Unit 8 (Binomial Theorem)

Short Answer Type Questions:

Q1. Find the term independent of \mathbf{x}, where $\mathbf{x} \neq \mathbf{0}$, in the expansion of $\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{15}$

Sol. Given expansion is $\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{15}$

$$
\begin{array}{ll}
\therefore & T_{r+1}={ }^{15} C_{r}\left(\frac{3 x^{2}}{2}\right)^{15-r}\left(-\frac{1}{3 x}\right)^{r} \\
\text { or } & T_{r+1}={ }^{15} C_{r}(-1)^{r} 3^{15-2 r} 2^{r-15} x^{30-3 r} \tag{i}
\end{array}
$$

For the term independent of $x, 30-3 r=0 \Rightarrow r=10$
\therefore The term independent of x is

$$
\begin{aligned}
T_{10+1} & ={ }^{15} C_{10} 3^{-5} 2^{-5} \\
& ={ }^{15} C_{10}\left(\frac{1}{6}\right)^{5}
\end{aligned}
$$

Q2. If the term free from x is the expansion of $\left(\sqrt{x}-\frac{k}{x^{2}}\right)^{10}$ is 405 , then find the value of k.

Sol: Given expansion is $\left(\sqrt{x}-\frac{k}{x^{2}}\right)^{10}$

$$
\begin{aligned}
\therefore \quad T_{r+1}={ }^{10} C_{r}(\sqrt{x})^{10-r}\left(\frac{-k}{x^{2}}\right)^{r} & ={ }^{10} C_{r}(x)^{\frac{1}{2}(10-r)}(-k)^{r} x^{-2 r} \\
& ={ }^{10} C_{r}(x)^{5-\frac{r}{2}-2 r}(-k)^{r}={ }^{10} C_{r} x^{\frac{10-5 r}{2}}(-k)^{r}
\end{aligned}
$$

For the term free from $x, \frac{10-5 r}{2}=0 \Rightarrow r=2$
So, the term free from x is $T_{2+1}={ }^{10} C_{2}(-\hat{k})^{2}$.
$\Rightarrow \quad{ }^{10} C_{2}(-k)^{2}=405$
$\Rightarrow \quad \frac{10 \times 9 \times 8!}{2!\times 8!}(-k)^{2}=405$
$\Rightarrow \quad 45 k^{2}=405 \Rightarrow k^{2}=9 \quad \therefore k= \pm 3$

Q3. Find the coefficient of x in the expansion of $\left(1-3 x+1 x^{2}\right)(1-x)^{16}$.
Sol: $\left(1-3 x+1 x^{2}\right)(1-x)^{16}$

$$
\begin{aligned}
& =\left(1-3 x+7 x^{2}\right)\left({ }^{16} C_{0}-{ }^{16} C_{1} x^{1}+{ }^{16} C_{2} x^{2}+\ldots+{ }^{16} C_{16} x^{16}\right) \\
& =\left(1-3 x+7 x^{2}\right)\left(1-16 x+120 x^{2}+\ldots\right)
\end{aligned}
$$

$\therefore \quad$ Coefficient of $x=-16-3=-19$

Q4. Find the term independent of x in the expansion of $\left(3 x-\frac{2}{x^{2}}\right)^{15}$
Sol: Given Expression $\left(3 x-\frac{2}{x^{2}}\right)^{15}$
$\therefore \quad \mathrm{T}_{r+1}={ }^{15} C_{r}(3 x)^{15-r}\left(\frac{-2}{x^{2}}\right)^{r}={ }^{15} C_{r} 3{ }^{15-r} x^{15-3 r}(-2)^{r}$
For the term independent of $x, 15-3 r=0 \Rightarrow r=5$
\therefore The term independent of x is

$$
\begin{aligned}
& T_{5+1}={ }^{15} C_{5} 3^{15-5}(-2)^{5} \\
& =\frac{15 \times 14 \times 13 \times 12 \times 11 \times 10!}{5 \times 4 \times 3 \times 2 \times 1 \times 10!} \cdot 3^{10} \cdot 2^{5} \\
& =-3003 \times 3^{10} \times 2^{5}
\end{aligned}
$$

Q5. Find the middle term (terms) in the expansion of
(i) $\left(\frac{x}{a}-\frac{a}{x}\right)^{\mathrm{i} 0}$
(ii) $\left(3 x-\frac{x^{3}}{6}\right)^{9}$

Sol. (i) Given expression is $\left(\frac{x}{a}-\frac{a}{x}\right)^{10}$
Here index, $n=10$ (even). So, there is one middle term which is $\left(\frac{10}{2}+1\right)$ th term, i.e., 6th term.

$$
\begin{aligned}
\therefore \quad T_{6}=T_{5+1} & ={ }^{10} C_{5}\left(\frac{x}{a}\right)^{10-5}\left(\frac{-a}{x}\right)^{5} \\
& =-{ }^{10} C_{5}\left(\frac{x}{a}\right)^{5}\left(\frac{a}{x}\right)^{5} \\
& =-\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5!\times 5 \times 4 \times 3 \times 2 \times 1}\left(\frac{x}{a}\right)^{5}\left(\frac{x}{a}\right)^{-5}=-252
\end{aligned}
$$

(ii) Given expression is $\left(3 x-\frac{x^{3}}{6}\right)^{9}$

Here index, $n=9$ (odd)
So, there are two middle terms, which are $\left(\frac{9+1}{2}\right)$ th i.e., $5^{\text {th }}$ term and $\left(\frac{9+1}{2}+1\right)$ th i.e., $6^{\text {th }}$ term.
$\therefore \quad T_{5}=T_{4+1}={ }^{9} C_{4}(3 x)^{9-4}\left(-\frac{x^{3}}{6}\right)^{4}$
$=\frac{9 \times 8 \times 7 \times 6 \times 5!}{4 \times 3 \times 2 \times 1 \times 5!} 3^{5} x^{5} x^{12} 6^{-4}$
$=\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \times \frac{3^{5}}{3^{4} \times 2^{4}} x^{17}=\frac{189}{8} x^{17}$
And $T_{6}=T_{5+1}={ }^{9} C_{5}(3 x)^{9-5}\left(-\frac{x^{3}}{6}\right)^{5}$
$=-\frac{9 \times 8 \times 7 \times 6 \times 5!}{5!\times 4 \times 3 \times 2 \times 1} \cdot 3^{4} \cdot x^{4} \cdot x^{15} \cdot 6^{-5}=-\frac{-21}{16} x^{19}$

Q6. Find the coefficient of x^{15} in the expansion of $\left(\begin{array}{ll}x-x^{2} &)^{10}\end{array}\right.$
Sol: Given expression is $\left(x-x^{2}\right)^{10}$
$\therefore T_{r+1}={ }^{10} \mathrm{C}_{r} x^{10-r}\left(-x^{2}\right)^{r}=(-1)^{r 10} \mathrm{C}_{1} x^{10-r_{2} x^{2 r}}=(-1)^{r 10} \mathrm{C}_{r} x^{10+r}$
For the coefficient of x^{15}, we have

$$
\begin{array}{ll}
& 10+r=15 \Rightarrow r=5 \\
\therefore & T_{5+1}=(-1)^{510} C_{5} x^{15} \\
\therefore & \text { Coefficient of } x^{15}=-\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5 \times 4 \times 3 \times 2 \times 1 \times 5!}=-252
\end{array}
$$

Q7. Find the coefficient of $\frac{1}{x^{17}}$ in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$
Sol. Given expression is $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$

$$
\therefore \quad T_{r+1}={ }^{15} C_{r}\left(x^{4}\right)^{15-r}\left(-\frac{1}{x^{3}}\right)^{r}={ }^{15} C_{r} x^{60-4 r}(-1)^{r} x^{-3 r}={ }^{15} C_{r} x^{60-7 r}(-1)^{r}
$$

For the coefficient x^{-17}, we have

$$
\begin{array}{ll}
\therefore & 60-7 r=-17 \Rightarrow 7 r=77 \Rightarrow r=11 \\
\therefore & T_{11+1}={ }^{15} C_{11} x^{60-77}(-1)^{11} \\
\therefore & \\
& \text { Coefficient of } x^{-17}=\frac{-15 \times 14 \times 13 \times 12 \times 11!}{11!\times 4 \times 3 \times 2 \times 1} \\
& =-15 \times 7 \times 13=-1365
\end{array}
$$

Q8. Find the sixth term of the expansion $\left(y^{1 / 2}+x^{1 / 3}\right)^{n}$, if the binomial coefficient of the third term from the end is 45 .

Sol. Given expression is $\left(y^{1 / 2}+x^{1 / 3}\right)^{n}$.
Given that
Binomial coefficient of third term from the end $=45$

$$
\begin{array}{llll}
\Rightarrow & { }^{n} C_{n-2}=45 & \Rightarrow{ }^{n} C_{2}=45 & \Rightarrow \frac{n(n-1)(n-2)!}{2!(n-2)!}=45 \\
\Rightarrow & n(n-1)=90 & \Rightarrow n^{2}-n-90=0 & \Rightarrow(n-10)(n+9)=0 \\
\Rightarrow & n=10 & {[\because n \neq-9]} &
\end{array}
$$

$>\quad$ Now, sixth term $={ }^{10} C_{5}\left(y^{1 / 2}\right)^{10-5}\left(x^{1 / 3}\right)^{5}=252 y^{5 / 2} \cdot x^{5 / 3}$

Q9. Find the value of r, if the coefficients of $(2 r+4)$ th and $(r-2)$ th terms in the expansion of $(1+x)^{18}$ are equal.

Sol. Given expression is $(1+x)^{18}$.
Now, $(2 r+4)$ th term, i.e., $T_{(2 r+3)+1}$

$$
\therefore \quad T_{(2 r+3)+1}={ }^{18} C_{2 r+3}(x)^{2 r+3}
$$

And $(r-2)$ th term, i.e., $T_{(r-3)+1}$
$\therefore \quad T_{(r-3)+1}={ }^{18} C_{r-3} x^{r-3}$
According to the question,

$$
\begin{array}{ll}
& { }^{18} C_{2 r+3}={ }^{18} C_{r-3} \\
\Rightarrow & 2 r+3+r-3=18 \\
\Rightarrow & 3 r=18 \quad \therefore \quad r=6
\end{array} \quad\left[\because{ }^{n} C_{x}={ }^{n} C_{y} \Rightarrow x+y=n\right]
$$

Q10. If the coefficient of second, third and fourth terms in the expansion of $(1+x)^{2 \prime \prime}$ are in A.P., then show that $2 n^{2}-9 n+7=0$.

Sol. Given expression is $(1+x)^{2 n}$
Now, coefficient of $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ terms are ${ }^{2 n} C_{1},{ }^{2 n} C_{2}$ and ${ }^{2 n} C_{3}$, respectively.
Given that, ${ }^{2 n} C_{1},{ }^{2 n} C_{2}$ and ${ }^{2 n} C_{3}$ are in A.P.
Then, $\quad 2 \cdot{ }^{2 n} C_{2}={ }^{2 n} C_{1}+{ }^{2 n} C_{3}$

$$
\begin{array}{ll}
\Rightarrow & 2\left[\frac{2 n(2 n-1)(2 n-2)!}{2 \times 1 \times(2 n-2)!}\right]=2 n+\frac{2 n(2 n-1)(2 n-2)(2 n-3)!}{3!(2 n-3)!} \\
\Rightarrow & n(2 n-1)=n+\frac{n(2 n-1)(n-1)}{3} \\
\Rightarrow & 3(2 n-1)=3+\left(2 n^{2}-3 n+1\right) \\
\Rightarrow & 6 n-3=2 n^{2}-3 n+4 \Rightarrow 2 n^{2}-9 n+7=0
\end{array}
$$

Q11. Find the coefficient of x^{4} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{11}$.

Sol. Given expression is $\left(1+x+x^{2}+x^{3}\right)^{11}$

$$
\begin{aligned}
& =\left[(1+x)+x^{2}(1+x)\right]^{11}=\left[(1+x)\left(1+x^{2}\right)\right]^{11}=(1+x)^{11} \cdot\left(1+x^{2}\right){ }^{11} \\
& =\left({ }^{11} C_{0}+{ }^{11} C_{1} x+{ }^{11} C_{2} x^{2}+{ }^{11} C_{3} x^{3}+{ }^{11} C_{4} x^{4}+\ldots\right)\left({ }^{11} C_{0}+{ }^{11} C_{1} x^{2}+{ }^{11} C_{2} x^{4}+\ldots\right) \\
& \therefore \quad \text { Coefficient of } x^{4}={ }^{11} C_{0} \times{ }^{11} C_{4}+{ }^{11} C_{1} \times{ }^{11} C_{2}+{ }^{11} C_{2} \times{ }^{11} C_{0} \\
& \\
& =330+605+55=990
\end{aligned}
$$

Long Answer Type Questions

Q12. If p is a real number and the middle term in the expansion $\left(\frac{p}{2}+2\right)^{8}$ is 1120 , then find the value of p.

Sol. Given expansion is $\left(\frac{p}{2}+2\right)^{8}$
Since index is $n=8$, there is only one middle term, i.e., $\left(\frac{8}{2}+1\right) \mathrm{th}=5^{\text {th }}$ term

$$
\begin{aligned}
& T_{5}=T_{4+1}={ }^{8} C_{4}\left(\frac{p}{2}\right)^{8-4} \cdot 2^{4} \\
\Rightarrow \quad & 1120={ }^{8} C_{4} p^{4}
\end{aligned} \quad \Rightarrow 1120=\frac{8 \times 7 \times 6 \times 5 \times 4!}{4!\times 4 \times 3 \times 2 \times 1} p^{4} .
$$

13. Show that the middle term in the expansion of $\left(x-\frac{1}{x}\right)^{2 n}$ is $\frac{1 \times 3 \times 5 \times \ldots \times(2 n-1)}{n!} \times(-2)^{n}$.
Sol. Given, expression is $\left(x-\frac{1}{x}\right)^{2 n}$.
Since the index is $2 n$, which is even. So, there is only one middle term, i.e., $\left(\frac{2 n}{2}+1\right)$ th term $=(n+1)$ th term

$$
\begin{aligned}
T_{n+1} & ={ }^{2 n} C_{n}(x)^{2 n-n}\left(-\frac{1}{x}\right)^{n}={ }^{2 n} C_{n}(-1)^{n}=(-1)^{n} \frac{(2 n!)}{n!\cdot n!} \\
& =(-1)^{n} \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \ldots(2 n-1) \cdot(2 n)}{n!\cdot n!}=(-1)^{n} \frac{[1 \cdot 3 \cdot 5 \ldots(2 n-1)] \cdot[2 \cdot 4 \cdot 6 \ldots(2 n)]}{(1 \cdot 2 \cdot 3 \ldots n) \cdot n!} \\
& =(-1)^{n} \frac{[1 \cdot 3 \cdot 5 \ldots(2 n-1)] \cdot 2^{n}[1 \cdot 2 \cdot 3 \ldots n]}{(1 \cdot 2 \cdot 3 \ldots n) \cdot n!}=(-2)^{n} \frac{[1 \cdot 3 \cdot 5 \ldots(2 n-1)] \cdot 2^{n}}{n!}
\end{aligned}
$$

14. Find n in the binomial $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$, if the ratio of $7^{\text {th }}$ term from the beginning to the $7^{\text {th }}$ term from the end is $\frac{1}{6}$.
Sol. Given expression is $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$
Now, $7^{\text {th }}$ term from beginning, $T_{7}=T_{6+1}={ }^{n} C_{6}(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)^{6}$
And $7^{\text {th }}$ term from end is same as $7^{\text {th }}$ term from the beginning of $\left(\frac{1}{\sqrt[3]{3}}+\sqrt[3]{2}\right)^{n}$

$$
\begin{equation*}
\text { i.e., } \quad T_{7}={ }^{n} C_{6}\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}(\sqrt[3]{2})^{6} \tag{ii}
\end{equation*}
$$

Given that, $\frac{{ }^{n} C_{6}(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)^{6}}{{ }^{n} C_{6}\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}(\sqrt[3]{2})^{6}}=\frac{1}{6}$

$$
\Rightarrow \quad \frac{(\sqrt[3]{2})^{n-12}}{\left(\frac{1}{\sqrt[3]{3}}\right)^{n-12}}=\frac{1}{6} \Rightarrow(\sqrt[3]{2} \sqrt[3]{3})^{n-12}=6^{-1} \Rightarrow 6^{\frac{n-12}{3}}=6^{-1}
$$

$$
\Rightarrow \quad \frac{n-12}{3}=-1 \Rightarrow n=9
$$

term by Then, prove that
(i) $O^{2}-E^{2}=\left(x^{2}-a^{2}\right)^{n}$
(ii) $4 O E=(x+a)^{2 n}-(x-a)^{2 n}$

Sol. (i) We have $(x+a)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} a^{1}+{ }^{n} C_{2} x^{n-2} a^{2}+{ }^{n} C_{3} x^{n-3} a^{3}+\ldots$
$+{ }^{n} C_{n} a^{n}$
Sum of odd terms, $O={ }^{n} C_{0} x^{n}+{ }^{n} C_{2} x^{n-2} a^{2}+\ldots$
And sum of even terms, $E={ }^{n} C_{1} x^{n-1} a+{ }^{n} C_{3} x^{n-3} a^{3}+\ldots$
Since $(x+a)^{n}=O+E$
$(x-a)^{n}=O-E$

$$
\begin{equation*}
\therefore \quad(O+E)(O-E)=(x+a)^{n}(x-a)^{n} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow \quad O^{2}-E^{2}=\left(x^{2}-a^{2}\right)^{n} \tag{ii}
\end{equation*}
$$

(ii) $4 O E=(O+E)^{2}-(O-E)^{2}=\left[(x+a)^{n}\right]^{2}-\left[(x-a)^{n}\right]^{2}=(x+a)^{2 n}-(x-a)^{2 n}$
16. If x^{p} occurs in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{2 n}$, then prove that its coefficient is

$$
\frac{(2 n)!}{\left(\frac{4 n-p}{3}\right)!\left(\frac{2 n+p}{3}\right)!}
$$

Sol. Given expression is $\left(x^{2}+\frac{1}{x}\right)^{2 n}$.

$$
\therefore \quad T_{r+1}={ }^{2 n} C_{r}\left(x^{2}\right)^{2 n-r}\left(\frac{1}{x}\right)^{r}={ }^{2 n} C_{r} x^{4 n-3 r}
$$

If x^{p} occurs in the expansion,
Let $4 n-3 r=p$

$$
\Rightarrow \quad 3 r=4 n-p \Rightarrow r=\frac{4 n-p}{3}
$$

$$
\therefore \quad \text { Coefficient of } x^{p}={ }^{2 n} C_{r}=\frac{(2 n)!}{r!(2 n-r)!}=\frac{(2 n)!}{\left(\frac{4 n-p}{3}\right)!\left(2 n-\frac{4 n-p}{3}\right)!}
$$

$$
=\frac{(2 n)!}{\left(\frac{4 n-p}{3}\right)!\left(\frac{2 n+p}{3}\right)!}
$$

Q17. Find the term independent of x in the expansion of $\left(1+\mathrm{x}+2 \mathrm{x}^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x} \quad\right)^{9}$

Sol. Given expansion is $\left(1+x+2 x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$
Now, consider $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$

$$
T_{r+1}={ }^{9} C_{r}\left(\frac{3}{2} x^{2}\right)^{9-r}\left(-\frac{1}{3 x}\right)^{r}={ }^{9} C_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r} x^{18-3 r}
$$

Hence, the general term in the expansion of $\left(1+x+2 x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ is:

$$
\begin{aligned}
& { }^{9} C_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r} x^{18-3 r}+{ }^{9} C_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r} x^{19-3 r} \\
& +2 \cdot{ }^{9} C_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r} x^{21-3 r}
\end{aligned}
$$

For term independent of x, putting $18-3 r=0,19-3 r=0$ and $21-3 r=0$, we get

$$
r=6, r=7
$$

Hence, second term is not independent of x. Therefore, term independent of x is:

$$
\begin{aligned}
& { }^{9} C_{6}\left(\frac{3}{2}\right)^{9-6}\left(-\frac{1}{3}\right)^{6}+2 \cdot{ }^{9} C_{7}\left(\frac{3}{2}\right)^{9-7}\left(-\frac{1}{3}\right)^{7} \\
& \quad=\frac{9 \times 8 \times 7 \times 6!}{6!\times 3 \times 2} \cdot \frac{1}{2^{3} \cdot 3^{3}}-2 \cdot \frac{9 \times 8 \times 7!}{7!\times 2 \times 1} \cdot \frac{3^{2}}{2^{2}} \cdot \frac{1}{3^{7}} \\
& =\frac{84}{8} \cdot \frac{1}{3^{3}}-\frac{36}{4} \cdot \frac{2}{3^{5}}=\frac{21-4}{54}=\frac{17}{54}
\end{aligned}
$$

Objective Type Questions

Q18. The total number of terms in the expansion of $(x+a)^{100}+(x-a)^{100}$ after simplification is
(a) 50
(b) 202
(c) 51
(d) none of these

Sol. (c) We have, $(x+a)^{100}+(x-a)^{100}$

$$
\begin{aligned}
= & \left({ }^{100} C_{0} x^{100}+{ }^{100} C_{1} x^{99} a+{ }^{100} C_{2} x^{98} a^{2}+\ldots\right) \\
& +\left({ }^{100} C_{0} x^{100}-{ }^{100} C_{1} x^{99} a+{ }^{100} C_{2} x^{98} a^{2}+\ldots\right) \\
= & 2\left({ }^{100} C_{0} x^{100}+{ }^{100} C_{2} x^{98} a^{2}+\ldots+{ }^{100} C_{100} a^{100}\right)
\end{aligned}
$$

So, there are 51 terms.

Q19. If the integers $r>1, n>2$ and coefficients of (3 r)th and $(\mathrm{r}+2)$ nd terms in the binomial expansion of $(1+x)^{2 n}$ are equal, then
(a) $n=2 r$
(b) $n=3 r$
(c) $n=2 r+1$
(d) none of these

Sol. (a) The given expression is $(1+x)^{2 n}$

$$
\begin{array}{lll}
\therefore & T_{3 r}=T_{(3 r-1)+1}{ }^{2 n} \mathrm{C}_{3 r-1} x^{3 r-1} & \\
\text { and } \quad T_{r+2}=T_{(r+1)+1}={ }^{2 n} \mathrm{C}_{r+1} 1^{x^{+1}} & \\
\text { Given, }{ }^{2 n} C_{3 r-1}={ }^{2 n} C_{r+1} & \\
\Rightarrow \quad 3 r-1+r+1=2 n & \quad\left[\because{ }^{n} \mathrm{C}_{x}={ }^{n} \mathrm{C}_{y} \Rightarrow x+y=n\right] \\
\therefore \quad n=2 r & n &
\end{array}
$$

Q20. The two successive terms in the expansion of $(1+x)^{24}$ whose coefficients are in the ratio 1:4 are
(a) $3^{\text {rd }}$ and $4^{\text {th }}$
(b) $4^{\text {th }}$ and $5^{\text {th }}$
(c) $5^{\text {th }}$ and $6^{\text {th }}$
(d) $6^{\text {th }}$ and $7^{\text {th }}$

Sol. (c) Let the two successive terms in the expansion of $(1+x)^{24}$ be $(r+1)$ th and $(r+2)$ th terms.
Now, $T_{r+1}={ }^{24} C_{r} x^{r}$ and $T_{r+2}={ }^{24} C_{r+1} x^{r+1}$
Given that, $\frac{{ }^{24} C_{r}}{{ }^{24} C_{r+1}}=\frac{1}{4}$
$\Rightarrow \frac{\frac{(24)!}{r!(24-r)!}}{\frac{(24)!}{(r+1)!(24-r-1)!}}=\frac{1}{4} \Rightarrow \frac{(r+1) r!(23-r)!}{r!(24-r)(23-r)!}=\frac{1}{4} \Rightarrow \frac{r+1}{24-r}=\frac{1}{4}$
$\Rightarrow 4 r+4=24-r \Rightarrow r=4$
$\therefore \quad T_{4+1}=T_{5}$ and $T_{4+2}=T_{6}$
Hence, $5^{\text {th }}$ and $6^{\text {th }}$ terms.

Q21. The coefficients of x^{n} in the expansion of $(1+x)^{2 n}$ and $(1+x)^{2 n} \sim^{1}$ are in the ratio
(a) $1: 2$
(b) $1: 3$
(c) $3: 1$
(d) $2: 1$

Sol. (d) Coefficient of x^{n} in the expansion of $(1+x)^{2 n}={ }^{2 n} \mathrm{C}_{n}$
Coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}={ }^{2 n-1} \mathrm{C}_{n}$

$$
\begin{aligned}
\therefore \quad \begin{aligned}
\frac{{ }^{2 n} C_{n}}{{ }^{2 n-1} C_{n}}=\frac{\frac{(2 n)!}{n!n!}}{\frac{(2 n-1)!}{n!(n-1)!}} & =\frac{(2 n)!n!(n-1)!}{n!n!(2 n-1)!} \\
& =\frac{2 n(2 n-1)!n!(n-1)!}{n!n(n-1)!(2 n-1)!}=\frac{2 n}{n}=\frac{2}{1}=2: 1
\end{aligned}
\end{aligned}
$$

Q22. If the coefficients of $2^{\text {nd }}, 3^{\text {rd }}$ and the $4^{\text {th }}$ terms in the expansion of $(1+x)^{\text {n }}$ are in A.P., then the value of n is
(a) 2
(b) 7
(c) 11
(d) 14

Sol. (b) $(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+{ }^{n} C_{3} x^{3}+\ldots+{ }^{n} C_{n} x^{n}$
So, coefficients of $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ terms are ${ }^{n} C_{1},{ }^{n} C_{2}$ and ${ }^{n} C_{3}$, respectively. Given that, ${ }^{n} C_{1},{ }^{n} C_{2}$ and ${ }^{n} C_{3}$ are in A.P.
$\therefore \quad 2{ }^{n} C_{2}={ }^{n} C_{1}+{ }^{n} C_{3}$
$\Rightarrow \quad 2\left[\frac{n!}{(n-2)!2!}\right]=n+\frac{n!}{3!(n-3)!}$
$\Rightarrow \quad 2\left[\frac{n(n-1)}{2!}\right]=n+\frac{n(n-1)(n-2)}{3!} \Rightarrow(n-1)=1+\frac{(n-1)(n-2)}{6}$
$\Rightarrow \quad 6 n-6=6+n^{2}-3 n+2 \Rightarrow n^{2}-9 n+14=0 \Rightarrow(n-7)(n-2)=0$
$\therefore \quad n=2$ or $n=7$
Since $n=2$ is not possible, so $n=7$.

Q23. If A and B are coefficients of x^{n} in the expansions of $(1+x)^{2 n}$ and $(1+x)^{2 n-1}$ respectively, then A / B equals to
(a) 1
(b) 2
(c) $\frac{1}{2}$
(d) $\frac{1}{n}$

Sol. (b) The coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is ${ }^{2 n} C_{n}$.

$$
\therefore \quad A={ }^{2 n} C_{n}
$$

The coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$ is ${ }^{2 n-1} C_{n}$.
$\therefore \quad B={ }^{2 n-1} C_{n}$
$\therefore \quad \frac{A}{B}=\frac{{ }^{2 n} C_{n}}{{ }^{2 n-1} C_{n}}=\frac{2}{1}=2$
24. If the middle term of $\left(\frac{1}{x}+x \sin x\right)^{10}$ is equal to $7 \frac{7}{8}$, then the value of x is
(a) $2 n \pi+\frac{\pi}{6}$
(b) $n \pi+\frac{\pi}{6}$
(c) $n \pi+(-1)^{n} \frac{\pi}{6}$
(d) $n \pi+(-1)^{n} \frac{\pi}{3}$

Sol. (c) Given expression is $\left(\frac{1}{x}+x \sin x\right)^{10}$.
Since, $n=10$ (even), so there is only one middle term which is, $6^{\text {th }}$ term.

$$
\begin{array}{ll}
\therefore & T_{6}=T_{5+1}={ }^{10} C_{5}\left(\frac{1}{x}\right)^{10-5}(x \sin x)^{5} \\
\Rightarrow & \frac{63}{8}={ }^{10} C_{5} \sin ^{5} x \quad \text { (given) } \\
\Rightarrow & \frac{63}{8}=252 \times \sin ^{5} x \Rightarrow \sin ^{5} x=\frac{1}{32} \Rightarrow \sin x=\frac{1}{2} \Rightarrow \sin x=\sin \frac{\pi}{6} \\
\Rightarrow & x=n \pi+(-1)^{n} \frac{\pi}{6}
\end{array}
$$

25. The largest coefficient in the expansion of $(1+x)^{30}$ is \qquad .
Sol. Largest coefficient in the expansion of $(1+x){ }^{30}={ }^{30} C_{30 / 2}{ }^{=30} C_{15}$
26. The number of terms in the expansion of $(x+y+z)^{n}$ \qquad .
Sol. $(x+y+z)^{n}=[x+(y+z)]^{n}$

$$
={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1}(y+z)+{ }^{n} C_{2} x^{n-2}(y+z)^{2}+\ldots+{ }^{n} C_{n}(y+z)^{n}
$$

$\therefore \quad$ Number of terms in expansion $=1+2+3+\ldots+n+(n+1)$

$$
=\frac{(n+1)(n+2)}{2}
$$

27. In the expansion of $\left(x^{2}-\frac{1}{x^{2}}\right)^{16}$, the value of constant term is \qquad .

Sol. $T_{r+1}={ }^{16} C_{r}\left(x^{2}\right)^{16-r}\left(-\frac{1}{x^{2}}\right)^{r}={ }^{16} C_{r} x^{32-4 r}(-1)^{r}$
For constant term, $32-4 r=0 \Rightarrow r=8$

$$
\therefore \quad T_{8+1}={ }^{16} C_{8}
$$

28. If the seventh term from the beginning and the end in the expansion of $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$ are equal, then n equals to \qquad -.
Sol. Given expression is $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$.
According to the question,

$$
\begin{array}{ll}
& \frac{{ }^{n} C_{6}(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)^{6}}{{ }^{n} C_{6}\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}(\sqrt[3]{2})^{6}}=1 \quad \text { (Refer the so } \\
\Rightarrow \quad & (\sqrt[3]{2} \sqrt[3]{3})^{n-12}=1 \Rightarrow 6^{\frac{n-12}{3}}=6^{0} \Rightarrow \frac{n-12}{3}=0 \\
\Rightarrow \quad & n=12
\end{array}
$$

(Refer the solution of Q. 14)
29. The coefficient of $a^{-6} b^{4}$ in the expansion of $\left(\frac{1}{a}-\frac{2 b}{3}\right)^{10}$ is \qquad .
Sol. Given expression is $\left(\frac{1}{a}-\frac{2 b}{3}\right)^{10}$.

$$
\therefore \quad T_{r+1}={ }^{10} C_{r}\left(\frac{1}{a}\right)^{10-r}\left(-\frac{2 b}{3}\right)^{r}
$$

For coefficient of $a^{-6} b^{4}, 10-r=6 \Rightarrow r=4$
$\therefore \quad$ Coefficient of $a^{-6} b^{4}={ }^{10} C_{4}(-2 / 3)^{4}=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6!}{6!\cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{2^{4}}{3^{4}}=\frac{1120}{27}$
30. Middle term in the expansion of $\left(a^{3}+b a\right)^{28}$ is \qquad .
Sol. Given expression is $\left(a^{3}+b a\right)^{28}$.
Since index is $n=28$ (even)
So, there is only one middle term which is $\left(\frac{28}{2}+1\right)$ th term or $15^{\text {th }}$ term.
\therefore Middle term, $T_{15}=T_{14+1}={ }^{28} C_{14}\left(a^{3}\right)^{28-14}(b a)^{14}$

$$
={ }^{28} C_{14} a^{42} b^{14} a^{14}={ }^{28} C_{14} a^{56} b^{14}
$$

31. The ratio of the coefficients of x^{p} and x^{q} in the expansion of $(1+x)^{p+q}$ is
\qquad -.
Sol. Given expression is $(1+x)^{p+q}$.
$\therefore \quad$ Coefficient of $x^{p}={ }^{p+q} C_{p}$
And coefficient of $x^{q}={ }^{p+q} C_{q}$
$\therefore \quad \frac{{ }^{p+q} C_{p}}{{ }^{p+q} C_{q}}=\frac{{ }^{p+q} C_{p}}{{ }^{p+q} C_{p}}=1: 1$
32. The position of the term independent of x in the expansion of $\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^{2}}\right)^{10}$ is \qquad .

Sol. Given expression is $\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^{2}}\right)^{10}$.

$$
\therefore \quad T_{r+1}={ }^{10} C_{r}\left(\sqrt{\frac{x}{3}}\right)^{10-r}\left(\frac{3}{2 x^{2}}\right)^{r}
$$

For constant term, $10-5 r=0 \Rightarrow r=2$
Hence, third term is independent of x.
33. If 25^{15} is divided by 13 , then the remainder is \qquad .
Sol. $25^{15}=(26-1)^{15}={ }^{15} C_{0} 26{ }^{15}-{ }^{15} C_{1} 26{ }^{14}+\ldots+{ }^{15} C_{14} 26-{ }^{15} C_{15}$

$$
=\left({ }^{15} C_{0} 266^{15}-{ }^{15} C_{1} 26^{14}+\ldots+{ }^{15} C_{14} 26-13\right)+12
$$

Clearly, when 25^{15} is divided by 13 , then remainder will be 12 .

