sqrt{8+2 \sqrt{15}}}{\sqrt{8-2 \sqrt{15}}} \\
& =\sqrt{\frac{8+2 \sqrt{15}}{8-2 \sqrt{15}} \times \frac{8+2 \sqrt{15}}{8+2 \sqrt{15}}} \\
& =\sqrt{\frac{(8+2 \sqrt{15})^{2}}{64-60}=\frac{8+2 \sqrt{15}}{2}}=4+\sqrt{15}
\end{aligned}
$$

Thus, the respective values of $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$

$$
\text { are } \quad \frac{\sqrt{8+2 \sqrt{15}}}{4}, \frac{\sqrt{8-2 \sqrt{15}}}{4}
$$

and $4+\sqrt{15}$

Mathematics

(Class 11)

Exercise 3.5

Question 1:

In any triangle ABC , if $\mathrm{a}=18, \mathrm{~b}=24, c=30$, find: $\cos A, \cos B, \cos C$.
Answer 1:
Using cosine formula $\cos A=\frac{\mathrm{b}^{2}+c^{2}-a^{2}}{2 \mathrm{bc}}$, we have
$\cos A=\frac{24^{2}+30^{2}-18^{2}}{2 \times 24 \times 30}=\frac{576+900-324}{1440}=\frac{1152}{1440}=\frac{4}{5}$
Similarly, using $\cos B=\frac{c^{2}+a^{2}-b^{2}}{2 c a}$, we have
$\cos B=\frac{30^{2}+18^{2}-24^{2}}{2 \times 30 \times 18}=\frac{900+324-576}{1080}=\frac{648}{1080}=\frac{3}{5}$
and using $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 \mathrm{ab}}$, we get
$\cos C=\frac{18^{2}+24^{2}-30^{2}}{2 \times 18 \times 24}=\frac{324+576-900}{864}=\frac{0}{864}=0$

Question 2:

In any triangle ABC , if $\mathrm{a}=18, \mathrm{~b}=24, c=30$, find: $\cos A, \cos B, \cos C$.
Answer 2:
Using cosine formula $\cos A=\frac{\mathrm{b}^{2}+c^{2}-a^{2}}{2 \mathrm{bc}}$, we have
$\cos A=\frac{24^{2}+30^{2}-18^{2}}{2 \times 24 \times 30}=\frac{576+900-324}{1440}=\frac{1152}{1440}=\frac{4}{5}$
$\sin A=\sqrt{1-\cos ^{2} A}=\sqrt{1-\left(\frac{4}{5}\right)^{2}}=\sqrt{1-\frac{16}{25}}=\sqrt{\frac{9}{25}}=\frac{3}{5}$
Similarly, using $\cos B=\frac{c^{2}+a^{2}-b^{2}}{2 \mathrm{ca}}$, we have
$\cos B=\frac{30^{2}+18^{2}-24^{2}}{2 \times 30 \times 18}=\frac{900+324-576}{1080}=\frac{648}{1080}=\frac{3}{5}$
$\sin B=\sqrt{1-\cos ^{2} B}=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$
and using $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 \mathrm{ab}}$, we get
$\cos C=\frac{18^{2}+24^{2}-30^{2}}{2 \times 18 \times 24}=\frac{324+576-900}{864}=\frac{0}{864}=0$
$\sin C=\sqrt{1-\cos ^{2} C}=\sqrt{1-(0)^{2}}=\sqrt{1-0}=\sqrt{1}=1$

Question 3:

For any triangle $A B C$, prove that: $\frac{a+b}{c}=\frac{\cos \left(\frac{A-B}{2}\right)}{\sin \frac{C}{2}}$

Answer 3:
LHS $=\frac{a+b}{c}$
$=\frac{k \sin A+k \sin B}{k \sin C}$
$\left[\because\right.$ Using $\left.\frac{a}{\sin A}=\frac{\mathrm{b}}{\sin B}=\frac{\mathrm{c}}{\sin C}=\mathrm{k}\right]$
$=\frac{k(\sin A+\sin B)}{k \sin C}=\frac{2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}}{\sin C}$
$\left[\because \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}\right]$
$=\frac{2 \sin \left(90-\frac{C}{2}\right) \cos \frac{A-B}{2}}{2 \sin \frac{C}{2} \cos \frac{C}{2}}$
$\left[\because \frac{\mathrm{A}+\mathrm{B}}{2}=90^{\circ}-\frac{\mathrm{C}}{2}\right.$ and $\left.\sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right]$
$=\frac{\cos \frac{C}{2} \cos \frac{A-B}{2}}{\sin \frac{C}{2} \cos \frac{C}{2}}=\frac{\cos \left(\frac{A-B}{2}\right)}{\sin \frac{C}{2}}=$ RHS
Question 4:
For any triangle ABC , prove that: $\frac{a-b}{c}=\frac{\sin \left(\frac{A-B}{2}\right)}{\cos \frac{C}{2}}$

Answer 4:

LHS $=\frac{a-b}{c}$
$=\frac{k \sin A-k \sin B}{k \sin C}$
$\left[\because\right.$ Using $\left.\frac{a}{\sin A}=\frac{\mathrm{b}}{\sin B}=\frac{\mathrm{c}}{\sin C}=\mathrm{k}\right]$
$=\frac{k(\sin A-\sin B)}{k \sin C}=\frac{2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}}{\sin C}$
$\left[\because \sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}\right]$
$=\frac{2 \cos \left(90-\frac{C}{2}\right) \sin \frac{A-B}{2}}{2 \sin \frac{C}{2} \cos \frac{C}{2}}$
$\left[\because \frac{\mathrm{A}+\mathrm{B}}{2}=90^{\circ}-\frac{\mathrm{C}}{2}\right.$ and $\left.\sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right]$
$=\frac{\sin \frac{C}{2} \sin \frac{A-B}{2}}{\sin \frac{C}{2} \cos \frac{C}{2}}=\frac{\sin \left(\frac{A-B}{2}\right)}{\cos \frac{C}{2}}=$ RHS

Question 5:

For any triangle ABC , prove that: $\sin \frac{B-C}{2}=\frac{b-c}{a} \cos \frac{A}{2}$

Answer 5:

RHS $=\frac{b-c}{a} \cos \frac{A}{2}$
$=\frac{k \sin B-k \sin C}{k \sin A} \cos \frac{A}{2} \quad\left[\because\right.$ Using $\left.\frac{a}{\sin A}=\frac{\mathrm{b}}{\sin B}=\frac{\mathrm{c}}{\sin C}=\mathrm{k}\right]$
$=\frac{k(\sin B-\sin C)}{k \sin A} \cos \frac{A}{2}=\frac{2 \cos \frac{B+C}{2} \sin \frac{B-C}{2}}{\sin A} \cos \frac{A}{2}\left[\because \sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}\right]$
$=\frac{2 \cos \left(90-\frac{A}{2}\right) \sin \frac{B-C}{2}}{2 \sin \frac{A}{2} \cos \frac{A}{2}} \cos \frac{A}{2}$
$=\frac{\sin \frac{A}{2} \sin \frac{B-C}{2}}{\sin \frac{A}{2}}=\sin \frac{B-C}{2}=$ LHS

Question 6:

For any triangle ABC , prove that: $a(b \cos C-c \cos B)=b^{2}-c^{2}$
Answer 6:
LHS $=a(b \cos C-c \cos B)$
$=a\left[b\left(\frac{\mathrm{a}^{2}+b^{2}-c^{2}}{2 \mathrm{ab}}\right)-c\left(\frac{\mathrm{a}^{2}+c^{2}-b^{2}}{2 \mathrm{ac}}\right)\right] \quad\left[\because\right.$ Using $\left.\cos A=\frac{\mathrm{b}^{2}+c^{2}-a^{2}}{2 \mathrm{bc}}\right]$
$=a\left[\frac{\mathrm{a}^{2}+b^{2}-c^{2}}{2 \mathrm{a}}-\frac{\mathrm{a}^{2}+c^{2}-b^{2}}{2 \mathrm{a}}\right]=a\left[\frac{\mathrm{a}^{2}+b^{2}-c^{2}-\mathrm{a}^{2}-c^{2}+b^{2}}{2 \mathrm{a}}\right]$
$=a\left[\frac{2\left(b^{2}-c^{2}\right)}{2 \mathrm{a}}\right]=b^{2}-c^{2}=\mathrm{RHS}$

Question 7:

For any triangle ABC , prove that: $a(\cos C-\cos B)=2(b-c) \cos ^{2} \frac{A}{2}$

Answer 7:

LHS $=a(\cos C-\cos B)$
$=a\left[\left(\frac{\mathrm{a}^{2}+b^{2}-c^{2}}{2 \mathrm{ab}}\right)-\left(\frac{\mathrm{a}^{2}+c^{2}-b^{2}}{2 \mathrm{ac}}\right)\right] \quad\left[\because\right.$ Using $\left.\cos A=\frac{\mathrm{b}^{2}+c^{2}-a^{2}}{2 \mathrm{bc}}\right]$
$=a\left[\frac{\mathrm{ca}^{2}+c b^{2}-c^{3}-b \mathrm{a}^{2}-b c^{2}+b^{3}}{2 \mathrm{abc}}\right]$
$=\frac{\mathrm{b}^{3}-c^{3}+b^{2} c-b c^{2}+a^{2} c-a^{2} b}{2 \mathrm{bc}}=\frac{(b-c)\left(\mathrm{b}^{2}+b c+c^{2}\right)+\mathrm{b} c(b-c)-a^{2}(b-c)}{2 \mathrm{bc}}$
$=(b-c)\left[\frac{b^{2}+b c+c^{2}+b c-\mathrm{a}^{2}}{2 \mathrm{bc}}\right]=(b-c)\left[\frac{2 b c}{2 \mathrm{bc}}+\frac{b^{2}+c^{2}-\mathrm{a}^{2}}{2 \mathrm{bc}}\right]$
$=(b-c)[1+\cos A]$
$=2(b-c) \cos ^{2} \frac{A}{2}=$ RHS $\quad\left[\because 1+\cos A=2 \cos ^{2} \frac{A}{2}\right]$

Question 8:

For any triangle ABC , prove that: $\frac{\sin (B-C)}{\sin (B+C)}=\frac{b^{2}-c^{2}}{a^{2}}$

Answer 8:

LHS $=\frac{\sin (B-C)}{\sin (B+C)}=\frac{\sin B \cos C-\cos B \sin C}{\sin B \cos C+\cos B \sin C}$
$=\frac{k b\left(\frac{\mathrm{a}^{2}+b^{2}-c^{2}}{2 \mathrm{ab}}\right)-\left(\frac{\mathrm{a}^{2}+c^{2}-b^{2}}{2 \mathrm{ac}}\right) k c}{k b\left(\frac{\mathrm{a}^{2}+b^{2}-c^{2}}{2 \mathrm{ab}}\right)+\left(\frac{\mathrm{a}^{2}+c^{2}-b^{2}}{2 \mathrm{ac}}\right) k c}$

$$
\left[\because \frac{a}{\sin A}=\frac{\mathrm{b}}{\sin B}=\frac{\mathrm{c}}{\sin C}=\mathrm{k} \text { and } \cos A=\frac{\mathrm{b}^{2}+c^{2}-a^{2}}{2 \mathrm{bc}}\right]
$$

$=\frac{\left(\frac{\mathrm{a}^{2}+b^{2}-c^{2}}{2 \mathrm{a}}-\frac{\mathrm{a}^{2}+c^{2}-b^{2}}{2 \mathrm{a}}\right)}{\left(\frac{\mathrm{a}^{2}+b^{2}-c^{2}}{2 \mathrm{a}}+\frac{\mathrm{a}^{2}+c^{2}-b^{2}}{2 \mathrm{ac}}\right)}=\frac{\left(\frac{\mathrm{a}^{2}+b^{2}-c^{2}-\mathrm{a}^{2}-c^{2}+b^{2}}{2 \mathrm{a}}\right)}{\left(\frac{\mathrm{a}^{2}+b^{2}-c^{2}+\mathrm{a}^{2}+c^{2}-b^{2}}{2 \mathrm{a}}\right)}=\frac{2\left(b^{2}-c^{2}\right)}{2\left(a^{2}\right)}$
$=\frac{b^{2}-c^{2}}{a^{2}}=$ RHS

Question 9:

For any triangle ABC , prove that: $(b+c) \cos \frac{B+C}{2}=\mathrm{a} \cos \frac{B-C}{2}$

Answer 9:

LHS $=(b+c) \cos \frac{B+C}{2}$
$=(k \sin B+k \sin C) \cos \frac{B+C}{2} \quad\left[\because \operatorname{Using} \frac{a}{\sin A}=\frac{\mathrm{b}}{\sin B}=\frac{\mathrm{c}}{\sin C}=\mathrm{k}\right]$
$=k(\sin B+\sin C) \cos \frac{B+C}{2}$
$=k\left(2 \sin \frac{B+C}{2} \cos \frac{B-C}{2}\right) \cos \frac{B+C}{2} \quad\left[\because \sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}\right]$
$=2 k \sin \left(90-\frac{A}{2}\right) \cos \frac{B-C}{2} \cos \left(90-\frac{A}{2}\right) \quad\left[\because \frac{\mathrm{A}+\mathrm{B}}{2}=90^{\circ}-\frac{\mathrm{C}}{2}\right]$
$=2 k \cos \frac{A}{2} \cos \frac{B-C}{2} \sin \frac{A}{2}$
$=k \sin A \cos \frac{B-C}{2}$
$\left[\because 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}=\sin \theta\right]$
$=\operatorname{acos} \frac{B-C}{2}=$ RHS

Question 10:

For any triangle ABC , prove that: a $\cos A+b \cos B+c \cos C=2 a \sin B \sin C$
Answer 10:
LHS $=a \cos A+b \cos B+c \cos C$
$=k \sin A \cos A+k \sin B \cos B+k \sin C \cos C \quad\left[\because\right.$ Using $\left.\frac{a}{\sin A}=\frac{\mathrm{b}}{\sin B}=\frac{\mathrm{c}}{\sin C}=\mathrm{k}\right]$
$=\frac{k}{2}(2 \sin A \cos A+2 \sin B \cos B+2 \sin C \cos C)$
$=\frac{k}{2}(\sin 2 A+\sin 2 B+2 \sin C \cos C)$
$=\frac{k}{2}[2 \sin (A+B) \cos (A-B)+2 \sin C \cos C] \quad\left[\because \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}\right]$
$=\frac{k}{2}[2 \sin (180-C) \cos (A-B)+2 \sin C \cos C] \quad\left[\because A+B=180^{\circ}-\mathrm{C}\right]$
$=\frac{k}{2}[2 \sin C \cos (A-B)+2 \sin C \cos C]=k \sin C[\cos (A-B)+\cos C]$
$=k \sin C[\cos (A-B)+\cos \{180-(A+B)\}] \quad\left[\because A+B+C=180^{\circ}\right]$
$=k \sin C[\cos (A-B)-\cos (A+B)]$
$=k \sin C[2 \sin A \sin B] \quad[\because \cos (A-B)-\cos (A+B)=2 \sin A \sin B]$
$=2 a \sin B \sin C=$ RHS $\quad[\because k \sin A=a]$

Question 11:

For any triangle ABC , prove that: $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$

Answer 11:

LHS $=\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}$
$=\frac{1}{a}\left(\frac{\mathrm{~b}^{2}+c^{2}-a^{2}}{2 \mathrm{bc}}\right)+\frac{1}{b}\left(\frac{\mathrm{a}^{2}+c^{2}-b^{2}}{2 \mathrm{ac}}\right)+\frac{1}{c}\left(\frac{\mathrm{a}^{2}+b^{2}-c^{2}}{2 \mathrm{ab}}\right)\left[\because\right.$ Using $\left.\cos A=\frac{\mathrm{b}^{2}+c^{2}-a^{2}}{2 \mathrm{bc}}\right]$
$=\frac{\mathrm{b}^{2}+c^{2}-a^{2}+\mathrm{a}^{2}+c^{2}-b^{2}+\mathrm{a}^{2}+b^{2}-c^{2}}{2 a b c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}=$ RHS

Question 12:

For any triangle ABC , prove that: $\left(b^{2}-c^{2}\right) \cot A+\left(c^{2}-a^{2}\right) \cot B+\left(a^{2}-b^{2}\right) \cot C=0$

Answer 12:

LHS $=\left(b^{2}-c^{2}\right) \cot A+\left(c^{2}-a^{2}\right) \cot B+\left(a^{2}-b^{2}\right) \cot C$
$=\left(b^{2}-c^{2}\right) \frac{\cos A}{\sin A}+\left(c^{2}-a^{2}\right) \frac{\cos B}{\sin B}+\left(a^{2}-b^{2}\right) \frac{\cos C}{\sin C}$
$=\left(b^{2}-c^{2}\right)\left[\frac{1}{k a}\left(\frac{\mathrm{~b}^{2}+c^{2}-a^{2}}{2 \mathrm{bc}}\right)\right]+\left(c^{2}-a^{2}\right)\left[\frac{1}{k b}\left(\frac{\mathrm{a}^{2}+c^{2}-b^{2}}{2 \mathrm{ac}}\right)\right]+\left(a^{2}-b^{2}\right)\left[\frac{1}{k c}\left(\frac{\mathrm{a}^{2}+b^{2}-c^{2}}{2 \mathrm{ab}}\right)\right]$ $\left[\because\right.$ Using $\frac{\sin A}{a}=\frac{\sin B}{\mathrm{~b}}=\frac{\sin C}{c}=\mathrm{k}$ and $\left.\cos A=\frac{\mathrm{b}^{2}+c^{2}-a^{2}}{2 \mathrm{bc}}\right]$
$=\frac{1}{k a b c}\left[\left(b^{2}-c^{2}\right)\left(\mathrm{b}^{2}+c^{2}-a^{2}\right)+\left(c^{2}-a^{2}\right)\left(\mathrm{a}^{2}+c^{2}-b^{2}\right)+\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)\right]$
$=\frac{1}{k a b c}\left[\left(\mathrm{~b}^{4}+b^{2} c^{2}-a^{2} b^{2}-\mathrm{b}^{2} c^{2}-c^{4}+c^{2} a^{2}\right)+\left(c^{2} \mathrm{a}^{2}+c^{4}-b^{2} c^{2}-\mathrm{a}^{4}-c^{2} a^{2}+a^{2} b^{2}\right)+\left(a^{4}+a^{2} b^{2}-c^{2} a^{2}-a^{2} b^{2}-b^{4}+b^{2} c^{2}\right)\right]$
$=\frac{1}{k a b c}(0)=0=$ RHS

Question 13:

For any triangle ABC , prove that: $\frac{b^{2}-c^{2}}{a^{2}} \sin 2 A+\frac{c^{2}-a^{2}}{b^{2}} \sin 2 B+\frac{a^{2}-b^{2}}{c^{2}} \sin 2 C=0$

Answer 13:

LHS $=\frac{b^{2}-c^{2}}{a^{2}} \sin 2 A+\frac{c^{2}-a^{2}}{b^{2}} \sin 2 B+\frac{a^{2}-b^{2}}{c^{2}} \sin 2 C$
$=\frac{b^{2}-c^{2}}{a^{2}} 2 \sin A \cos A+\frac{c^{2}-a^{2}}{b^{2}} 2 \sin B \cos B+\frac{a^{2}-b^{2}}{c^{2}} 2 \sin C \cos C \quad[\because \sin 2 A=2 \sin A \cos A]$
$=\left(\frac{b^{2}-c^{2}}{a^{2}}\right)\left[k a\left(\frac{\mathrm{~b}^{2}+c^{2}-a^{2}}{2 \mathrm{bc}}\right)\right]+\left(\frac{c^{2}-a^{2}}{b^{2}}\right)\left[k b\left(\frac{\mathrm{a}^{2}+c^{2}-b^{2}}{2 \mathrm{ac}}\right)\right]+\left(\frac{a^{2}-b^{2}}{c^{2}}\right)\left[k c\left(\frac{\mathrm{a}^{2}+b^{2}-c^{2}}{2 \mathrm{ab}}\right)\right]$

$$
\left[\because \text { Using } \frac{\sin A}{a}=\frac{\sin B}{\mathrm{~b}}=\frac{\sin C}{c}=\mathrm{k} \text { and } \cos A=\frac{\mathrm{b}^{2}+c^{2}-a^{2}}{2 \mathrm{bc}}\right]
$$

$=\frac{k}{a b c}\left[\left(b^{2}-c^{2}\right)\left(\mathrm{b}^{2}+c^{2}-a^{2}\right)+\left(c^{2}-a^{2}\right)\left(\mathrm{a}^{2}+c^{2}-b^{2}\right)+\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)\right]$
$=\frac{k}{a b c}\left[\left(b^{4}+b^{2} c^{2}-a^{2} b^{2}-b^{2} c^{2}-c^{4}+c^{2} a^{2}\right)+\left(c^{2} \mathrm{a}^{2}+c^{4}-b^{2} c^{2}-\mathrm{a}^{4}-c^{2} a^{2}+a^{2} b^{2}\right)+\left(a^{4}+a^{2} b^{2}-c^{2} a^{2}-a^{2} b^{2}-b^{4}+b^{2} c^{2}\right)\right]$
$=\frac{k}{a b c}(0)=0=$ RHS

