Unit 8 (Binomial Theorem)

Short Answer Type Questions:

Q1. Find the term independent of x, where x≠0, in the expansion of $\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^{15}$

Sol. Given expansion is
$$\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^{15}$$

 $\therefore \qquad T_{r+1} = {}^{15}C_r \left(\frac{3x^2}{2}\right)^{15-r} \left(-\frac{1}{3x}\right)^r$
or $T_{r+1} = {}^{15}C_r (-1)^r 3^{15-2r} 2^{r-15} x^{30-3r}$ (i)
For the term independent of $x, 30 - 3r = 0 \implies r = 10$
 \therefore The term independent of x is
 $T_{10+1} = {}^{15}C_{10} 3^{-5} 2^{-5}$ (Putting $r = 10$ in (i))
 $= {}^{15}C_{10} \left(\frac{1}{6}\right)^5$

Q2. If the term free from x is the expansion of $\left(\sqrt{x}-\frac{k}{x^2}
ight)^{10}$ is 405, then find the value of k.

Sol: Given expansion is $\left(\sqrt{x}-\frac{k}{x^2}\right)^{10}$

$$T_{r+1} = {}^{10}C_r(\sqrt{x})^{10-r} \left(\frac{-k}{x^2}\right)^r = {}^{10}C_r(x)^{\frac{1}{2}(10-r)}(-k)^r x^{-2r}$$
$$= {}^{10}C_r(x)^{5-\frac{r}{2}-2r}(-k)^r = {}^{10}C_r x^{\frac{10-5r}{2}}(-k)^r$$

For the term free from x, $\frac{10-5r}{2} = 0 \implies r=2$

So, the term free from x is $T_{2+1} = {}^{10}C_2 (-k)^2$. $\Rightarrow {}^{10}C_2 (-k)^2 = 405$

$$\Rightarrow C_2(-k)$$

$$\Rightarrow \frac{10 \times 9 \times 8!}{21 \times 9!}$$

 $\frac{10 \times 9 \times 8!}{2! \times 8!} (-k)^2 = 405$ $45k^2 = 405 \implies k^2 = 9 \quad \therefore \ k = \pm 3$ ⇒

Q3. Find the coefficient of x in the expansion of $(1 - 3x + 1x^2)(1 - x)^{16}$.

Sol:
$$(1 - 3x + 1x^2)(1 - x)^{16}$$

= $(1 - 3x + 7x^2)({}^{16}C_0 - {}^{16}C_1 x^1 + {}^{16}C_2 x^2 + ... + {}^{16}C_{16} x^{16})$
= $(1 - 3x + 7x^2)(1 - 16x + 120x^2 + ...)$
∴ Coefficient of $x = -16 - 3 = -19$

Q4. Find the term independent of x in the expansion of $\left(3x-\frac{2}{x^2}\right)^{15}$

Sol: Given Expression
$$\left(3x-\frac{2}{x^2}\right)^{15}$$

$$\therefore \quad T_{r+1} = {}^{15}C_r (3x)^{15-r} \left(\frac{-2}{x^2}\right)^r = {}^{15}C_r 3^{15-r} x^{15-3r} (-2)^r$$

For the term independent of x, $15 - 3r = 0 \implies r = 5$ The term independent of x is

$$\therefore$$
 The term independent of x is
 $T_{i} = \frac{15}{2}C_{i} \frac{215-5}{2}(2)^{5}$

$$= \frac{15 \times 14 \times 13 \times 12 \times 11 \times 10!}{5 \times 4 \times 3 \times 2 \times 1 \times 10!} \cdot 3^{10} \cdot 2^{5}$$
$$= -3003 \times 3^{10} \times 2^{5}$$

Q5. Find the middle term (terms) in the expansion of

(i)
$$\left(\frac{x}{a} - \frac{a}{x}\right)^{10}$$

(ii) $\left(3x - \frac{x^3}{6}\right)^9$
Sol. (i) Given expression is $\left(\frac{x}{a} - \frac{a}{x}\right)^{10}$
Here index, $n = 10$ (even). So, there is one middle term which is
 $\left(\frac{10}{2} + 1\right)$ th term, i.e., 6th term.
 $\therefore T_6 = T_{5+1} = {}^{10}C_5\left(\frac{x}{a}\right)^{10-5}\left(\frac{-a}{x}\right)^5$
 $= -{}^{10}C_5\left(\frac{x}{a}\right)^5\left(\frac{a}{x}\right)^5$
 $= -{}^{10}C_5\left(\frac{x}{a}\right)^5\left(\frac{a}{x}\right)^5$
 $= -{}^{10}\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5! \times 5 \times 4 \times 3 \times 2 \times 1}\left(\frac{x}{a}\right)^5\left(\frac{x}{a}\right)^{-5} = -252$

(ii) Given expression is $\left(3x - \frac{x^3}{6}\right)^9$

Here index, n = 9 (odd)

So, there are two middle terms, which are $\left(\frac{9+1}{2}\right)$ th i.e., 5th term and

$$\left(\frac{9+1}{2}+1\right) \text{th i.e., 6}^{\text{th term.}}$$

$$\therefore T_{5} = T_{4+1} = {}^{9}C_{4} (3x)^{9-4} \left(-\frac{x^{3}}{6}\right)^{4}$$

$$= \frac{9 \times 8 \times 7 \times 6 \times 5!}{4 \times 3 \times 2 \times 1 \times 5!} 3^{5} x^{5} x^{12} 6^{-4}$$

$$= \frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \times \frac{3^{5}}{3^{4} \times 2^{4}} x^{17} = \frac{189}{8} x^{17}$$

And $T_{6} = T_{5+1} = {}^{9}C_{5} (3x)^{9-5} \left(-\frac{x^{3}}{6}\right)^{5}$

$$= -\frac{9 \times 8 \times 7 \times 6 \times 5!}{5! \times 4 \times 3 \times 2 \times 1} \cdot 3^{4} \cdot x^{4} \cdot x^{15} \cdot 6^{-5} = -\frac{-21}{16} x^{19}$$

Q6. Find the coefficient of x $^{\rm 15}$ in the expansion of $\begin{pmatrix} x-x^2 & \end{pmatrix}^{10}$

Sol: Given expression is $\left(x-x^2 \quad
ight)^{10}$

 $T_{r+1} = {}^{10}C_r x^{10-r} (-x^2)^r = (-1)^{r10}C_r x^{10-r} x^{2r} = (-1)^{r10}C_r x^{10+r}$ For the coefficient of x^{15} , we have $10 + r = 15 \implies r = 5$ $T_{5+1} = (-1)^{510}C_5 x^{15}$ $Coefficient of x^{15} = -\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5 \times 4 \times 3 \times 2 \times 1 \times 5!} = -252$

Q7. Find the coefficient of $\frac{1}{x^{17}}$ in the expansion of $\left(x^4 - \frac{1}{x^3}\right)^{15}$

Sol. Given expression is $\left(x^4 - \frac{1}{x^3}\right)^{15}$

$$\therefore \quad T_{r+1} = {}^{15}C_r \left(x^4\right)^{15-r} \left(-\frac{1}{x^3}\right)^r = {}^{15}C_r x^{60-4r} \left(-1\right)^r x^{-3r} = {}^{15}C_r x^{60-7r} \left(-1\right)^r$$

For the coefficient x^{-17} , we have

$$\begin{array}{rcl} 60 - 7r = -17 & \Rightarrow & 7r = 77 & \Rightarrow & r = 11 \\ \therefore & & T_{11+1} = {}^{15}C_{11} \, x^{60-77} (-1)^{11} \end{array}$$

Coefficient of
$$x^{-17} = \frac{-15 \times 14 \times 13 \times 12 \times 11!}{11! \times 4 \times 3 \times 2 \times 1}$$

= -15 × 7 × 13 = -1365

Q8. Find the sixth term of the expansion $(y^{1/2} + x^{1/3})^n$, if the binomial coefficient of the third term from the end is 45.

Sol. Given expression is $(y^{1/2} + x^{1/3})^n$. Given that Binomial coefficient of third term from the end = 45 $\Rightarrow {}^nC_{n-2} = 45 \Rightarrow {}^nC_2 = 45 \Rightarrow \frac{n(n-1)(n-2)!}{2!(n-2)!} = 45$ $\Rightarrow n(n-1) = 90 \Rightarrow n^2 - n - 90 = 0 \Rightarrow (n-10)(n+9) = 0$ $\Rightarrow n = 10 \qquad [\because n \neq -9]$ Now, sixth term = ${}^{10}C_5 (y^{1/2})^{10-5} (x^{1/3})^5 = 252 y^{5/2} \cdot x^{5/3}$

Q9. Find the value of r, if the coefficients of (2r + 4)th and (r - 2)th terms in the expansion of $(1 + x)^{18}$ are equal.

Sol. Given expression is $(1 + x)^{18}$. Now, (2r + 4)th term, i.e., $T_{(2r+3)+1}$ \therefore $T_{(2r+3)+1} = {}^{18}C_{2r+3}(x)^{2r+3}$ And (r-2)th term, i.e., $T_{(r-3)+1}$ \therefore $T_{(r-3)+1} = {}^{18}C_{r-3}x^{r-3}$ According to the question, ${}^{18}C_{2r+3} = {}^{18}C_{r-3}$ \Rightarrow 2r+3+r-3 = 18 $[\because {}^{n}C_{x} = {}^{n}C_{y} \Rightarrow x+y=n]$ \Rightarrow $3r = 18 \therefore r = 6$

Q10. If the coefficient of second, third and fourth terms in the expansion of $(1 + x)^{2^n}$ are in A.P., then show that $2n^2 - 9n + 7 = 0$.

Sol. Given expression is $(1 + x)^{2n}$ Now, coefficient of 2^{nd} , 3^{rd} and 4^{th} terms are ${}^{2n}C_1$, ${}^{2n}C_2$ and ${}^{2n}C_3$, respectively. Given that, ${}^{2n}C_1$, ${}^{2n}C_2$ and ${}^{2n}C_3$ are in A.P. Then, $2 \cdot {}^{2n}C_2 = {}^{2n}C_1 + {}^{2n}C_3$ $\Rightarrow 2\left[\frac{2n(2n-1)(2n-2)!}{2 \times 1 \times (2n-2)!}\right] = 2n + \frac{2n(2n-1)(2n-2)(2n-3)!}{3!(2n-3)!}$ $\Rightarrow n(2n-1) = n + \frac{n(2n-1)(n-1)}{3}$ $\Rightarrow 3(2n-1) = 3 + (2n^2 - 3n + 1)$ $\Rightarrow 6n - 3 = 2n^2 - 3n + 4 \Rightarrow 2n^2 - 9n + 7 = 0$

Q11. Find the coefficient of x^4 in the expansion of $(1 + x + x^2 + x^3)^{11}$.

Sol. Given expression is $(1 + x + x^2 + x^3)^{11}$ = $[(1 + x) + x^2(1 + x)]^{11} = [(1 + x)(1 + x^2)]^{11} = (1 + x)^{11} \cdot (1 + x^2)^{11}$ = $({}^{11}C_0 + {}^{11}C_1x + {}^{11}C_2x^2 + {}^{11}C_3x^3 + {}^{11}C_4x^4 + \dots)({}^{11}C_0 + {}^{11}C_1x^2 + {}^{11}C_2x^4 + \dots)$ \therefore Coefficient of $x^4 = {}^{11}C_0 \times {}^{11}C_4 + {}^{11}C_1 \times {}^{11}C_2 + {}^{11}C_2 \times {}^{11}C_0$ = 330 + 605 + 55 = 990

Long Answer Type Questions

Q12. If p is a real number and the middle term in the expansion $\left(\frac{p}{2}+2\right)^{8}$ is 1120, then find the value of p.

Sol. Given expansion is $\left(\frac{p}{2}+2\right)^{*}$ Since index is n = 8, there is only one middle term, i.e., $\left(\frac{8}{2} + 1\right)$ th = 5th term $T_5 = T_{4+1} = {}^8C_4 \left(\frac{p}{2}\right)^{8-4} \cdot 2^4$ $\Rightarrow 1120 = {}^{8}C_{4}p^{4} \qquad \Rightarrow 1120 = \frac{8 \times 7 \times 6 \times 5 \times 4!}{4! \times 4 \times 3 \times 2 \times 1}p^{4}$ $\Rightarrow 1120 = 7 \times 2 \times 5 \times p^4 \implies p^4 = \frac{1120}{70}$ $\Rightarrow p^4 = 16 \implies p^2 = 4 \implies p = \pm 2$ 13. Show that the middle term in the expansion of $\left(x-\frac{1}{x}\right)^{2n}$ is $\frac{1 \times 3 \times 5 \times \dots \times (2n-1)}{n!} \times (-2)^n$ **Sol.** Given, expression is $\left(x - \frac{1}{x}\right)^{2n}$. Since the index is 2n, which is even. So, there is only one middle term, i.e., $\left(\frac{2n}{2}+1\right)$ th term = (n+1)th term $T_{n+1} = {}^{2n}C_n(x)^{2n-n} \left(-\frac{1}{x}\right)^n = {}^{2n}C_n(-1)^n = (-1)^n \frac{(2n!)}{n! \cdot n!}$ $= (-1)^n \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \dots (2n-1) \cdot (2n)}{n! \cdot n!} = (-1)^n \frac{[1 \cdot 3 \cdot 5 \dots (2n-1)] \cdot [2 \cdot 4 \cdot 6 \dots (2n)]}{(1 \cdot 2 \cdot 3 \dots n) \cdot n!}$ $= (-1)^n \frac{[1 \cdot 3 \cdot 5 \dots (2n-1)] \cdot 2^n [1 \cdot 2 \cdot 3 \dots n]}{(1 \cdot 2 \cdot 3 \dots n) \cdot n!} = (-2)^n \frac{[1 \cdot 3 \cdot 5 \dots (2n-1)] \cdot 2^n}{n!}$ 14. Find *n* in the binomial $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$, if the ratio of 7th term from the beginning to the 7th term from the end is $\frac{1}{6}$. **Sol.** Given expression is $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{2}}\right)^n$

Now, 7th term from beginning, $T_7 = T_{6+1} = {}^n C_6 (\sqrt[3]{2})^{n-6} \left(\frac{1}{\sqrt[3]{3}}\right)^6$ (i)

And 7th term from end is same as 7th term from the beginning of $\left(\frac{1}{\sqrt[3]{3}} + \sqrt[3]{2}\right)^n$

i.e.,
$$T_7 = {}^n C_6 \left(\frac{1}{\sqrt[3]{3}}\right)^{n-6} (\sqrt[3]{2})^6$$
 (ii)

Given that, $\frac{{}^{n}C_{6}(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)^{6}}{{}^{n}C_{6}\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}(\sqrt[3]{2})^{6}} = \frac{1}{6}$ $\Rightarrow \qquad \frac{(\sqrt[3]{2})^{n-12}}{\left(\frac{1}{\sqrt[3]{3}}\right)^{n-12}} = \frac{1}{6} \Rightarrow (\sqrt[3]{2}\sqrt[3]{3})^{n-12} = 6^{-1} \Rightarrow 6^{\frac{n-12}{3}} = 6^{-1}$ $\Rightarrow \qquad \frac{n-12}{3} = -1 \Rightarrow n = 9$

Q15. In the expansion of $(x + a)^n$, if the sum of odd term is denoted by 0 and the sum of even

(i)
$$O^2 - E^2 = (x^2 - a^2)^n$$

(ii) $4OE = (x + a)^{2n} - (x - a)^{2n}$
Sol. (i) We have $(x + a)^n = {}^nC_0x^n + {}^nC_1x^{n-1}a^1 + {}^nC_2x^{n-2}a^2 + {}^nC_3x^{n-3}a^3 + ... + {}^nC_na^n$
Sum of odd terms, $O = {}^nC_0x^n + {}^nC_2x^{n-2}a^2 + ...$
And sum of even terms, $E = {}^nC_1x^{n-1}a + {}^nC_3x^{n-3}a^3 + ...$
Since $(x + a)^n = O + E$ (i)
 $(x - a)^n = O - E$ (ii)
 $\therefore \quad (O + E)(O - E) = (x + a)^n(x - a)^n$
 $\Rightarrow \quad O^2 - E^2 = (x^2 - a^2)^n$
(ii) $4OE = (O + E)^2 - (O - E)^2 = [(x + a)^n]^2 - [(x - a)^n]^2 = (x + a)^{2n} - (x - a)^{2n}$

16. If x^p occurs in the expansion of $\left(x^2 + \frac{1}{x}\right)^{2n}$, then prove that its coefficient is

. ...

$$\frac{(2n)!}{\left(\frac{4n-p}{3}\right)!\left(\frac{2n+p}{3}\right)!}$$

Sol. Given expression is $\left(x^2 + \frac{1}{x}\right)^{2n}$.

$$\therefore \qquad T_{r+1} = {}^{2n}C_r (x^2)^{2n-r} \left(\frac{1}{x}\right)^r = {}^{2n}C_r x^{4n-3r}$$

If x^p occurs in the expansion,

Let 4n - 3r = p

$$\Rightarrow \qquad 3r = 4n - p \quad \Rightarrow \quad r = \frac{4n - p}{3}$$

$$\therefore \quad \text{Coefficient of } x^{p} = {}^{2n}C_{r} = \frac{(2n)!}{r!(2n-r)!} = \frac{(2n)!}{\left(\frac{4n-p}{3}\right)! \left(2n - \frac{4n-p}{3}\right)!}$$
$$= \frac{(2n)!}{\left(\frac{4n-p}{3}\right)! \left(\frac{2n+p}{3}\right)!}$$

 $)^9$ Q17. Find the term independent of x in the expansion of (1 + x + 2x 3) $(\frac{3}{2}x^2 - \frac{1}{3x})$

Sol. Given expansion is $(1 + x + 2x^3) \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$ Now, consider $\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$

$$T_{r+1} = {}^{9}C_r \left(\frac{3}{2}x^2\right)^{9-r} \left(-\frac{1}{3x}\right)^r = {}^{9}C_r \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^r x^{18-3r}$$

Hence, the general term in the expansion of $(1 + x + 2x^3) \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$ is:

$${}^{9}C_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r}x^{18-3r} + {}^{9}C_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r}x^{19-3r} + 2 \cdot {}^{9}C_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r}x^{21-3r}$$

For term independent of x, putting 18 - 3r = 0, 19 - 3r = 0 and 21 - 3r = 0, we get

$$r = 6, r = 7$$

Hence, second term is not independent of x. Therefore, term independent of xis:

$${}^{9}C_{6}\left(\frac{3}{2}\right)^{9-6}\left(-\frac{1}{3}\right)^{6}+2\cdot {}^{9}C_{7}\left(\frac{3}{2}\right)^{9-7}\left(-\frac{1}{3}\right)^{7}$$
$$=\frac{9\times8\times7\times6!}{6!\times3\times2}\cdot\frac{1}{2^{3}\cdot3^{3}}-2\cdot\frac{9\times8\times7!}{7!\times2\times1}\cdot\frac{3^{2}}{2^{2}}\cdot\frac{1}{3^{7}}$$
$$=\frac{84}{8}\cdot\frac{1}{3^{3}}-\frac{36}{4}\cdot\frac{2}{3^{5}}=\frac{21-4}{54}=\frac{17}{54}$$

Objective Type Questions

Q18. The total number of terms in the expansion of $(x + a)^{100} + (x - a)^{100}$ after simplification is

(a) 50 (b) 202 (c) 51 (d) none of these

Sol. (c) We have,
$$(x + a)^{100} + (x - a)^{100}$$

$$= ({}^{100}C_0x^{100} + {}^{100}C_1x^{99}a + {}^{100}C_2x^{98}a^2 + ...) + ({}^{100}C_0x^{100} - {}^{100}C_1x^{99}a + {}^{100}C_2x^{98}a^2 + ...)$$

$$= 2({}^{100}C_0x^{100} + {}^{100}C_2x^{98}a^2 + ... + {}^{100}C_{100}a^{100})$$
So, there are 51 terms.

Q19. If the integers r > 1, n > 2 and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of $(1 + x)^{2n}$ are equal, then

(a) n = 2r (b) n = 3r (c) n = 2r + 1 (d) none of these

Sol. (a) The given expression is
$$(1 + x)^{2n}$$

 \therefore $T_{3r} = T_{(3r-1)+1} = {}^{2n}C_{3r-1} x^{3r-1}$
and $T_{r+2} = T_{(r+1)+1} = {}^{2n}C_{r+1} x^{r+1}$
Given, ${}^{2n}C_{3r-1} = {}^{2n}C_{r+1}$
 \Rightarrow $3r-1+r+1=2n$ $[\because {}^{n}C_{x} = {}^{n}C_{y} \Rightarrow x+y=n]$
 \therefore $n=2r$

Q20. The two successive terms in the expansion of $(1 + x)^{24}$ whose coefficients are in the ratio 1 : 4 are

(a) 3rd and 4th

(b) 4th and 5th

(c) 5th and 6th

(d) 6th and 7th

Sol. (c) Let the two successive terms in the expansion of $(1 + x)^{24}$ be (r + 1)th and (r + 2)th terms.

Now,
$$T_{r+1} = {}^{24}C_r x^r$$
 and $T_{r+2} = {}^{24}C_{r+1}x^{r+1}$
Given that, $\frac{{}^{24}C_r}{{}^{24}C_{r+1}} = \frac{1}{4}$
 $\Rightarrow \frac{\frac{(24)!}{r!(24-r)!}}{\frac{(24)!}{(r+1)!(24-r-1)!}} = \frac{1}{4} \Rightarrow \frac{(r+1)r!(23-r)!}{r!(24-r)(23-r)!} = \frac{1}{4} \Rightarrow \frac{r+1}{24-r} = \frac{1}{4}$
 $\Rightarrow 4r+4 = 24-r \Rightarrow r=4$
 $\therefore T_{4+1} = T_5$ and $T_{4+2} = T_6$
Hence, 5th and 6th terms.

Q21. The coefficients of x^n in the expansion of $(1 + x)^{2n}$ and $(1 + x)^{2n} \sim^1$ are in the ratio (a) 1 : 2 (b) 1 : 3

(c) 3 : 1

(d) 2:1

Sol. (d) Coefficient of x^n in the expansion of $(1 + x)^{2n} = {}^{2n}C_n$ Coefficient of x^n in the expansion of $(1 + x)^{2n-1} = {}^{2n-1}C_n$

$$\therefore \qquad \frac{\frac{2n}{2n-1}C_n}{\frac{2n-1}{2n-1}C_n} = \frac{\frac{(2n)!}{n!n!}}{\frac{(2n-1)!}{n!(n-1)!}} = \frac{(2n)!n!(n-1)!}{n!n!(2n-1)!}$$
$$= \frac{2n(2n-1)!n!(n-1)!}{n!n(n-1)!(2n-1)!} = \frac{2n}{n} = \frac{2}{1} = 2:1$$

Q22. If the coefficients of 2^{nd} , 3^{rd} and the 4^{th} terms in the expansion of $(1 + x)^n$ are in A.P., then the value of n is

(a) 2

(b) 7

(c) 11

(d) 14

Sol. (b)
$$(1 + x)^n = {}^nC_0 + {}^nC_1 x + {}^nC_2 x^2 + {}^nC_3 x^3 + \dots + {}^nC_n x^n$$

So, coefficients of 2^{nd} , 3^{rd} and 4^{th} terms are nC_1 , nC_2 and nC_3 , respectively.
Given that, nC_1 , nC_2 and nC_3 are in A.P.
 $\therefore 2{}^nC_2 = {}^nC_1 + {}^nC_3$
 $\Rightarrow 2\left[\frac{n!}{(n-2)!2!}\right] = n + \frac{n!}{3!(n-3)!}$
 $\Rightarrow 2\left[\frac{n(n-1)}{2!}\right] = n + \frac{n(n-1)(n-2)}{3!} \Rightarrow (n-1) = 1 + \frac{(n-1)(n-2)}{6}$
 $\Rightarrow 6n - 6 = 6 + n^2 - 3n + 2 \Rightarrow n^2 - 9n + 14 = 0 \Rightarrow (n-7)(n-2) = 0$
 $\therefore n = 2 \text{ or } n = 7$
Since $n = 2$ is not possible, so $n = 7$.

Q23. If A and B are coefficients of x^n in the expansions of $(1 + x)^{2n}$ and $(1 + x)^{2n-1}$ respectively, then A/B equals to

(a) 1 (b) 2 (c)
$$\frac{1}{2}$$
 (d) $\frac{1}{n}$

Sol. (b) The coefficient of x^n in the expansion of $(1 + x)^{2n}$ is ${}^{2n}C_n$.

 $\therefore \qquad A = {}^{2n}C_n$ The coefficient of x^n in the expansion of $(1 + x)^{2n-1}$ is ${}^{2n-1}C_n$. $\therefore \qquad B = {}^{2n-1}C_n$ $\therefore \qquad \frac{A}{B} = \frac{{}^{2n}C_n}{{}^{2n-1}C} = \frac{2}{1} = 2$

24. If the middle term of
$$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}^{10}$$
 is equal to $7\frac{7}{2}$, then the

24. If the middle term of $\left(\frac{1}{x} + x \sin x\right)^{-1}$ is equal to $7\frac{7}{8}$, then the value of x is

(a)
$$2n\pi + \frac{\pi}{6}$$
 (b) $n\pi + \frac{\pi}{6}$ (c) $n\pi + (-1)^n \frac{\pi}{6}$ (d) $n\pi + (-1)^n \frac{\pi}{3}$

Sol. (c) Given expression is $\left(\frac{1}{x} + x \sin x\right)^{10}$.

Since, n = 10 (even), so there is only one middle term which is, 6^{th} term.

$$\therefore \qquad T_6 = T_{5+1} = {}^{10}C_5 \left(\frac{1}{x}\right)^{10-5} (x \sin x)^5$$

$$\Rightarrow \qquad \frac{63}{8} = {}^{10}C_5 \sin^5 x \qquad \text{(given)}$$

$$\Rightarrow \qquad \frac{63}{8} = 252 \times \sin^5 x \Rightarrow \sin^5 x = \frac{1}{32} \Rightarrow \sin x = \frac{1}{2} \Rightarrow \sin x = \sin \frac{\pi}{6}$$

$$\Rightarrow \qquad x = n\pi + (-1)^n \frac{\pi}{6}$$

- 25. The largest coefficient in the expansion of $(1 + x)^{30}$ is _____. Sol. Largest coefficient in the expansion of $(1 + x)^{30} = {}^{30}C_{30/2} = {}^{30}C_{15}$
- 26. The number of terms in the expansion of $(x + y + z)^n$ _____.

Sol. $(x + y + z)^n = [x + (y + z)]^n$

$$= {}^{n}C_{0}x^{n} + {}^{n}C_{1}x^{n-1}(y+z) + {}^{n}C_{2}x^{n-2}(y+z)^{2} + \dots + {}^{n}C_{n}(y+z)^{n}$$

:. Number of terms in expansion = 1 + 2 + 3 + ... + n + (n + 1)

$$=\frac{(n+1)(n+2)}{2}$$

27. In the expansion of $\left(x^2 - \frac{1}{x^2}\right)^{16}$, the value of constant term is _____.

Sol.
$$T_{r+1} = {}^{16}C_r (x^2) {}^{16-r} \left(-\frac{1}{x^2} \right)^r = {}^{16}C_r x^{32-4r} (-1)^r$$

For constant term, $32 - 4r = 0 \implies r = 8$
 $\therefore \qquad T_{8+1} = {}^{16}C_8$

28. If the seventh term from the beginning and the end in the expansion of $(1)^n$

$$\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)$$
 are equal, then *n* equals to _____.

Sol. Given expression is
$$\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$$
.

According to the question,

$$\frac{{}^{n}C_{6}(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)^{6}}{{}^{n}C_{6}\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}(\sqrt[3]{2})^{6}} = 1$$

(Refer the solution of Q. 14)

$$\Rightarrow \qquad (\sqrt[3]{2}\sqrt[3]{3})^{n-12} = 1 \quad \Rightarrow \quad 6^{\frac{n-12}{3}} = 6^0 \quad \Rightarrow \quad \frac{n-12}{3} = 0$$
$$\Rightarrow \qquad n = 12$$

29. The coefficient of $a^{-6}b^4$ in the expansion of $\left(\frac{1}{a} - \frac{2b}{3}\right)^{10}$ is _____.

Sol. Given expression is $\left(\frac{1}{a} - \frac{2b}{3}\right)^{10}$.

:.
$$T_{r+1} = {}^{10}C_r \left(\frac{1}{a}\right)^{10-r} \left(-\frac{2b}{3}\right)^r$$

For coefficient of $a^{-6}b^4$, $10 - r = 6 \implies r = 4$

Coefficient of
$$a^{-6}b^4 = {}^{10}C_4 (-2/3)^4 = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6!}{6! \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{2^4}{3^4} = \frac{1120}{27}$$

- **30.** Middle term in the expansion of $(a^3 + ba)^{28}$ is _____.
- Sol. Given expression is $(a^3 + ba)^{28}$.

Since index is n = 28 (even)

So, there is only one middle term which is $\left(\frac{28}{2}+1\right)$ th term or 15th term.

:. Middle term,
$$T_{15} = T_{14+1} = {}^{28}C_{14} (a^3)^{28-14} (ba)^{14}$$

= ${}^{28}C_{14} a^{42} b^{14} a^{14} = {}^{28}C_{14} a^{56} b^{14}$

31. The ratio of the coefficients of x^p and x^q in the expansion of $(1 + x)^{p+q}$ is

Sol. Given expression is $(1 + x)^{p+q}$.

 $\therefore \qquad \text{Coefficient of } x^{p=p+q}C_p$ And coefficient of $x^q = {}^{p+q}C_q$

$$\therefore \qquad \frac{\frac{p+q}{C_p}}{\frac{p+q}{C_q}} = \frac{\frac{p+q}{C_p}}{\frac{p+q}{C_p}} = 1:1$$

32. The position of the term independent of x in the expansion of $\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$

Sol. Given expression is $\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$.

is _____.

$$\therefore \qquad T_{r+1} = {}^{10}C_r \left(\sqrt{\frac{x}{3}}\right)^{10} \left(\frac{3}{2x^2}\right)^r$$

For constant term, $10 - 5r = 0 \implies r = 2$ Hence, third term is independent of x.

Hence, third term is independent of x.

33. If 25^{15} is divided by 13, then the remainder is _____. Sol. $25^{15} = (26-1)^{15} = {}^{15}C_026^{15} - {}^{15}C_126^{14} + \dots + {}^{15}C_{14}26 - {}^{15}C_{15}$ $= ({}^{15}C_026^{15} - {}^{15}C_126^{14} + \dots + {}^{15}C_{14}26 - {}^{13}) + 12$

Clearly, when 25¹⁵ is divided by 13, then remainder will be 12.