Chapter 8. Binomial Theorem

Question-1

Expand each of the following expression $(1-2 x)^{5}$

Solution:

By using Binomial Theorem, we have

$$
\begin{aligned}
(1-2 x)^{5}= & {[1+(-2 x)]^{5} } \\
& ={ }^{5} \mathrm{C}_{0}+{ }^{5} \mathrm{C}_{1}(-2 x)+{ }^{5} \mathrm{C}_{2}(-2 \mathrm{x})^{2}+{ }^{5} \mathrm{C}_{3}(-2 x)^{3}+{ }^{5} \mathrm{C}_{4}(-2 x)^{4}+{ }^{5} \mathrm{C}_{5}(-2 x)^{5} \\
& =1+5(-2 x)+10(-2 x)^{2}+10(-2 x)^{3}+5(-2 x)^{4}+(-2 x)^{5} \\
& =1-10 x+40 x^{2}-80 x^{3}+80 x^{4}-32 x^{5}
\end{aligned}
$$

Question-2

Expand each of the following expression $\left(\frac{2}{x}-\frac{x}{2}\right)^{5}$

Solution:

By using Binomial Theorem, we have

$$
\begin{aligned}
& \left(\frac{2}{x}-\frac{x}{2}\right)^{5}=\left[\frac{2}{x}+\left(-\frac{x}{2}\right)\right]^{5} \\
& \quad={ }^{5} C_{0}\left(\frac{2}{x}\right)^{5}\left(\frac{-x}{2}\right)^{0}+{ }^{5} C_{1}\left(\frac{2}{x}\right)^{4}\left(\frac{-x}{2}\right)^{1}+{ }^{5} C_{2}\left(\frac{2}{x}\right)^{3}\left(\frac{-x}{2}\right)^{2}+{ }^{5} C_{3}\left(\frac{2}{x}\right)^{2}\left(\frac{-x}{2}\right)^{3}+{ }^{5} C_{4} \\
& \left(\begin{array}{rl}
\frac{2}{x}
\end{array}\right)^{1}\left(\frac{-x}{2}\right)^{4}+{ }^{5} C_{5}\left(\frac{-x}{2}\right)^{5} \\
& \\
& \quad=\frac{32}{x^{5}}+5\left(\frac{16}{x^{4}}\right)\left(\frac{-x}{2}\right)+10\left(\frac{8}{x^{3}}\right)\left(\frac{x^{2}}{4}\right)+10\left(\frac{4}{x^{2}}\right)\left(\frac{-x^{3}}{8}\right)+5\left(\frac{2}{x}\right)\left(\frac{x^{4}}{16}\right)+\left(\frac{-x^{3}}{32}\right) \\
& \quad=\frac{32}{x^{5}}-\frac{40}{x^{3}}+\frac{20}{x}-5 x+\frac{5 x^{2}}{8}-\frac{x^{5}}{32}
\end{aligned}
$$

Question-3

Expand each of the following expression $(2 x-3)^{6}$

Solution:

By using Binomial Theorem, we have

$$
\begin{aligned}
&(2 x-3)^{6}=[2 x+(-3)]^{6} \\
&={ }^{6} \mathrm{C}_{0}(2 \mathrm{x})^{6}(-3)^{\circ}+{ }^{6} \mathrm{C}_{1}(2 \mathrm{x})^{5}(-3)^{1}+{ }^{6} \mathrm{C}_{2}(2 \mathrm{x})^{4}(-3)^{2}+{ }^{6} \mathrm{C}_{3}(2 \mathrm{x})^{3}(-3)^{3}+{ }^{6} \mathrm{C}_{4} \\
&(2 x)^{2}(-3)^{4}+{ }^{6} \mathrm{C}_{5}(2 \mathrm{x})^{1}(-3)^{5}+{ }^{6} \mathrm{C}_{6}(2 \mathrm{x})^{0}(-3)^{6} \\
& \quad= 1(2 \mathrm{x})^{6}+6(2 \mathrm{x})^{5}(-3)+15(2 \mathrm{x})^{4}(-3)^{2}+20(2 \mathrm{x})^{3}(-3)^{3}+15(2 x)^{2}(-3)^{4}+ \\
& 6(2 x)(-3)^{5}+(-3)^{6} \\
& \quad 64 x^{6}-576 x^{5}+2160 x^{4}-4320 x^{3}+4860 x^{2}-2916 \mathrm{x}+729
\end{aligned}
$$

Question-4

Expand each of the following expression $\left(\frac{x}{3}+\frac{1}{x}\right)^{5}$

Solution:

By using Binomial Theorem, we have;

$$
\begin{aligned}
& \left(\frac{x}{3}+\frac{1}{x}\right)^{5}={ }^{5} C_{0}\left(\frac{x}{3}\right)^{5}\left(\frac{1}{x}\right)^{0}+{ }^{5} C_{1}\left(\frac{x}{3}\right)^{4}\left(\frac{1}{x}\right)+{ }^{5} C_{2}\left(\frac{x}{3}\right)^{3}\left(\frac{1}{x}\right)^{2}+{ }^{5} C_{3}\left(\frac{x}{3}\right)^{2}\left(\frac{1}{x}\right)^{3}+{ }^{5} C_{4} \\
& \left(\frac{x}{3}\right)^{1}\left(\frac{1}{x}\right)^{4}+{ }^{5} C_{5}\left(\frac{x}{3}\right)^{0}\left(\frac{1}{x}\right)^{5}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{x}{3}\right)^{5}+5\left(\frac{x}{3}\right)^{4}\left(\frac{1}{x}\right)+10\left(\frac{x}{3}\right)^{3}\left(\frac{1}{x}\right)^{2}+10\left(\frac{x}{3}\right)^{2}\left(\frac{1}{x}\right)^{3}+5\left(\frac{x}{3}\right)\left(\frac{1}{x}\right)^{4}+\left(\frac{1}{x}\right)^{5} \\
& =\frac{x}{243}+\frac{5 x^{3}}{3}+\frac{10 x}{3}+\frac{10}{3 x}+\frac{5}{3 x^{3}}+\frac{1}{x^{5}}
\end{aligned}
$$

Question-5

Expand each of the following expression $\left(x+\frac{1}{x}\right)^{6}$

Solution:

By using Binomial Theorem, we have:

$$
\begin{aligned}
& \left(x+\frac{1}{x}\right)^{6}={ }^{5} C_{0}(x)^{6}\left(\frac{1}{x}\right)^{0}+{ }^{6} C_{1}(x)^{5}\left(\frac{1}{x}\right)^{1}+{ }^{6} C_{2}(x)^{4}\left(\frac{1}{x}\right)^{2}+{ }^{6} C_{3}(x)^{3}\left(\frac{1}{x}\right)^{3}+{ }^{6} C_{4}(x)^{2}\left(\frac{1}{x}\right)^{4}+ \\
& { }^{6} C_{5}(x)^{1}\left(\frac{1}{x}\right)^{5}+{ }^{6} C_{6}\left(\frac{1}{x}\right)^{6} \\
& \quad=x^{6}+6 x^{5}\left(\frac{1}{x}\right)+15 x^{4} \frac{1}{x^{2}}+20 x^{3} \cdot \frac{1}{x^{3}}+15 x^{2} \cdot \frac{1}{x^{4}}+6 x \cdot \frac{1}{x^{5}}+\frac{1}{x^{6}} \\
& \quad I=x^{6}+6 x^{4}+15 x^{2}+20+\frac{15}{x^{2}}+\frac{6}{x^{4}}+\frac{1}{x^{6}}
\end{aligned}
$$

Question-6

Using binomial theorem, evaluate each of the following (96) ${ }^{3}$

Solution:

We express 96 as the sum or difference of two numbers whose powers are easier to calculate, and then use Binomial Theorem
Write $96=100-4$
Therefore

```
(96)}\mp@subsup{)}{}{3}=(100-4\mp@subsup{)}{}{3
    = }\mp@subsup{}{}{3}\mp@subsup{\textrm{C}}{0}{}(100)\mp@subsup{)}{}{3}-\mp@subsup{}{}{3}\mp@subsup{\textrm{C}}{1}{}(100)\mp@subsup{)}{}{2}(4)+\mp@subsup{}{}{3}\mp@subsup{\textrm{C}}{2}{}(100)\mp@subsup{}{}{1}(4\mp@subsup{)}{}{2}-\mp@subsup{}{}{3}\mp@subsup{\textrm{C}}{3}{}(4\mp@subsup{)}{}{3
    = 1000000-3 (10000)(4) + 3 (100) (16)-(64)
    = 1000000-120000 + 4800-64
    = 884736
```


Question-7

Using binomial theorem, evaluate each of the following (102) ${ }^{5}$

Solution:

```
\((102)^{5}=(100+2)^{5}\)
    \(={ }^{5} \mathrm{C}_{0}(100)^{5}+{ }^{5} \mathrm{C}_{1}(100)^{4}(2)+{ }^{5} \mathrm{C}_{2}(100)^{3}(2)^{2}+{ }^{5} \mathrm{C}_{3}(100)^{2}(2)^{3}+{ }^{5} \mathrm{C}_{4}(100)\)
\((2)^{4}+{ }^{5} \mathrm{C}_{5}(2)^{5}\)
    \(=10000000000+5(100000000)(2)+10(1000000)(4)+10(10000)(8)+\)
\(5(100)(16)+32\)
    \(=10000000000+1000000000+40000000+800000+8000+32\)
    \(=11040808032\)
```


Question-8

Using binomial theorem, evaluate each of the following (101) ${ }^{4}$

Solution:

$$
\begin{aligned}
(101)^{4} & =(100+1)^{4} \\
& ={ }^{4} \mathrm{C}_{0}(100)^{4}+{ }^{4} \mathrm{C}_{1}(100)^{3}(1)+{ }^{4} \mathrm{C}_{2}(100)^{2}(1)^{2}+{ }^{4} \mathrm{C}_{3}(100)^{1}(1)^{3}+{ }^{4} \mathrm{C}_{4}(1)^{4} \\
& =100000000+4(1000000)+6(10000)+4(100)+1 \\
& =100000000+4000000+60000+400+1 \\
& =104060401
\end{aligned}
$$

Question-9

Using binomial theorem, evaluate each of the following (99) ${ }^{5}$

Solution:

$$
\begin{aligned}
&(99)^{5}=(100-1)^{5} \\
&={ }^{5} \mathrm{C}_{0}(100)^{5}-{ }^{5} \mathrm{C}_{1}(100)^{4} .1+{ }^{5} \mathrm{C}_{2}(100)^{3} \cdot(1)^{2}-{ }^{5} \mathrm{C}_{3}(100)^{2} \cdot(1)^{2}+ \\
&{ }^{5} \mathrm{C}_{4}(100)^{1}(1)^{4}-{ }^{5} \mathrm{C}_{5}(1)^{5} \\
&=(100)^{5}-5 \times(100)^{4}+10 \times(100)^{3}-10 \times(100)^{2}+5 \times 100-1 \\
&=10000000000-500000000+10000000-100000+500-1 \\
&=10010000500-500100001 \\
&=9509900499
\end{aligned}
$$

Question-10

Using Binomial Theorem indicate which number is larger (1.1) ${ }^{10000}$ or 1000.

Solution:

Splitting 1.1 and using Binomial Theorem to write the first few terms we have

$$
\begin{aligned}
(1.1)^{10000} & =(1+0.1)^{10000} \\
& ={ }^{10000} \mathrm{C}_{0}+{ }^{10000} \mathrm{C}_{1}(0.1)+{ }^{10000} \mathrm{C}_{2}(0.1)^{2}+\text { other positive terms. } \\
= & 1+10000 \cdot(0.1)+\text { other positive terms } \\
& =1+1000+\text { other positive terms } \\
& >1000
\end{aligned} \text { Hence, }(1.1)^{10000}>1000 .
$$

Question-1 1

Find $(a+b)^{4}-(a-b)^{4}$. Hence, evaluate $(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}$.

Solution:

$(a+b)^{4}-(a-b)^{4}$
$=\left[{ }^{4} C_{0} a^{4}+{ }^{4} C_{1} a^{3} b+{ }^{4} C_{2} a^{2} b^{2}+{ }^{4} C_{3} a b^{3}+{ }^{4} C_{4} b^{4}\right]-\left[{ }^{4} C_{0} a^{4+4} C_{1} a^{3} b+{ }^{4} C_{2} a^{2} b^{2}-{ }^{4} C_{3}\right.$
$\left.a b^{3}+{ }^{4} C_{4} b^{4}\right]=2 \times{ }^{4} C_{1} a^{3} b+2 \times{ }^{4} C_{3} a b^{3}$
$=2\left[4 a^{3} b+4 a b^{3}\right]$
$=8 a b\left[a^{2}+b^{2}\right]$
Thus, $(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}$
$=8 \sqrt{3} \cdot \sqrt{2}[3+2]=8 \sqrt{6}(5)=40 \sqrt{6}$

Question-12

Find $(x+1)^{6}+(x-1)^{6}$. Hence or otherwise evaluate $(\sqrt{2}+1)^{6}-(\sqrt{2}-1)^{6}$

Solution:

$(x+1)^{6}+(x-1)^{6}$
$=\left[{ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{x}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{x} \mathrm{x}^{4}\right]+\left[{ }^{6} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{5} \mathrm{x}{ }^{1}-{ }^{6} \mathrm{C}_{6}\right]+$
$\left[{ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{x}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}-{ }^{6} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{5} \mathrm{x}{ }^{1}-{ }^{6} \mathrm{C}_{6}\right]$
$=2\left[{ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{2} \mathrm{x}{ }^{4}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{6}\right]$
$=2\left[x^{6}+15 x^{4}+15 x^{2}+1\right]$
Thus, $(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$
$=2\left[(\sqrt{2})^{6}+15(\sqrt{2})^{4}+15(\sqrt{2})+1\right]$
$=2[8+15(4)+15(2)+1]$
$=2[8+60+30+1]=198$.

Question-13

Show that $9^{n+1}-8 n-9$ is divisible by 64 , whenever n is a positive integer.

Solution:

$\mathrm{n}=1 \Rightarrow 9^{\mathrm{n}+1}-8 \mathrm{n}-9=9^{2}-8-9$

$$
=81-17=64=1(64)
$$

$\mathrm{n}=2 \Rightarrow 9^{\mathrm{n}+1}-8 \mathrm{n}-9=9^{3}-8(2)-9$

$$
=729-16-9=704=11(64)
$$

From $n=3,4,5, \ldots . .9^{n+1}-8 n-9=9(1+8) n-8 n-9$

$$
=9\left[{ }^{n} C_{0}+{ }^{n} C_{1} \cdot 8+{ }^{n} C_{2} \cdot 8^{2}+\ldots{ }^{n} C_{n} 8^{n}\right]-8 n-9
$$

$$
=9\left[1+8 n+{ }^{n} C_{2} \cdot 8^{2}+\ldots{ }^{n} C_{n} 8 n\right]-8 n-9
$$

$$
=9+72 n+9 \cdot{ }^{n} C_{2} \cdot 8^{2}+\ldots 9^{n} C_{n} 8^{n}-8 n-9
$$

$$
=8^{2}\left[n+9\left({ }^{n} C_{2}+{ }^{n} C_{3} .8+\ldots{ }^{n} C_{n} 8^{n-2}\right)\right]
$$

which is divisible by 64 .

Question-14

Prove that $\sum_{r-0}^{n} 3^{r n} C_{r}=4^{n}$.

Solution:

$$
\begin{aligned}
\text { L.H.S } & =3^{0} C(n, 0)+3^{1} C(n, 1)+3^{2} C(n, 2)+\cdots 3^{r}(n, r)+\cdots+3^{n} C(n, n) \\
& =C(n, 0)+C(n, 1) 3^{1}+C(n, 2) 3^{2}+C(n, 3) 3^{3}+\cdots+C(n, n) 3^{n}
\end{aligned}
$$

This is in the form of $(1+3)^{n}$

$$
=(1+3)^{n}=4^{n}=\text { R.H.S }
$$

Question-15

Prove that x^{5} in $(x+3)^{8}$

Solution:

Suppose x^{5} occurs in the $(r+1)$ th term of the expansion $(x+3)^{8}$ Now $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}={ }^{8} C_{r} x^{8-r} 3^{r}$
Comparing the indices of x in x^{5} and in T_{r+1}, we get $r=3$
Thus, the coefficient of x^{5} is

$$
{ }^{8} \mathrm{C}_{3}(3)^{3}=1512
$$

Question-16

Prove that $a b^{7}$ in (a-2b) ${ }^{12}$

Solution:
Let $a^{5} b^{7}$ occurs in the $(r+1)$ th term, in the expansion of $(a-2 b)^{12}$ given by ${ }^{12} C_{r} \cdot a^{12-r}(-2 b){ }^{r}$. Then $12-r=5$. This gives $r=7$.
Thus the coefficient of $a^{5} b^{7}$ is
${ }^{12} C_{5}(-2)^{7}=\frac{12!}{5!7!} \times(-128)=(792)(-128)=-101376$

Question-17

Prove that $\left(x^{2}-y\right)^{6}$

Solution:

We have T_{r+1} in $(a+b)^{n}={ }^{n} C_{r} a^{n-r} \cdot b^{r}, 0 \leq r \leq n$
T_{r+1} in $\left(x^{2}-y\right)^{6}={ }^{6} C_{r}\left(x^{2}\right)^{6-r}(-y)^{r}$

$$
={ }^{6} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{12}-{ }^{2 \mathrm{r}}(-\mathrm{y})^{\mathrm{r}}
$$

Question-18

Prove that $\left(x^{2}-y x\right)^{12}, x^{1} 0$

Solution:

$$
\begin{aligned}
& T_{r+1} \text { in }\left(x^{2}-y x\right)^{12}={ }^{12} C_{r}\left(x^{2}\right)^{12-r}(-y x)^{r} \\
&={ }^{12} C_{r} x^{24-2 r}(-1)^{r}(y)^{r}(x)^{r} \\
&={ }^{r} C_{r} x^{24-r} y^{r}(-1)^{r}
\end{aligned}
$$

Question-19

Find the 4th term in the expansion of $(x-2 y)^{12}$.

Solution:
4th term in $(x-2 y)^{12}=T_{4}=T_{3+1}$

$$
={ }^{12} \mathrm{C}_{3}(\mathrm{x})^{12-3}(-2 \mathrm{y})^{3}
$$

$\left[T_{r+1}\right.$ in $\left.(a+b)^{n}={ }^{n} C_{r} a^{n-r} b\right]$
$={ }^{12} \mathrm{C}_{3}(\mathrm{x})^{9}(-2)^{3}(\mathrm{y})^{3}$
$=\frac{12 \times 11 \times 10}{3 \times 2} x-8 \times x^{9} y^{3}$
$=-1760 x^{9} y^{3}$

Question-20

Find the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$
Solution:

$$
\begin{aligned}
& 13^{\text {th }} \text { term in }\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}=\mathrm{T}_{13}=\mathrm{T}_{12+1} \\
&={ }^{18} \mathrm{C}_{12}(9 x)^{18-12}\left(-\frac{1}{3 \sqrt{x}}\right)^{12} \\
&={ }^{18} \mathrm{C}_{12}(9 x)^{6}\left(-\frac{1}{3}\right)^{12}\left(-\frac{1}{\sqrt{x}}\right)^{12} \\
&={ }^{18} \mathrm{C}_{12}(9 \mathrm{x})^{6}\left(\frac{-1}{3}\right)^{12}\left(x^{\frac{-1}{2}}\right)^{12} \\
&={ }^{18} \mathrm{C}_{12}(9 \mathrm{x})^{6}\left(\frac{-1}{3}\right)^{12}(x)^{-6} \\
&={ }^{18} \mathrm{C}_{12}\left(3^{2}\right)^{6}(x)^{6}(-1)^{12}(3)^{-12}(x)^{-6} \\
&={ }^{18} \mathrm{C}_{12}\left(3^{12}\right)(x)^{6}(3)^{-12}(x)^{-6} \\
&={ }^{18} \mathrm{C}_{12}=18564
\end{aligned}
$$

Question-21

Find the $13^{\text {th }}$ term in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$

Solution:

The index of $\left(3-\frac{x^{3}}{6}\right)^{7}$, is 7 , which is an odd natural number.
So, Middle terms are $\frac{{ }^{\top} 7+1}{2}$ and $\frac{{ }^{\top} 7+3}{2}$

$$
\begin{aligned}
\frac{T_{7+1}}{2}=T_{4}= & T_{3+1}={ }^{7} C_{3}(3)^{7-3}\left(-\frac{x^{3}}{6}\right)^{3} \\
& ={ }^{7} C_{3}(3)^{4}\left(x^{3}\right)^{3}(-1)\left(6^{-1}\right)^{3} \\
& ={ }^{7} C_{3}(81)(x)^{9}(6)^{-3}(-1)^{3} \\
& =\frac{-35 \times 81}{216} \times{ }^{9}=\frac{-105}{8} x^{9}
\end{aligned}
$$

$$
\frac{T_{7+3}}{2}=T_{5}=T_{4}+1={ }^{7} C_{4}(3)^{7-4}\left(-\frac{x^{3}}{6}\right)^{4}
$$

$$
={ }^{7} C_{4}(3)^{3}(-1)^{4}\left(x^{3}\right)(6)^{-4}
$$

$$
={ }^{7} \mathrm{C}_{4}(27)(\mathrm{x})^{12}(6)^{-4}
$$

$$
=(35)(27)(6)^{-4}(x)^{12}
$$

$$
=\frac{35 \times 27}{1296} \times 12=\frac{35}{48} \times 12
$$

Question-22

$\left(\frac{x}{3}+9 y\right)^{10}$

Solution:

The index $\left(\frac{x}{3}+9 y\right)^{10}$ is 10 , which is an even natural number.
Hence, Middle term $=\frac{{ }^{\top} 10+2}{2}=T_{6}=T_{5+1}$

$$
\begin{aligned}
& ={ }^{10} \mathrm{C}_{5}\left(\frac{x}{3}\right)^{10-5}(9 y)^{5} \\
& ={ }^{10} \mathrm{C}_{5}\left(\frac{x}{3}\right)^{5}(9 y)^{5} \\
& ={ }^{10} \mathrm{C}_{5}(\mathrm{x})^{5}\left(\frac{1}{3}\right)^{5}(9)^{5}(y)^{5} \\
& ={ }^{10} \mathrm{C}_{5}(3)^{-5}\left(3^{2}\right)^{5}(x)^{5}(y)^{5} \\
& ={ }^{10} C_{5}(3)^{-5}(3)^{10} x^{5} y^{5} \\
& ={ }^{10} C_{5} 3^{5} x^{5} y^{5}=(252)(243) x^{5} y^{5} \\
& =61236 x^{5} y^{5}
\end{aligned}
$$

Question-23

In the expansions of $(1+a)^{m+n}$, using Binomial Theorem, prove that coefficients of a^{m} and a^{n} are equal.

Solution:
We have,

$$
(1+a)^{m+n}=\left[{ }^{m+n} C_{0}+{ }^{m+n} C_{1 a}{ }^{1}+{ }^{m+n} C_{2 a} a^{2}+\ldots \ldots{ }^{m+n} C_{r}\right.
$$

$$
a^{r}+\ldots \ldots+{ }^{m+n} C_{m+n} a^{m+n}
$$

Coefficient of $a^{m}={ }^{m+n} C_{m}=\frac{(m+n)!}{m!n!}$
Also the coefficient of a^{n}
$={ }^{m+n} C_{n}=\frac{(m+n)!}{n!m!}$
Clearly, ${ }^{m+n} C_{m}={ }^{m+n} C_{n}$

Question-24

The coefficients of the $(r-1)^{\text {th }}, r^{\text {th }}$ and $(r+1)^{\text {th }}$ terms in the expansion of $(x+1)^{n}$ are in the ratio 1:3:5. Find both n and r.

Solution:

Coefficient of $(\mathrm{r}-1)$ th term $=\mathrm{C}(\mathrm{n}, \mathrm{r}-2)$

Coefficient of r th term $=\mathrm{C}(\mathrm{n}, \mathrm{r}-1)$

Coefficient of $(\mathrm{r}+1)$ th term $=\mathrm{C}(\mathrm{n}, \mathrm{r})$

Considering $1^{\text {st }}$ and ${ }^{2 n d}$
$\frac{C(n, r-2)}{C(n, r-1)}=\frac{n!}{(r-2)!(n-r+2)!} \times \frac{(r-1)!(n-r+1)!}{n!}=\frac{(r-1)!(n-r+1)!}{(r-2)!(n-r+2)(n-r+1)!}=\frac{(r-1)(r-2)!}{(r-2)!(n-r+2)}=$ $\frac{(r-1)}{n-r+2}=\frac{1}{3}$
$3 r-3=n-r+2$
$n-4 r=-5$

Considering 2nd and 3rd
$\frac{C(n, r-1)}{C(n, r)}=\frac{3}{5}=\frac{n!}{(r-1)!(n-r+1)!} \times \frac{r!(n-r)!}{n!}=\frac{(n-r)!r(r-1)!}{(n-r+1)(n-r)!(r-1)!}=\frac{r}{n-r+1}=\frac{3}{5}$
$5 r=3 n-3 r+3$
$3 n-8 r=-3$
$2(n-4 r=-5)$
$2 n-8 r=-10--(3)$

Subtract (3) from (2)
$\mathrm{n}=7$

Substitute $\mathrm{n}=7$ in (2)

$$
\begin{aligned}
& \text { We get } r=3 \\
& n=7, r=3
\end{aligned}
$$

Question-25

Prove that the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion $(1+x)^{2 n-1}$.

Solution:

$(1+x)^{2 n}={ }^{2 n} C_{0}+{ }^{2 n} C_{1} x{ }^{1}+{ }^{2 n} C_{2} x^{2}+\ldots .+{ }^{2 n} C_{n} x^{n}$
$(1+x)^{2 n-1}={ }^{2 n-1} C_{0}+{ }^{2 n-1} C_{1} x^{1}+{ }^{2 n-1} C_{2} x^{2}+\ldots .+{ }^{2 n-1} C_{n} x^{n}$
Coefficient of x^{n} in $(1+x)^{2 n-1}$ is $\left({ }^{2 n-1} C_{n}\right)$

$$
\begin{align*}
{ }^{2 n} C_{n} & =\frac{(2 n)!}{n!n!} \\
& =\frac{(2 n)(2 n-1)(2 n-2)!}{n(n-1)!n!} \\
& =\frac{(2 n)(2 n-1)(n-1)!}{n(n-1)!n!} \\
& =2\left[\frac{2(2 n-1)}{n!}\right] \ldots \ldots(i \tag{i}
\end{align*}
$$

Now ${ }^{2 n-1} C_{n}=\frac{(2 n-1)!}{n!(2 n-1-n)!}$

$$
\begin{align*}
& =\frac{(2 n-1)!}{n!(n-1)!} \\
& =\frac{(2 n-1)(2 n-2)!}{n!(n-1)!} \\
& =\frac{(2 n-1) 2(n-1)!}{n!(n-1)!} \\
& =\frac{2(2 n-1)}{n!} \cdots \cdots \cdot \tag{ii}
\end{align*}
$$

From (i) and (ii) we have

$$
{ }^{2 n} C_{n}=2 .{ }^{2 n-1} C_{n}
$$

CBSE Class 11 Mathematics

Important Questions
Chapter 8
Binomial Theorem

1 Marks Questions

1. What is The middle term in the expansion of $(1+x)^{2 n+1}$

Ans. Since $(2 n+1)$ is odd there is two middle term
i.e $e^{2 n+1} C x^{n+1}$ and ${ }^{2 n+1} C x_{n+1}^{n}$
2. When n is a positive integer, the no. of terms in the expansion of $(x+a)^{n}$ is Ans. The no. of terms in the expansion of $(x+a)^{n}$ is one more than the index n. i.e $(n+1)$.
3. Write the general term $\left(x^{2}-y\right)^{6}$

Ans. $T^{\gamma+1}={ }^{6}{ }_{\gamma}\left(x^{2}\right)^{6-\gamma} \cdot(-y)^{\gamma}$
$={ }^{6} \underset{r}{C}(x)^{12-2 r} \cdot(-1)^{r} \cdot(y)^{r}$
4. In the expansion of $\left(x+\frac{1}{x}\right)^{6}$, find the $3^{\text {rd }}$ term from the end

Ans. $3^{\text {rd }}$ term form end $=(6-3+2)^{\text {th }}$ term from beginning
i.e $T_{5}={ }_{4}^{6} C(x)^{6-4} \cdot\left(\frac{1}{x}\right)^{4}$
$={ }_{4}^{6} C^{2} x^{-4}$
$=15^{x-2}$
$=\frac{15}{x^{2}}$
5. Expand $(1+x)^{n}$

Ans. $(1+x)^{n}=1+{ }_{1}^{n} C(x)^{1}+{ }_{2}^{n} \underset{2}{C}(x)^{2}+{ }_{3}^{C}(x)^{3}+\ldots \ldots x^{n}$
6. The middle term in the expansion of $(1+x)^{2 n}$ is

Ans. ${ }^{2 n}{ }_{n} \cdot x^{n}$
7. Find the no. of terms in the expansions of $\left(1-2 x+x^{2}\right)^{7}$

Ans. $\left(1-2 x+x^{2}\right)^{7}$
$=\left(x^{2}-2 x+1\right)^{7}$
$=\left[(x-1)^{2}\right]^{7}$
$=(x-1)^{14}$
No. of term is 15
8. Find the coeff of x^{5} in $(x+3)^{9}$

Ans. $T_{r+1}={ }^{9}{ }_{r}(x)^{9-r} \cdot(3)^{r}$
Put $9-r=5$
$r=4$
$T_{5}={ }^{9}{ }_{4}(x)^{5} \cdot(3)^{4}$
Coeff of x^{5} is ${ }_{4}^{9}(3)^{4}$
9. Find the term independent of $x\left(x+\frac{1}{x}\right)^{10}$

Ans. $T_{r+1}={ }^{10}{ }_{r}(x)^{10-r} \cdot\left(\frac{1}{x}\right)^{\gamma}$
$={ }^{10} \underset{r}{C}(x)^{10-r} \cdot(x)^{-r}$
$={ }^{10} \underset{r}{ }(x)^{10-2 r}$
Put $10-2 r=0$
$r=5$
Independent term is ${ }^{10}{ }_{5}^{C}$
10. Expand $(a+b)^{n}$

Ans. $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }_{1}^{n} C a^{n-1} b+{ }_{2}^{n} C a^{n-2} b^{2}+\ldots \ldots+{ }^{n}{ }_{n} b^{n}$

CBSE Class 12 Mathematics

Important Questions
 Chapter 8
 Binomial Theorem

4 Marks Questions

1. Which is larger $(1.01)^{10,00000}$ or 10,000

Ans. $(1.01)^{10,00000}=(1+0.01)^{10,00000}$
$={ }^{10,00000}{ }_{0}+{ }^{10,00000} \underset{1}{C}(0.01)+$ other positive term
$=1+10,00000 \times 0.01+$ other positive term
$=1+10,000$
$=10,001$
Hence $(1.01)^{10,00000}>10,000$
2. Prove that $\sum_{r=0}^{n} 3^{r}{ }^{n}{ }_{r}=4^{n}$

Ans.
$\sum_{r=0}^{n} 3^{r}{ }_{r}^{n} C=\sum_{r=0}^{n}{ }_{r}^{n} C \cdot 3^{r}$
$={ }_{0}^{n} C+{ }_{1}^{n} C \cdot 3+{ }_{2}^{n} C \cdot 3^{2}+\ldots \ldots+{ }_{n}^{n} C 3^{n}$
$\left[\because(1+a)^{n}=1+{ }_{1}^{n} C \cdot a+{ }_{2}^{n} C a^{2}+{ }^{n} C a^{3}+\ldots \ldots+a^{n}\right]$
$=(1+3)^{n}$
$=(4)^{n}$
H.P
3. Using binomial theorem, prove that $6^{n}-5 n$ always leaves remainder 1 when divided by 25 .

Ans. Let $6^{n}=(1+5)^{n}$
$=1+{ }_{1}^{n} C 5^{1}+{ }_{2}^{n} C 5^{2}+{ }_{3}^{n} C 5^{3}+\ldots \ldots+5^{n}$
$=1+5 n+5^{2}\left({ }_{2}^{n} C+{ }_{3}^{n} C .5+\ldots \ldots+5^{n-2}\right)$
$6^{n}-5 n=1+25\left(\begin{array}{c}n \\ 2\end{array}{ }^{n}{ }_{3}^{n} .5+\ldots \ldots+5^{n-2}\right)$
$=1+25 k\left[\right.$ where $\left.k={ }_{2}^{n} c+{ }_{2}^{n} c .5+\ldots . .5^{n-2}\right]$
$=25 k+1$
H.P
4.Find the 13th term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$

Ans.The general term in the expansion of

$$
\begin{aligned}
& \left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18} \text { is } \\
& T_{r+1}={ }^{18}{\underset{r}{r}}^{C}(9 x)^{18-\gamma}\left(-\frac{1}{3 \sqrt{x}}\right)^{r}
\end{aligned}
$$

For 13th term, $r+1=13$

$$
r=12
$$

$$
={ }^{18} C(9 x)^{6}\left(-\frac{1}{3 \sqrt{x}}\right)^{12}
$$

$$
={ }^{18} C(3)^{12} \cdot x^{6}\left(-\frac{1}{3}\right)^{12} \cdot(x)^{-6}
$$

$$
={ }^{18}{ }_{12}(3)^{12} \cdot(-1)^{12} \cdot(3)^{-12}
$$

$$
={ }^{18}{ }_{12}
$$

$$
=18564
$$

5. Find the term independent of x in the expansion of $\left(\sqrt[3]{x}+\frac{1}{2 \sqrt[3]{x}}\right)^{18}, x>0$

Ans.
$T_{\gamma+1}={ }^{18} C(\sqrt[3]{x})^{18-\gamma}\left(\frac{1}{2 \sqrt[3]{x}}\right)^{\gamma}$
$={ }^{18} C(x)^{\frac{18-\gamma}{3}} \cdot\left(\frac{1}{2}\right)^{\gamma} x^{\frac{-\gamma}{3}}$
$={ }^{18} C(x)^{\frac{18-\gamma-\gamma}{3}} \cdot\left(\frac{1}{2}\right)^{\gamma}$
For independent term $\frac{18-2 r}{3}=0$
$r=9$
The req. term is ${ }_{9}^{18} C\left(\frac{1}{2}\right)^{9}$
6. Find the coefficient of χ^{5} in the expansion of the product $(1+2 x)^{5}(1-x)^{7}$

Ans.
$(1+2 x)^{6}(1-x)^{7}=\left(1+{ }_{1}^{6}(2 x)+{ }_{2}^{6} \cdot(2 x)^{2}+{ }_{3}^{6} C(2 x)^{3}+{ }_{4}^{6} C(2 x)^{4}+{ }_{5}^{6} C(2 x)^{5}+{ }_{6}^{C} C(2 x)^{6}\right)$
$\left(1-{ }_{1}^{7}{ }_{1}^{C} x+{ }_{2}^{7} C(x)^{2}-{ }_{3}^{7}(x)^{3}+{ }_{4}^{7} C(x)^{4}-{ }_{5}^{7} C(x)^{5}+{ }_{6}^{C}(x)^{6}-{ }^{7}{ }_{7}^{C}(x)^{7}\right)$
$=\left(1+12 x+60 x^{2}+160 x^{3}+240 x^{4}+192 x^{5}+64 x^{6}\right) \cdot\left(1-7 x+21 x^{2}-35 x^{3}+35 x^{4}-21 x^{5}+7 x^{6}-x^{7}\right)$

Coeff of x^{5} is
$=1 \times(-21)+12 \times 35+60(-35)+160 \times 21+240 \times(-7)+192 \times 1$
$=171$
7. Compute (98) ${ }^{5}$

Ans. $(98)^{5}=(100-2)^{5}$
$={ }^{5} C_{0}(100)^{5}-{ }^{5} C_{1}^{C}(100)^{4} \cdot 2+{ }_{2}^{5}(100)^{3} \cdot 2^{2}$
$-{ }^{5}{ }_{3}^{C}(100)^{2} \cdot(2)^{3}+{ }_{4}^{5} C(100)(2)^{4}-{ }^{5}{ }_{5}^{C}(2)^{5}$
$=1000000000-5 \times 100000000 \times 2+10 \times 1000000 \times 4$
$-10 \times 10000 \times 8+5 \times 100 \times 16-32$
$=10040008000-1000800032=9039207968$
8. Expand $\left(x+\frac{1}{x}\right)^{6}$

Ans.

$$
\begin{aligned}
& \left(x+\frac{1}{x}\right)^{6}={ }_{0}^{6}(x)^{6}+{ }_{1}^{6} C\left(x^{5}\right)\left(\frac{1}{x}\right)+{ }_{2}^{6}{ }_{2}^{C}\left(x^{4}\right)\left(\frac{1}{x}\right)^{2}+ \\
& { }_{\zeta}^{6}\left(x^{3}\right)\left(\frac{1}{x}\right)^{3}+{ }_{4}^{6} C\left(x^{2}\right)\left(\frac{1}{x}\right)^{4}+{ }_{5}^{6}{ }_{5}^{C}(x)^{1}\left(\frac{1}{x}\right)^{5}+{ }_{6}^{6} C\left(\frac{1}{x}\right)^{6} \\
& =x^{6}+6 x^{5}\left(\frac{1}{x}\right)+15 x^{4}\left(\frac{1}{x^{2}}\right)+20 x^{3} \cdot\left(\frac{1}{x^{3}}\right)+15 x^{2} \cdot \frac{1}{x^{4}}+6 x \frac{1}{x^{5}}+\frac{1}{x^{6}} \\
& =x^{6}+6 x^{4}+15 x^{2}+20+\frac{15}{x^{2}}+\frac{6}{x^{4}}+\frac{1}{x^{6}}
\end{aligned}
$$

9. Find the fourth term from the end in the expansion of $\left(\frac{x}{x^{2}}-\frac{x^{3}}{3}\right)^{9}$.

Ans.Fourth term from the end would be equal to $(9-4+2)^{\text {th }}$ term from the beginning
$T_{7}=T_{6+1}={ }_{6} C_{6}\left(\frac{3}{x^{2}}\right)^{9-6} \cdot\left(\frac{-x^{3}}{3}\right)^{6}$
$={ }_{6}^{9} C(3)^{3} \cdot(x)^{-6} \cdot(x)^{18} \cdot(3)^{-6}$
$=\frac{9!}{6!3!} \cdot(3)^{-3} \cdot(x)^{12}$
$=\frac{28}{9} x^{12}$
10. Find the middle term of $\left(2 x-\frac{x^{2}}{4}\right)^{9}$.

Ans. $n=9$ so there are two middle term
i.e $\left(\frac{9+1}{2}\right)^{t h}$ term and $\left(\frac{9+1}{2}+1\right)^{\text {th }}$ term
$T_{5}=T_{4+1}={ }^{9}{ }_{4}^{C}(2 x)^{9-4} \cdot\left(\frac{-x^{2}}{4}\right)^{4}$
$=\frac{63}{4} x^{13}$
$T_{6}=T_{5+1}={ }_{5}^{9} C(2 x)^{9-5}\left(\frac{-x^{2}}{4}\right)^{5}$
$=-{ }^{9} C_{4}(2)^{4} \cdot x^{4} \frac{(x)^{10}}{(4)^{5}}$
$=\frac{-63}{32} x^{14}$
11. Find the coefficient of $a^{5} b^{7}$ in $(a-2 b)^{12}$.

Ans.
$T_{\gamma+1}={ }^{12} \underset{\gamma}{C}(a)^{12-\gamma} \cdot(-2 b)^{\gamma}$
Put $12-r=5$
$r=7$
$T_{8}={ }^{12}{ }_{7}(a)^{5} \cdot(-2 b)^{7}$
$={ }^{12} \underset{7}{C}(a)^{5} \cdot(-2)^{7} \cdot b^{7} \mathrm{~s}$
coeff. Of $a^{5} b^{7}$ is ${ }_{7}^{12}(-2)^{7}$
12. Find a positive value of m for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6.

Ans. $T_{\gamma+1}={ }^{m}{ }_{\gamma}(1)^{m-\gamma} \cdot(x)^{\gamma}$
$={ }^{m}{ }_{r}(x)^{r}$
Put $r=2$
ATQ ${ }^{m} \underset{2}{C}=6$
$\frac{m!}{2!(m-2)!}=\frac{6}{1}$
$\frac{m(m-1)(m-2)!}{2 \times 1 \times(m-2)!}=\frac{6}{1}$
$m^{2}-m=12$
$m^{2}-m-12=0$
$m(m-4)=3(m-4)=0$
$(m-4)(m-3)=0$
$m=4$
$m=-3$ (neglect)
13. Show that the coefficient of the middle term in the expansion of $(1+x)^{2 n}$ is equal to the sum of the coefficients of two middle terms in the expansion of $(1+x)^{2 n-1}$.

Ans.As $2 n$ is even so the expansion $(1+x)^{2 n}$ has only one middle term which is
$\left(\frac{2 n}{2}+1\right)^{\text {th }}$ term i.e $(n+1)^{\text {th }}$ term
$T_{r+1}={ }^{2 n} \underset{r}{C}(1)^{2 n-r} \cdot(x)^{r}$
Coeff. of x^{n} is ${ }^{2 n} C$
And ($2 n-1$) is odd so two middle term
$\left(\frac{2 n-1+1}{2}\right)^{t h}$ and $\left(\frac{2 n-1+1}{2}+1\right)^{t n}$
i.e $n^{\text {th }}$ and $(n+1)^{\text {th }}$ term

The coefficients of these terms are ${ }^{2 n-1} C_{n-1}$ and ${ }_{n}^{2 n-1} \underset{n}{C}$
Now ATQ
${ }^{2 n-1} C+{ }_{n-1}^{2 n-1}{ }_{n}={ }^{2 n}{ }_{n}\left[\left\lfloor{ }^{n}{ }_{r-1}+{ }^{n}{ }_{r} C={ }^{n+1}{ }_{r}\right\rfloor\right.$
H.P
14. Find a if the coeff. of χ^{2} and χ^{3} in the expansion of $(3+a x)^{9}$ are equal

Ans. $T_{\gamma+1}={ }^{9}{ }_{r}^{C}(3)^{9-r} \cdot(a x)^{r}$
ATQ
${ }^{9} \underset{2}{C}(3)^{7} \cdot a^{2}={ }^{9} \underset{3}{C}(3)^{6} \cdot a^{3}$
${ }^{9}{ }_{2}(3)^{1}={ }_{3}^{9} C \cdot a$
$\frac{9!}{2!7!} \times 3=\frac{9!}{3!6!} a$
$\frac{3!6!\times 3}{2!7!}=a$
$\frac{3 \times 2 \times 1 \times 61 \times 3}{2 \times 1 \times 7 \times 6!}=a$
$\frac{9}{7}=a$
15. Find $(a+b)^{4}-(a-b)^{4}$. Hence evaluate $(\sqrt{3}+\sqrt{2})^{4}+(\sqrt{3}-\sqrt{2})^{4}$.

Ans. $(a+b)^{4}-(a-b)^{4}=\left({ }^{4} \underset{0}{C} a^{4}+{ }^{4} \mathrm{C}_{1} a^{3} b+{ }^{4} \underset{2}{\mathrm{C}} a^{2} b^{2}+{ }_{3}^{4} \mathrm{C}_{3} a b^{3}+{ }_{4}^{4} \mathrm{C}^{4}\right)$
$-\left(a^{4}-{ }_{1}^{4} a^{3} b+{ }_{2}^{4} C_{2}^{2} b^{2}-{ }_{3}^{4} C a b^{2}+{ }_{4}^{4}{ }_{4} b^{4}\right)$
$=2\left({ }^{4} \underset{1}{C} a^{3} b+{ }_{3}^{4} \underset{3}{ } a b^{3}\right)$
$=2\left(4 a^{3} b+4 a b^{3}\right)$
$=8 a b\left(a^{2}+b^{2}\right)$
Put $a=\sqrt{3}, \quad b=\sqrt{2}$
$(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}=8 \sqrt{3} \cdot \sqrt{2}(3+2)$
$=40 \sqrt{6}$
16. Show that $9^{n+1}-8 n-9$ is divisible by 64 , whenever n is positive integer.

Ans. $(9)^{n+1}=(1+8)^{n+1}$
$=1+{ }_{1}^{n+1} \underset{1}{C} 8^{1}+{ }^{n+1} \underset{2}{C} \cdot 8^{2}+{ }_{3}^{n+1} \underset{C}{C^{3}}+\ldots \ldots . .+{ }_{n+1}^{n+1} 8^{n+1}$
$=1+(n+1) \cdot 8+8^{2}\left[{ }_{2}^{n+1} \underset{3}{C}+{ }_{3}^{n+1} \underset{3}{C} \cdot 8+\ldots . .+8^{n-1}\right]$
$9^{n+1}-8 n-9=64\left[{ }_{2}^{n+1} \underset{3}{C}+{ }^{n+1} \underset{3}{C}+\ldots \ldots .+8^{n-1}\right]$
$9^{n+1}-8 n-9=64 k$, where $k=\left[{ }^{n+1} \underset{2}{C}+{ }_{3}^{n+1} \underset{3}{C} .8+\ldots .+8^{n+1}\right]$
17. Find the general term in the expansion of $\left(x^{2}-y x\right)^{12}$

Ans. $T_{r+1}={ }^{12} \underset{r}{C}\left(x^{2}\right)^{12-r} \cdot(-y x)^{r}$
$={ }^{12} \underset{r}{C}(x)^{24-r} \cdot(-1)^{r} \cdot y^{r} \cdot x^{r}$
$={ }^{12} \underset{r}{C}(-1)^{\gamma} \cdot y^{\gamma} \cdot(x)^{24-2 r}$
18. In the expansion of $(1+a)^{m+n}$, prove that coefficients of a^{m} and a^{n} are equal.

Ans. $T_{r+1}={ }^{m+n} \underset{r}{C}(1)^{m+n-r} \cdot(a)^{r}$
$T_{r+1}={ }^{m+n} \underset{r}{C}(a)^{r}$
Put $r=m$ and $r=n$ respectively

$$
T_{m+1}={ }_{m}^{m+n} C a^{m}
$$

Coeff of a^{m} is ${ }_{m}^{m+n} \Rightarrow \frac{(m+n)!}{m!n!}$

Coeff of a^{n} is ${ }_{m}^{m+n} \Rightarrow \frac{(m+n)!}{n!m!}$ H.P
19. Expand $\left(1-x+x^{2}\right)^{4}$

Ans. $\left(1-x+x^{2}\right)^{4}=\left[(1-x)+x^{2}\right]^{4}$
$={ }^{4} C_{0}(1-x)^{4}+{ }^{4} \underset{1}{C}(1-x)^{3} \cdot\left(x^{2}\right)+{ }_{2}^{4} \underset{2}{C}(1-x)^{2} \cdot\left(x^{2}\right)^{2}+{ }_{3}^{4} C(1-x)^{1}\left(x^{2}\right)^{3}+{ }^{4} C_{4}\left(x^{2}\right)^{4}$
$=(1-x)^{4}+4(1-x)^{3} x^{2}+6(1-x)^{2} x^{4}+4(1-x) x^{6}+1 x^{8}$
$=\left(1-4 x+6 x^{2}-4 x^{3}+x^{4}\right)+4\left(1-3 x+3 x^{2}-x^{3}\right) x^{2}+6\left(1-2 x+x^{2}\right)\left(x^{4}\right)+4(1-x) \cdot x^{6}+x^{8}$
$=1-4 x+10 x^{2}-16 x^{3}+19 x^{4}-16 x^{5}+10 x^{6}-4 x^{7}+x^{8}$
20. Find the sixth term of the expansion $\left(y^{\frac{1}{2}}+x^{\frac{1}{3}}\right)^{n}$, if the binomial coefficient of the third term from the end is 45.

Ans. The binomial coeff of the third term from end = binomial coeff of the third term from beginning $={ }^{n}{ }_{2}$

$$
\begin{aligned}
& { }^{n} \underset{2}{C}=45 \\
& \frac{n(n-1)}{1.2}=45 \\
& n^{2}-n-90=0 \\
& n=10
\end{aligned}
$$

$$
T_{r+1}={ }^{10} C\left(y^{\frac{1}{2}}\right)^{10-r} \cdot\left(x^{\frac{1}{3}}\right)^{r}
$$

$$
r=5
$$

$T_{6}={ }^{10} C\left(y^{\frac{1}{2}}\right)^{5} \cdot\left(x^{\frac{1}{3}}\right)^{5}$
$=252 y^{\frac{5}{2}} x^{\frac{5}{3}}$
21. Find a if the 17th and 18th terms of the expansion $(2+a)^{50}$ are equal.

Ans. $T_{\gamma+1}={ }^{50} \underset{r}{C}(2)^{50-\gamma} \cdot(a)^{\gamma}$
ATQ put $r=16$ and 17
$\Rightarrow{ }_{16}^{50} C(2)^{34} \cdot a^{16}={ }_{17}^{50} C(2)^{33} \cdot a^{17}$
$a=\frac{{ }^{50} \mathrm{C} \times 2}{{ }^{16} \mathrm{C}} \mathrm{C}$
$a=1$
22. Find the term independent of x in the expansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{6}$

Ans. $T_{\gamma+1}={ }^{6} C\left(\frac{3}{2} x^{2}\right)^{6-\gamma} \cdot\left(\frac{-1}{3 x}\right)^{\gamma}$
$={ }^{6} C\left(\frac{3}{2}\right)^{6-r} \cdot(x)^{12-2 r} \cdot\left(\frac{-1}{3}\right)^{r} x^{-r}$
$={ }^{6} C\left(\frac{3}{2}\right)^{6-r} \cdot\left(\frac{-1}{3}\right)^{r} \cdot(x)^{12-3 r}$
Put $12-3 r=0$
$r=4$
$={ }^{6} C\left(\frac{3}{2}\right)^{2} \cdot\left(\frac{-1}{3}\right)^{4}$.
$=\frac{5}{12}$
23. If the coeff of $(r-5)^{\text {th }}$ and $(2 r-1)^{\text {th }}$ terms in the expansion of $(1+x)^{34}$ are equal find r

Ans. $T_{\gamma+1}={ }^{34} \underset{r}{C}(1)^{34-\gamma} \cdot(x)^{\gamma}$
$T_{r+1}={ }^{34} \underset{r}{C}(x)^{\gamma}$
Coeff are

$$
\begin{aligned}
& { }^{34}{ }_{r-6}^{C} \text { and }{ }^{34}{ }_{2 r-2}^{C} \\
& \text { ATQ }{ }^{34}{ }_{r-6}={ }^{34}{ }_{2 r-2}^{C} \\
& r-6=2 r-2 \\
& r=-4 \text { (neglect) }
\end{aligned}
$$

$$
r-6=34-(2 r-2)\left[\begin{array}{l}
\because{ }^{n} C={ }_{r}^{n} C \\
r=p \text { or } n=r+p
\end{array}\right]
$$

$$
r=14
$$

24. Show that the coeff of the middle term in the expansion of $(1+x)^{2 n}$ is equal to the sum of the coeff of two middle terms in the expansion of $(1+x)^{2 n-1}$

Ans. As $2 n$ is even so the expansion $(1+x)^{2 n}$ has only one middle term which is $\left(\frac{2 n}{2}+1\right)^{\text {th }}$ i.e $(n+1)^{\text {th }}$ term Coeff of x^{n} is ${ }^{2 n} C$

Similarly ($2 n-1$) being odd the other expansion has two middle term i.e
$\left(\frac{2 n-1+1}{2}\right)^{\text {th }}$ and $\left(\frac{2 n-1+1}{2}+1\right)^{\text {th }}$ term
i.e $n^{\text {th }}$ and $(n+1)^{\text {th }}$

The coeff are ${ }^{2 n-1} C$ and ${ }^{2 n-1} C$
${ }^{2 n-1}{ }_{n-1}^{C}+{ }^{2 n-1} C_{n}={ }^{2 n}{ }_{n}\left[\because{ }^{n}{ }_{r-1}^{C}+{ }^{n} C_{r}={ }^{n+1} C_{r}\right]$
25. Find the value of r, if the coeff of $(2 r+4)^{\text {th }}$ and $(r-2)^{\text {th }}$ terms in the expansion of $(1+x)^{18}$ are equal.

Ans. $T_{\gamma+1}={ }^{18}{ }_{r}(1)^{18-\gamma} \cdot(x)^{\gamma}$
$T_{r+1}={ }^{18} \underset{r}{C} \chi^{\gamma}$
Put $r=r-3$
And $2 r+3$
ATQ ${ }^{18} \underset{2 r+3}{\mathrm{C}}={ }^{18} \underset{\gamma-3}{\mathrm{C}}$
$18=2 r+s+r-乌$
$r=6$
26. Find the 13th term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$

Ans. $T_{\gamma+1}={ }^{18}{ }_{r}(9 x)^{18-\gamma} \cdot\left(\frac{-1}{3 \sqrt{x}}\right)^{\gamma}$
Put $r=12$
$T_{13}={ }^{18} C(9 x)^{18-12} \cdot\left(\frac{-1}{3}\right)^{12} \cdot(x)^{\frac{-12}{2}}$
$={ }^{18} \underset{12}{C}(3)^{12} \cdot x^{6} \cdot(3)^{-12} \cdot(-1)^{12} x^{-6}$
$={ }^{18} \mathrm{C}$

CBSE Class 12 Mathematics

Important Questions
 Chapter 8
 Binomial Theorem

6 Marks Questions

1.Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ is $\sqrt{6}: 1$

Ans.Fifth term from the beginning in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ is

$$
\begin{align*}
& T_{4+1}={ }_{4}^{n} C(\sqrt[4]{2})^{n-4} \cdot\left(\frac{1}{\sqrt[4]{3}}\right)^{4} \\
& T_{5}={ }^{n} C_{4}(2)^{\frac{n-4}{4}} \cdot(3)^{-1} \ldots \ldots(i) \tag{i}
\end{align*}
$$

How fifth term from the end would be equal to $(n-5+2)$ in term from the beginning

$$
T_{(n-4)+1}={ }^{n} C(\sqrt[4]{2})^{n-(n-4)} \cdot\left(\frac{1}{\sqrt[4]{3}}\right)^{n-4}
$$

$$
\begin{equation*}
={ }^{n} C_{n-4}(2)^{1}(3)^{\frac{n-4}{4}} \tag{ii}
\end{equation*}
$$

\qquad
$\operatorname{ATQ} \frac{{ }_{4}^{n} \cdot(2)^{\frac{n-4}{4}}(3)^{-1}}{{ }_{n}^{n} C(2)^{1}(3)^{\frac{n-4}{-4}}}=\frac{\sqrt{6}}{1}$
$\frac{(2)^{\frac{n-8}{4}}}{(3)^{\frac{-(n-8)}{4}}}=(6)^{\frac{1}{2}}$
$(6)^{\frac{n-8}{4}}=(6)^{\frac{1}{2}}$
$\frac{n-8}{4}=\frac{1}{2}$
$\Rightarrow 2 n-16=4$
$n=10$
2.The coefficients of three consecutive terms in the expansion of $(1+a)^{n}$ are in the ratio 1:7:42. Find n

Ans.Let three consecutive terms in the expansion of $(1+a)^{n}$ are $(r-1)^{t h}, r^{t h}$ and $(r+1)^{t h}$ term

$$
\begin{aligned}
& T_{r+1}={ }^{n} \underset{r}{C}(1)^{n-r} \cdot(a)^{r} \\
& T_{r+1}={ }^{n}{ }_{r}^{C}(a)^{r}
\end{aligned}
$$

Coefficients are
${ }^{n} C_{r-2}{ }^{n}{ }_{r-1}^{C}$ and ${ }^{n} \underset{r}{C}$ respectively
$\operatorname{ATQ} \frac{{ }^{n} C-2}{{ }^{n} C}=\frac{1}{7}$
$\Rightarrow n-8 r+9=0$

$\Rightarrow n-7 r+1=0$

On solving eq. (i) and (ii) we get $n=55$
3. The second, third and fourth terms in the binomial expansion $(x+a)^{n}$ are 240, 720 and 1080 respectively. Find x, a and n.

Ans. $T_{2}=240$
${ }^{n} C_{1} x^{n-1} \cdot a=240$.
${ }^{n} C x^{n-2} \cdot a^{2}=720$
${ }^{n} C_{3} x^{n-3} \cdot a^{3}=1080$
Divide (ii) by (i) and (iii) by (ii)

We get
$\frac{a}{x}=\frac{6}{n-1}$ and $\frac{a}{x}=\frac{9}{2(n-2)}$
$\Rightarrow n=5$
On solving we get
$x=2$
$a=3$
4.If a and b are distinct integers, prove that $\mathbf{a}-\mathbf{b}$ is a factor of $a^{n}-b^{n}$, whenever n is positive.

Ans.Let $a^{n}=(a-b+b)^{n}$
$a^{n}=(b+a-b)^{n}$
$={ }^{n} C b^{n}+{ }^{n} C b^{n-1}(a-b)+{ }^{n} \underset{2}{C} b^{n-2} \cdot(a-b)^{2}+{ }_{3}^{n} C b^{n-3} \cdot(a-b)^{3}+\ldots .+{ }^{n} \underset{n}{C}(a-b)^{n}$
$a^{n}=b^{n}+(a-b)\left[{ }^{n} \underset{0}{C} b^{n}+{ }_{1}^{n} b^{n-1}(a-b)+{ }_{2}^{n} \underset{2}{C} b^{n-2} \cdot(a-b)^{2}+{ }_{3}^{n} b^{n-3} \cdot(a-b)^{3}+\ldots .+{ }^{n} C \underset{n}{C}(a-b)^{n}\right]$ $a^{n}-b^{n}=(a-b) k$
Where
${ }^{n} C_{1} b^{n-1}+{ }^{n} C_{2} b^{n-2}(a-b)+\ldots \ldots+(a-b)^{n-1}=k$
H.P
5. The sum of the coeff. Of the first three terms in the expansion of $\left(x-\frac{3}{x^{2}}\right)^{m} m$ being natural no. is 559. Find the term of expansion containing x^{3}

Ans.The coeff. Of the first three terms of $\left(x-\frac{3}{x^{2}}\right)^{m}$ are ${ }^{m} C_{0},(-3){ }^{m} C_{1}$ and $9{ }^{m} C_{2}$.
Therefore, by the given condition

$$
\begin{aligned}
& { }^{m}{ }_{0}-3{ }^{m} \underset{1}{C}+9^{m}{ }_{2}^{C}=559 \\
& 1-3 m+\frac{9 m(m-1)}{2}=559
\end{aligned}
$$

On solving we get $m=12$

$$
T_{\gamma+1}={ }_{\gamma}^{12} \underset{\gamma}{C}(x)^{12-\gamma}\left(\frac{-3}{x^{2}}\right)^{\gamma}
$$

$={ }^{12} \underset{r}{C}(x)^{12-r} \cdot(-3)^{\gamma} \cdot(x)^{-2 r}$
$={ }^{12} \underset{r}{C}(x)^{12-3 r} \cdot(-3)^{r}$
$12-3 r=3 \Rightarrow r=3$, req. term is $-5940 x^{3}$
6.Show that the middle term in the expansion of $(1+x)^{2 n}$ is $\frac{1.3 .5 \ldots(2 n-1)}{n!} 2^{n} \cdot x^{n}$.

Ans.As $2 n$ is even, the middle term of the expansion $(1+x)^{2 n}$ is $(n+1)^{\text {th }}$ term

$$
\begin{aligned}
& T_{n+1}={ }^{2 n} C(1)^{2 n-n} \cdot x^{n} \\
& ={ }^{2 n} C x^{n} \\
& =\frac{(2 n)!}{n!n!} x^{n} \\
& =\frac{(2 n)(2 n-1)(2 n-2) \ldots \ldots .4 .3 .2 .1}{n!n!} x^{n}
\end{aligned}
$$

$$
=\frac{1 \cdot 2 \cdot 3 \cdot 4 \ldots \ldots(2 n-2)(2 n-1)(2 n)}{n!n!} x^{n}
$$

$$
=\frac{[1.3 .5 \ldots . .(2 n-1)][2.4 .6 \ldots . .(2 n)]}{n!n!} x^{n}
$$

$$
=\frac{\left[1 \cdot 3 \cdot 5 \ldots \cdot(2 n-1) \cdot 2^{n} \cdot(1 \cdot 2 \cdot 3 \ldots . \ldots n)\right]}{n!n!} x^{n}
$$

$$
=\frac{[1.3 \cdot 5 \ldots \cdot(2 n-1)] \cdot 2^{n} \cdot n \mid}{n \mid n!} x^{n}
$$

$$
=\frac{[1.3 \cdot 5 \ldots(2 n-1)] \cdot 2^{n} \cdot x^{n}}{n!}
$$

7. In the expansion of $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$, the ratio of $7^{\text {th }}$ term from the beginning to the $7^{\text {th }}$ term the end is $1: 6$ find n

Ans. $T_{7}={ }_{6} C_{6}(\sqrt[3]{2})^{n-6} \cdot\left(\frac{1}{\sqrt[3]{3}}\right)^{6}$
$={ }_{6}^{n} C(2)^{\frac{n-6}{3}} \cdot(3)^{-2}$
$7^{\text {th }}$ term from end $=(n-7+2)$ term from beginning
$T_{n-6+1}={ }^{n} C_{n-6}(\sqrt[3]{2})^{n-n+6} \cdot\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}$
$={ }^{n} C(2)^{2} \cdot(3)^{\frac{n-6}{-3}}$
ATQ
$\frac{{ }_{6}^{n} C(2)^{\frac{n-6}{2}} \cdot(3)^{-2}}{{ }_{n} C_{n-6}(2)^{2}(3)^{\frac{6-n}{3}}}=\frac{1}{6}$
$\frac{(2)^{\frac{n-12}{3}}}{(3)^{\frac{12-n}{3}}}=\frac{1}{6}$
$(6)^{\frac{n-12}{3}}=(6)^{-1}$
$\frac{n-12}{3}=\frac{-1}{1}$
$n-12=-3$
$n=9$
8.If the coeff. Of $5^{\text {th }} \mathbf{6}^{\text {th }}$ and $7^{\text {th }}$ terms in the expansion of $(1+x)^{n}$ are in A.P, then find the value of n.

Ans. $T_{r+1}={ }^{n}{ }_{r}^{C}(1)^{n-r} \cdot(x)^{r}$

$$
\begin{equation*}
T_{r+1}={ }^{n} \underset{\gamma}{C} \chi^{\gamma} . \tag{i}
\end{equation*}
$$

Coeff of $5^{\text {th }}, 6^{\text {th }}, 7^{\text {th }}$ terms in the expansion of $(1+x)^{n}$ are ${ }_{4}^{n} \underset{5}{C},{ }_{5}^{C}$, and ${ }^{n} \underset{6}{C}$
ATQ $2 .{ }^{n}{ }_{5}^{C}={ }^{n} \underset{4}{C}+{ }^{n} \underset{6}{C}$
2. $\frac{n!}{5!(n-5)!}=\frac{n!}{4!(n-4)!}+\frac{n!}{6!(n-6)!}$
$n=7,14$
9. If \mathbf{P} be the sum of odd terms and \mathbf{Q} that of even terms in the expansion of $(x+a)^{n}$ prove that
(i) $P^{2}-Q^{2}=\left(x^{2}-a^{2}\right)^{n}$
(ii) $4 P Q=(x+a)^{2 n}-(x-a)^{2 n}$
(iii) $2\left(P^{2}+Q^{2}\right)=\left[(x+a)^{2 n}+(x-a)^{2 n}\right]$

Ans. $(x+a)^{n}={ }^{n} C x^{n}+{ }_{1}^{n} C x^{n-1} a+{ }_{2}^{n} C x^{n-2} a^{2}+\ldots . .+{ }^{n} C a^{n}$
$=t_{1}+t_{2}+t_{3}+\ldots .+t_{n}+t_{n+1}$
$=\left(t_{1}+t_{3}+t_{5}+\ldots.\right)+\left(t_{2}+t_{4}+t_{6}+\ldots.\right)$
$=P+Q$
$(x-a)^{n}=\left(t_{1}-t_{2}+t_{3}-t_{4}+\ldots \ldots.\right)$
$=\left(t_{1}+t_{3}+t_{5}\right)-\left(t_{2}+t_{4}+t_{6} \ldots ..\right)$
$=P-Q$
(i) $\times(i i)$
$P^{2}-Q^{2}=\left(x^{2}-a^{2}\right)^{n}$
Sq. (i) and (ii) and subt.
$\left[(x+a)^{2 n}-(x-a)^{2 n}\right]=4 P Q$
Sq. and adding we get

$$
\left[(x+a)^{2 n}+(x-a)^{2 n}\right]=2\left(P^{2}+Q^{2}\right)
$$

10.If three successive coeff. In the expansion of $(1+x)^{n}$ are 220,495 and 792 then find n Ans. Let coeff are ${ }^{n} C_{\gamma-1},{ }^{n} C_{\gamma},{ }^{n}{ }_{\gamma+1}$

ATQ ${ }^{n}{ }_{r-1}^{C}=220$
${ }^{n} C=495$.
${ }^{n}{ }_{r+1}=792$.
Dividing (ii) by (i)
$\frac{{ }^{n}{ }_{r}^{C}}{{ }^{n} C}=\frac{495}{220}$
$\frac{n-r+1}{r}=\frac{9}{4}$
$4 n-13 r+4=0$
Dividing (iii) by (ii)

$$
\begin{aligned}
& \frac{{ }_{r+1}^{C}}{{ }^{n} C}=\frac{792}{495} \\
& \frac{n-r}{r+1}=\frac{8}{5} \\
& 5 n-13 r-8=0 \ldots \ldots(v)
\end{aligned}
$$

On solving (iv) and (v) we get $n=12$

Binomial Theorem

1. Find the term independent of $x, x \neq 0$, in the expansion of $\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{15}$.
2. If the term free from x in the expansion of $\left(\sqrt{x}-\frac{k}{x^{2}}\right)^{10}$ is 405 , find the value of k
3. Find the coefficient of x in the expansion of $\left(1-3 x+7 x^{2}\right)(1-x)^{26}$.
4. Find the term independent of x in the expansion of, $\left(3 x-\frac{2}{x^{2}}\right)^{15}$.
5. Find the middle term (terms) in the expansion of
(1) $\left(\frac{x}{a}-\frac{a}{x}\right)^{10}$
(ii) $\left(3 x-\frac{x^{3}}{6}\right)^{9}$
6. Find the coefficient of x^{15} in the expansion of $\left(x-x^{2}\right)^{10}$.
7. Find the coefficient of $\frac{1}{x^{17}}$ in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$.
8. Find the sixth term of the expansion $\left(y^{\frac{1}{2}}+x^{\frac{1}{3}}\right)^{n}$, if the binomial coefficient of the third term from the end is 45 .
[Hint: Binomial coefficient of third term from the end = Binomial coefficient of third term from beginning $={ }^{n} \mathrm{C}_{2}$]
9. Find the value of r, if the coefficients of $(2 r+4)^{\omega}$ and $(r-2)^{\omega}$ terms in the expansion of $(1+x)^{18}$ are equal.
10. If the coefficient of second, third and fourth terms in the expansion of $(1+x)^{3 r}$ are in A.P. Show that $2 n^{2}-9 n+7=0$.
11. Find the coefficient of x^{4} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{11}$.
12. If p is a real number and if the middle term in the expansion of $\left(\frac{p}{2}+2\right)^{8}$ is 1120 , find p.
13. Show that the middle term in the expansion of $\left(x-\frac{1}{x}\right)^{2 n}$ is $\frac{1 \times 3 \times 5 \times \ldots(2 n-1)}{\underline{n}} \times(-2)^{n}$.
14. Find n in the binomial $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$ if the ratio of 7^{\star} term from the beginning to the $7^{\text {d }}$ term from the end is $\frac{1}{6}$.
15. In the expansion of $(x+a)^{r}$ if the sum of odd terms is denoted by O and the sum of even term by E .
Then prove that
(i) $\mathrm{O}^{2}-\mathrm{E}^{2}=\left(x^{2}-a^{2}\right)^{\mathbf{n}}$
(ii) $4 \mathrm{OE}=(x+a)^{2 n}-(x-a)^{2 n}$
16. If x^{\prime} occurs in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{2 n}$, prove that its coefficient is

\[

\]

17. Find the term independent of x in the expansion of $\left(1+x+2 x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$.

Objective Type Questions

Choose the correct answer from the given options in each of the Exercises 18 to 24 (M.C.Q.).
18. The total number of terms in the expansion of $(x+a)^{100}+(x-a)^{100}$ after simplification is
(A) 50
(B) 202
(C) 51
(D) none of these
19. Given the integers $r>1, n>2$, and coefficients of $(3 r)^{4}$ and $(r+2)^{\text {al }}$ terms in the binomial expansion of $(1+x)^{3 r}$ are equal, then
(A) $n=2 r$
(B) $n=3 r$
(C) $n=2 r+1$
(D) none of these
20. The two successive terms in the expansion of $(1+x)^{34}$ whose coefficients are in the ratio 1:4 are
(A) $3^{\text {nd }}$ and $4^{\text {e }}$
(B) $4^{\text {t }}$ and $5^{\text {t }}$
(C) $5^{\text {a }}$ and $6^{\text {a }}$
(D) $\sigma^{\text {m }}$ and $7^{\text {* }}$
[Hint: $\frac{{ }^{24} \mathrm{C}_{r}}{{ }^{24} \mathrm{C}_{r+1}}=\frac{1}{4} \Rightarrow \frac{r+1}{24-r}=\frac{1}{4} \Rightarrow 4 r+4=24-4 \Rightarrow r=4$]
21. The coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ and $(1+x)^{2 n-1}$ are in the ratio.
(A) $1: 2$
(B) $1: 3$
(C) $3: 1$
(D) $2: 1$
[Hint : ${ }^{2 r} \mathrm{C}_{n}:{ }^{2 n-1} \mathrm{C}_{n}$
22. If the coefficients of $2^{\text {if }}, 3^{\text {nf }}$ and the $4^{\text {t }}$ terms in the expansion of $(1+x)^{\text {a }}$ are in A.P., then value of n is
(A) 2
(B) 7
(c) 11
(D) 14
[Hint: $2{ }^{n} \mathrm{C}_{2}={ }^{n} \mathrm{C}_{1}+{ }^{n} \mathrm{C}_{3} \Rightarrow n^{2}-9 n+14=0 \Rightarrow n=2$ or 7
23. If A and B are coefficient of x^{π} in the expansions of $(1+x)^{3 x}$ and $(1+x)^{3 \pi-1}$ respectively, then $\frac{A}{B}$ equals
(A) 1
(B) 2
(C) $\frac{1}{2}$
(D) $\frac{1}{n}$
[Hint: $\frac{\mathrm{A}}{\mathrm{B}}=\frac{{ }^{2 n} \mathrm{C}_{n}}{{ }^{2 n-1} \mathrm{C}_{n}}=2$]
24. If the middle term of $\left(\frac{1}{x}+x \sin x\right)^{10}$ is equal to $7 \frac{7}{8}$, then value of x is
(A) $2 n \pi+\frac{\pi}{6}$
(B) $n \pi+\frac{\pi}{6}$
(C) $n \pi+(-1)^{n} \frac{\pi}{6}$
(D) $n \pi+(-1)^{n} \frac{\pi}{3}$
[Hint: $\mathrm{T}_{6}={ }^{10} \mathrm{C}_{5} \frac{1}{x^{5}} \cdot x^{5} \sin ^{5} x=\frac{63}{8} \Rightarrow \sin ^{5} x=\frac{1}{2^{5}} \Rightarrow \sin =\frac{1}{2}$
$\left.\Rightarrow x=n \pi+(-1)^{n} \frac{\pi}{6}\right]$

