

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

5.1 Overview

We know that the square of a real number is always non-negative e.g. $(4)^2 = 16$ and $(-4)^2 = 16$. Therefore, square root of 16 is ± 4 . What about the square root of a negative number? It is clear that a negative number can not have a real square root. So we need to extend the system of real numbers to a system in which we can find out the square roots of negative numbers. Euler (1707 - 1783) was the first mathematician to

introduce the symbol *i* (iota) for positive square root of -1 i.e., $i = \sqrt{-1}$.

5.1.1 Imaginary numbers

Square root of a negative number is called an imaginary number, for example,

$$\sqrt{-9} = \sqrt{-1}\sqrt{9} = i3, \sqrt{-7} = \sqrt{-1}\sqrt{7} = i\sqrt{7}$$

5.1.2 Integral powers of i

$$i = \sqrt{-1}, i^2 = -1, i^3 = i^2 i = -i, i^4 = (i^2)^2 = (-1)^2 = 1.$$

To compute i^n for n > 4, we divide n by 4 and write it in the form n = 4m + r, where m is quotient and *r* is remainder $(0 \le r \le 4)$

and

$$i^{n} = i^{4m+r} = (i^{4})^{m} \cdot (i)^{r} = (1)^{m} (i)^{r} = i^{r}$$

$$(i)^{39} = i^{4 \times 9+3} = (i^{4})^{9} \cdot (i)^{3} = i^{3} = -i$$

$$)^{-435} = i^{-(4 \times 108+3)} = (i)^{-(4 \times 108)} \cdot (i)^{-3}$$

For example,

$$(i)^{-435} = i^{-(4 \times 108)}$$

$$\frac{1}{(i^4)^{108}} \cdot \frac{1}{(i)^3} = \frac{i}{(i)^4} = i$$

(i) If a and b are positive real numbers, then

$$\sqrt{-a} \times \sqrt{-b} = \sqrt{-1}\sqrt{a} \times \sqrt{-1}\sqrt{b} = i\sqrt{a} \times i\sqrt{b} = -\sqrt{ab}$$

(ii) $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$ if a and b are positive or at least one of them is negative or zero. However, $\sqrt{a}\sqrt{b} \neq \sqrt{ab}$ if a and b, both are negative.

5.1.3 Complex numbers

- (a) A number which can be written in the form a + ib, where a, b are real numbers and $i = \sqrt{-1}$ is called a complex number.
- (b) If z = a + ib is the complex number, then *a* and *b* are called real and imaginary parts, respectively, of the complex number and written as $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$.
- (c) Order relations "greater than" and "less than" are not defined for complex numbers.
- (d) If the imaginary part of a complex number is zero, then the complex number is known as purely real number and if real part is zero, then it is called purely imaginary number, for example, 2 is a purely real number because its imaginary part is zero and 3*i* is a purely imaginary number because its real part is zero.

5.1.4 Algebra of complex numbers

- (a) Two complex numbers $z_1 = a + ib$ and $z_2 = c + id$ are said to be equal if a = c and b = d.
- (b) Let $z_1 = a + ib$ and $z_2 = c + id$ be two complex numbers then $z_1 + z_2 = (a + c) + i (b + d)$.

5.1.5 Addition of complex numbers satisfies the following properties

- 1. As the sum of two complex numbers is again a complex number, the set of complex numbers is closed with respect to addition.
- 2. Addition of complex numbers is commutative, i.e., $z_1 + z_2 = z_2 + z_1$
- 3. Addition of complex numbers is associative, i.e., $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$
- 4. For any complex number z = x + i y, there exist 0, i.e., (0 + 0i) complex number such that z + 0 = 0 + z = z, known as identity element for addition.
- 5. For any complex number z = x + iy, there always exists a number -z = -a ib such that z + (-z) = (-z) + z = 0 and is known as the additive inverse of z.

5.1.6 Multiplication of complex numbers

Let $z_1 = a + ib$ and $z_2 = c + id$, be two complex numbers. Then

 $z_1 \cdot z_2 = (a + ib) (c + id) = (ac - bd) + i (ad + bc)$

- 1. As the product of two complex numbers is a complex number, the set of complex numbers is closed with respect to multiplication.
- 2. Multiplication of complex numbers is commutative, i.e., $z_1 \cdot z_2 = z_2 \cdot z_1$
- 3. Multiplication of complex numbers is associative, i.e., $(z_1.z_2) \cdot z_3 = z_1 \cdot (z_2.z_3)$

4. For any complex number z = x + iy, there exists a complex number 1, i.e., (1 + 0i) such that

 $z \cdot 1 = 1 \cdot z = z$, known as identity element for multiplication.

5. For any non zero complex number z = x + i y, there exists a complex number $\frac{1}{2}$

such that $z \cdot \frac{1}{z} = \frac{1}{z} \cdot z = 1$, i.e., multiplicative inverse of $a + ib = \frac{1}{a + ib} = \frac{a - ib}{a^2 + b^2}$.

6. For any three complex numbers z_1 , z_2 and z_3 ,

$$z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3$$

(z_1 + z_2) \cdot z_3 = z_1 \cdot z_3 + z_2 \cdot z_3

and

i.e., for complex numbers multiplication is distributive over addition.

5.1.7 Let $z_1 = a + ib$ and $z_2 \neq 0 = c + id$. Then

$$z_1 \div z_2 = \frac{z_1}{z_2} = \frac{a+ib}{c+id} = \frac{(ac+bd)}{c^2+d^2} + i\frac{(bc-ad)}{c^2+d^2}$$

5.1.8 Conjugate of a complex number

Let z = a + ib be a complex number. Then a complex number obtained by changing the sign of imaginary part of the complex number is called the conjugate of z and it is denoted by \overline{z} , i.e., $\overline{z} = a - ib$.

Note that additive inverse of z is -a - ib but conjugate of z is a - ib.

We have :

1. $\overline{(\overline{z})} = z$

2.
$$z + \overline{z} = 2 \operatorname{Re}(z), z - \overline{z} = 2 i \operatorname{Im}(z)$$

- 3. $z = \overline{z}$, if z is purely real.
- 4. $z + \overline{z} = 0 \Leftrightarrow z$ is purely imaginary
- 5. $z \cdot \overline{z} = {\operatorname{Re}(z)}^2 + {\operatorname{Im}(z)}^2$.

6.
$$(z_1+z_2) = \overline{z_1} + \overline{z_2}, (z_1-z_2) = \overline{z_1} - \overline{z_2}$$

7.
$$(\overline{z_1 \cdot z_2}) = (\overline{z_1}) \ (\overline{z_2}), \ \left(\frac{\overline{z_1}}{\overline{z_2}}\right) = \frac{(\overline{z_1})}{(\overline{z_2})} \ (\overline{z_2} \neq 0)$$

5.1.9 Modulus of a complex number

Let z = a + ib be a complex number. Then the positive square root of the sum of square of real part and square of imaginary part is called modulus (absolute value) of z and it is denoted by |z| i.e., $|z| = \sqrt{a^2 + b^2}$

In the set of complex numbers $z_1 > z_2$ or $z_1 < z_2$ are meaningless but

 $|z_1| > |z_2|$ or $|z_1| < |z_2|$

are meaningful because $|z_1|$ and $|z_2|$ are real numbers.

5.1.10 Properties of modulus of a complex number

1. $|z| = 0 \iff z = 0$ i.e., Re (z) = 0 and Im (z) = 0

2.
$$|z| = |\overline{z}| = |-z|$$

3. $-|z| \le \operatorname{Re}(z) \le |z| \text{ and } -|z| \le \operatorname{Im}(z) \le |z|$
4. $z \ \overline{z} = |z|^2, \ |z^2| = |\overline{z}|^2$
5. $|z_1 z_2| = |z_1| \cdot |z_2|, \ \frac{|z_1|}{|z_2|} = \frac{|z_1|}{|z_2|} (z_2 \ne 0)$
6. $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1 \overline{z}_2)$
7. $|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2\operatorname{Re}(z_1 \overline{z}_2)$
8. $|z_1 + z_2| \le |z_1| + |z_2|$

9.
$$|z_1 - z_2| \ge |z_1| - |z_2|$$

10. $|az_1 - bz_2|^2 + |bz_1 + az_2|^2 = (a^2 + b^2) (|z_1|^2 + |z_2|^2)$ In particular:

 $|z_1 - z_2|^2 + |z_1 + z_2|^2 = 2(|z_1|^2 + |z_2|^2)$

11. As stated earlier multiplicative inverse (reciprocal) of a complex number $z = a + ib \ (\neq 0)$ is

$$\frac{1}{z} = \frac{a-ib}{a^2+b^2} = \frac{\overline{z}}{\left|z\right|^2}$$

5.2 Argand Plane

A complex number z = a + ib can be represented by a unique point P (a, b) in the cartesian plane referred to a pair of rectangular axes. The complex number 0 + 0i represent the origin 0 (0, 0). A purely real number a, i.e., (a + 0i) is represented by the point (a, 0) on x - axis. Therefore, x-axis is called real axis. A purely imaginary number

ib, i.e., (0 + ib) is represented by the point (0, b) on y-axis. Therefore, y-axis is called imaginary axis.

Similarly, the representation of complex numbers as points in the plane is known as **Argand diagram**. The plane representing complex numbers as points is called complex plane or Argand plane or Gaussian plane.

If two complex numbers z_1 and z_2 be represented by the points P and Q in the complex plane, then

$$|z_1 - z_2| = PQ$$

5.2.1 Polar form of a complex number

Let P be a point representing a non-zero complex number z = a + ib in the Argand plane. If OP makes an angle θ with the positive direction of x-axis, then $z = r (\cos \theta + i \sin \theta)$ is called the polar form of the complex number, where

 $r = |z| = \sqrt{a^2 + b^2}$ and $\tan \theta = \frac{b}{a}$. Here θ is called argument or amplitude of z and we

write it as arg $(z) = \theta$.

The unique value of θ such that $-\pi \le \theta \le \pi$ is called the principal argument.

$$\arg (z_1 \cdot z_2) = \arg (z_1) + \arg (z_2)$$
$$\arg \left(\frac{z_1}{z_2}\right) = \arg (z_1) - \arg (z_2)$$

5.2.2 Solution of a quadratic equation

The equations $ax^2 + bx + c = 0$, where *a*, *b* and *c* are numbers (real or complex, $a \neq 0$) is called the general quadratic equation in variable*x*. The values of the variable satisfying the given equation are called roots of the equation.

The quadratic equation $ax^2 + bx + c = 0$ with real coefficients has two roots given

by
$$\frac{-b+\sqrt{D}}{2a}$$
 and $\frac{-b-\sqrt{D}}{2a}$, where $D=b^2-4ac$, called the discriminant of the equation.

Notes

1. When D = 0, roots of the quadratic equation are real and equal. When D > 0, roots are real and unequal.

Further, if $a, b, c \in \mathbf{Q}$ and D is a perfect square, then the roots of the equation are rational and unequal, and if $a, b, c \in \mathbf{Q}$ and D is not a perfect square, then the roots are irrational and occur in pair.

When D < 0, roots of the quadratic equation are non real (or complex).

2. Let α , β be the roots of the quadratic equation $ax^2 + bx + c = 0$, then sum of the roots

$$(\alpha + \beta) = \frac{-b}{a}$$
 and the product of the roots $(\alpha \cdot \beta) = \frac{c}{a}$

3. Let S and P be the sum of roots and product of roots, respectively, of a quadratic equation. Then the quadratic equation is given by $x^2 - Sx + P = 0$.

5.2 Solved Exmaples

Short Answer Type

Example 1 Evaluate : $(1 + i)^6 + (1 - i)^3$ Solution $(1 + i)^6 = \{(1 + i)^2\}^3 = (1 + i^2 + 2i)^3 = (1 - 1 + 2i)^3 = 8i^3 = -8i$ and $(1 - i)^3 = 1 - i^3 - 3i + 3i^2 = 1 + i - 3i - 3 = -2 - 2i$ Therefore, $(1 + i)^6 + (1 - i)^3 = -8i - 2 - 2i = -2 - 10i$

Example 2 If $(x+iy)^{\frac{1}{3}} = a+ib$, where $x, y, a, b \in \mathbb{R}$, show that $\frac{x}{a} - \frac{y}{b} = -2(a^2 + b^2)$

Solution
$$(x+iy)^{\frac{1}{3}} = a + ib$$

$$\Rightarrow \qquad x + iy = (a + ib)^{3}$$
i.e., $x + iy = a^{3} + i^{3}b^{3} + 3iab(a + ib)$
 $= a^{3} - ib^{3} + i3a^{2}b - 3ab^{2}$
 $= a^{3} - 3ab^{2} + i(3a^{2}b - b^{3})$
 $\Rightarrow \qquad x = a^{3} - 3ab^{2} \text{ and } y = 3a^{2}b - b^{3}$
 $\frac{x}{2} \qquad y$

Thus

$$\frac{x}{a} = a^2 - 3b^2$$
 and $\frac{y}{b} = 3a^2 - b^2$

So,

$$\frac{x}{a} - \frac{y}{b} = a^2 - 3b^2 - 3a^2 + b^2 = -2 \ a^2 - 2b^2 = -2 \ (a^2 + b^2).$$

Example 3 Solve the equation $z^2 = \overline{z}$, where z = x + iy **Solution** $z^2 = \overline{z} \implies x^2 - y^2 + i2xy = x - iy$ Therefore, $x^2 - y^2 = x$... (1) and 2xy = -y ... (2) From (2), we have y = 0 or $x = -\frac{1}{2}$ When y = 0, from (1), we get $x^2 - x = 0$, i.e., x = 0 or x = 1. When $x = -\frac{1}{2}$, from (1), we get $y^2 = \frac{1}{4} + \frac{1}{2}$ or $y^2 = \frac{3}{4}$, i.e., $y = \pm \frac{\sqrt{3}}{2}$. Hence, the solutions of the given equation are

$$0 + i0, 1 + i0, -\frac{1}{2} + i\frac{\sqrt{3}}{2}, -\frac{1}{2} - i\frac{\sqrt{3}}{2}$$

Example 4 If the imaginary part of $\frac{2z+1}{iz+1}$ is -2, then show that the locus of the point representing z in the argand plane is a straight line.

Solution Let z = x + iy. Then

$$\frac{2z+1}{iz+1} = \frac{2(x+iy)+1}{i(x+iy)+1} = \frac{(2x+1)+i2y}{(1-y)+ix}$$
$$= \frac{\{(2x+1)+i2y\}}{\{(1-y)+ix\}} \times \frac{\{(1-y)-ix\}}{\{(1-y)-ix\}}$$
$$= \frac{(2x+1-y)+i(2y-2y^2-2x^2-x)}{1+y^2-2y+x^2}$$

 $2x^2$

$$\operatorname{Im}\left(\frac{2z+1}{iz+1}\right) = \frac{2y-2y^2-2x^2-x}{1+y^2-2y+x^2}$$

But

Thus

$$\operatorname{Im}\left(\frac{2z+1}{iz+1}\right) = -2 \qquad \text{(Given)}$$

 $\frac{2y-2y^2-2x^2-x}{2} = -2$

So \Rightarrow

i.e.,

$$\begin{array}{l}
1+y - 2y + x \\
2y - 2y^2 - 2x^2 - x = -2 \\
x + 2y - 2 = 0, \text{ which is the equation of a line.}
\end{array}$$

Example 5 If $|z^2 - 1| = |z|^2 + 1$, then show that z lies on imaginary axis. **Solution** Let z = x + iy. Then $|z^2 - 1| = |z|^2 + 1$

 $\Rightarrow |x^2 - y^2 - 1 + i 2xy| = |x + iy|^2 + 1$ $\Rightarrow (x^2 - y^2 - 1)^2 + 4x^2y^2 = (x^2 + y^2 + 1)^2$ $\Rightarrow 4x^2 = 0 i.e., x = 0$ Hence z lies on y-axis.

Example 6 Let z_1 and z_2 be two complex numbers such that $\overline{z_1} + i \overline{z_2} = 0$ and arg $(z_1, z_2) = \pi$. Then find arg (z_1) .

Solution Given that $\overline{z_1} + i \overline{z_2} = 0$

⇒ Thus	$z_1 = i z_2$, i.e., $z_2 = -i z_1$ arg $(z_1 z_2) = \arg z_1 + \arg (-i z_1) = \pi$
\Rightarrow	$\arg(-iz_1^2) = \pi$
\Rightarrow	$\arg(-i) + \arg(z_1^2) = \pi$
\Rightarrow	$\arg(-i) + 2\arg(z_1) = \pi$
\Rightarrow	$\frac{-\pi}{2} + 2 \arg(z_1) = \pi$
\Rightarrow	$\arg(z_1) = \frac{3\pi}{4}$

Example 7 Let z_1 and z_2 be two complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$. Then show that $\arg(z_1) - \arg(z_2) = 0$.

Solution Let $z_1 = r_1 (\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2 (\cos \theta_2 + i \sin \theta_2)$ where $r_1 = |z_1|$, arg $(z_1) = \theta_1$, $r_2 = |z_2|$, arg $(z_2) = \theta_2$. We have, $|z_1 + z_2| = |z_1| + |z_2|$ $= |r_1 (\cos \theta_1 + \cos \theta_2) + r_2 (\cos \theta_2 + \sin \theta_2)| = r_1 + r_2$ $= r_1^2 + r_2^2 + 2r_1r_2 \cos(\theta_1 - \theta_2) = (r_1 + r_2)^2 \Rightarrow \cos(\theta_1 - \theta_2) = 1$ $\Rightarrow \theta_1 - \theta_2$ i.e. arg $z_1 = \arg z_2$ Example 8 If z_1, z_2, z_3 are complex numbers such that

 $|z_1| = |z_2| = |z_3| = \left|\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right| = 1$, then find the value of $|z_1 + z_2 + z_3|$. Solution $|z_1| = |z_2| = |z_3| = 1$ \Rightarrow

 \Rightarrow

$$|z_1|^2 = |z_2|^2 = |z_3|^2 = 1$$

$$z_1 \overline{z_1} = z_2 \overline{z_2} = z_3 \overline{z_2} = 1$$

$$\overline{z_1} = \frac{1}{z_1}, \ \overline{z_2} = \frac{1}{z_2}, \ \overline{z_3} = \frac{1}{z_3}$$

 $\left|\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_2}\right| = 1$ Given that

$$\Rightarrow \qquad |\overline{z_1} + \overline{z_2} + \overline{z_3}| = 1 \text{, i.e., } |\overline{z_1} + z_2 + z_3| = 1$$
$$\Rightarrow \qquad |z_1 + z_2 + z_3| = 1$$

 \Rightarrow

Example 9 If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (-4, 0), find the greatest and least values of |z+1|.

Solution Distance of the point representing z from the centre of the circle is |z - (-4 + i0)| = |z + 4|.

According to given condition $|z+4| \le 3$.

Now $|z+1| = |z+4-3| \le |z+4| + |-3| \le 3+3=6$

Therefore, greatest value of |z + 1| is 6.

Since least value of the modulus of a complex number is zero, the least value of |z+1|=0.

Example 10 Locate the points for which 3 < |z| < 4

Solution $|z| < 4 \Rightarrow x^2 + y^2 < 16$ which is the interior of circle with centre at origin and radius 4 units, and $|z| > 3 \Rightarrow x^2 + y^2 > 9$ which is exterior of circle with centre at origin and radius 3 units. Hence 3 < |z| < 4 is the portion between two circles $x^2 + y^2 = 9$ and $x^2 + y^2 = 16.$

Example 11 Find the value of $2x^4 + 5x^3 + 7x^2 - x + 41$, when $x = -2 - \sqrt{3}i$ **Solution** $x + 2 = -\sqrt{3}i \implies x^2 + 4x + 7 = 0$ $2x^4 + 5x^3 + 7x^2 - x + 41 = (x^2 + 4x + 7)(2x^2 - 3x + 5) + 6$ Therefore $= 0 \times (2x^2 - 3x + 5) + 6 = 6.$

Example 12 Find the value of P such that the difference of the roots of the equation $x^2 - Px + 8 = 0$ is 2.

Solution Let α , β be the roots of the equation $x^2 - Px + 8 = 0$ Therefore $\alpha + \beta = P$ and $\alpha \cdot \beta = 8$.

Now

$$\alpha - \beta = \pm \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$$

Therefore $2 = \pm \sqrt{P^2 - 32}$

 $\Rightarrow \qquad P^2 - 32 = 4, \text{ i.e., } P = \pm 6.$

Example 13 Find the value of *a* such that the sum of the squares of the roots of the equation $x^2 - (a-2)x - (a+1) = 0$ is least.

Solution Let α , β be the roots of the equation

Therefore, $\alpha + \beta = a - 2$ and $\alpha\beta = -(a + 1)$ Now $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $= (a - 2)^2 + 2 (a + 1)$ $= (a - 1)^2 + 5$

Therefore, $\alpha^2 + \beta^2$ will be minimum if $(a - 1)^2 = 0$, i.e., a = 1.

Long Answer Type

Example 14 Find the value of k if for the complex numbers z_1 and z_2 ,

$$|1-\overline{z_1}z_2|^2 - |z_1-z_2|^2 = k(1-|z_1|^2)(1-|z_2|^2)$$

Solution

L.H.S. =
$$|1 - \overline{z_1} z_2|^2 - |z_1 - z_2|^2$$

= $(1 - \overline{z_1} z_2) (\overline{1 - \overline{z_1} z_2}) - (z_1 - z_2) (\overline{z_1 - z_2})$
= $(1 - \overline{z_1} z_2) (1 - z_1 \overline{z_2}) - (z_1 - z_2) (\overline{z_1} - \overline{z_2})$
= $1 + z_1 \overline{z_1} z_2 \overline{z_2} - z_1 \overline{z_1} - z_2 \overline{z_2}$
= $1 + |z_1|^2 \cdot |z_2|^2 - |z_1|^2 - |z_2|^2$
= $(1 - |z_1|^2) (1 - |z_2|^2)$
R.H.S. = $k (1 - |z_1|^2) (1 - |z_2|^2)$
 $k = 1$

 \Rightarrow

Hence, equating LHS and RHS, we get
$$k = 1$$
.
Example 15 If z_1 and z_2 both satisfy $z + \overline{z} = 2|z-1|$ arg $(z_1 - z_2) = \frac{\pi}{4}$, then find Im $(z_1 + z_2)$.
Solution Let $z = x + iy$, $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$.
Then $z + \overline{z} = 2|z-1|$
 $\Rightarrow (x + iy) + (x - iy) = 2|x-1+iy|$
 $\Rightarrow 2x = 1 + y^2$... (1)
Since z_1 and z_2 both satisfy (1), we have
 $2x_1 = 1 + y_1^2$... and $2x_2 = 1 + y_2^2$
 $\Rightarrow 2(x_1 - x_2) = (y_1 + y_2)(y_1 - y_2)$
 $\Rightarrow 2 = (y_1 + y_2) \left(\frac{y_1 - y_2}{x_1 - x_2}\right)$... (2)
Again $z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$
Therefore, $\tan \theta = \frac{y_1 - y_2}{x_1 - x_2}$, where $\theta = \arg(z_1 - z_2)$
 $\Rightarrow \tan \frac{\pi}{4} = \frac{y_1 - y_2}{x_1 - x_2}$ (since $\theta = \frac{\pi}{4}$)
i.e., $1 = \frac{y_1 - y_2}{x_1 - x_2}$
From (2), we get $2 = y_1 + y_2$, i.e., Im $(z_1 + z_2) = 2$
Objective Type Questions
Example 16 Fill in the blanks:
(i) The reflexion of $z = z^2$ for which $2z_1 - 2z_2 + (1 - z)^2 + 5$ is read in

- (i) The real value of 'a' for which $3i^3 2at^2 + (1 a)i + 5$ is real is _____.
- (ii) If |z| = 2 and arg $(z) = \frac{\pi}{4}$, then z =_____.
- (iii) The locus of z satisfying arg (z) = $\frac{\pi}{3}$ is _____.
- (iv) The value of $(-\sqrt{-1})^{4n-3}$, where $n \in \mathbf{N}$, is _____.

- (v) The conjugate of the complex number $\frac{1-i}{1+i}$ is _____.
- (vi) If a complex number lies in the third quadrant, then its conjugate lies in the _____.

(vii) If
$$(2+i)(2+2i)(2+3i)...(2+ni) = x+iy$$
, then 5.8.13 ... $(4+n^2) =$ _____

Solution

(i) $3i^3 - 2ai^2 + (1 - a)i + 5 = -3i + 2a + 5 + (1 - a)i$ = 2a + 5 + (-a - 2)i, which is real if -a - 2 = 0 i.e. a = -2. (ii) $z = |z| \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = 2 \left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = \sqrt{2} (1 + i)$

(iii) Let
$$z = x + iy$$
. Then its polar form is $z = r(\cos \theta + i \sin \theta)$, where $\tan \theta = \frac{y}{x}$ and
 θ is arg (z). Given that $\theta = \frac{\pi}{3}$. Thus.
 $\tan \frac{\pi}{3} = \frac{y}{x} \implies y = \sqrt{3}x$, where $x > 0$, $y > 0$.
Hence, locus of z is the part of $y = \sqrt{3}x$ in the first quadrant except origin.

(iv) Here $(-\sqrt{-1})^{4n-3} = (-i)^{4n-3} = (-i)^{4n} (-i)^{-3} = \frac{1}{(-i)^3}$ $= \frac{1}{-i^3} = \frac{1}{i} = \frac{i}{i^2} = -i$ (v) $\frac{1-i}{1+i} = \frac{1-i}{1+i} \times \frac{1-i}{1-i} = \frac{1+i^2-2i}{1-i^2} = \frac{1-1-2i}{1+1} = -i$

Hence, conjugate of $\frac{1-i}{1+i}$ is *i*.

(vi) Conjugate of a complex number is the image of the complex number about the *x*-axis. Therefore, if a number lies in the third quadrant, then its image lies in the second quadrant.

(vii) Given that
$$(2+i)(2+2i)(2+3i)...(2+ni) = x + iy$$
 ... (1)

$$\Rightarrow (\overline{2+i}) (\overline{2+2i}) (\overline{2+3i}) ... (\overline{2+ni}) = (\overline{x+iy}) = (x-iy)$$

i.e., $(2-i) (2-2i) (2-3i) ... (2-ni) = x - iy$... (2)

Multiplying (1) and (2), we get 5.8.13 ... $(4 + n^2) = x^2 + y^2$.

Example 17 State true or false for the following:

- (i) Multiplication of a non-zero complex number by *i* rotates it through a right angle in the anti- clockwise direction.
- (ii) The complex number $\cos\theta + i \sin\theta$ can be zero for some θ .
- (iii) If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
- (iv) The argument of the complex number $z = (1 + i\sqrt{3})(1 + i)(\cos \theta + i \sin \theta)$ is $\frac{7\pi}{12} + \theta$
- (v) The points representing the complex number z for which |z+1| < |z-1| lies in the interior of a circle.
- (vi) If three complex numbers z_1 , z_2 and z_3 are in A.P., then they lie on a circle in the complex plane.
- (vii) If *n* is a positive integer, then the value of $i^n + (i)^{n+1} + (i)^{n+2} + (i)^{n+3}$ is 0.

Solution

- (i) True. Let z = 2 + 3i be complex number represented by OP. Then iz = -3 + 2i, represented by OQ, where if OP is rotated in the anticlockwise direction through a right angle, it coincides with OQ.
- (ii) False. Because $\cos\theta + i\sin\theta = 0 \Rightarrow \cos\theta = 0$ and $\sin\theta = 0$. But there is no value of θ for which $\cos\theta$ and $\sin\theta$ both are zero.
- (iii) False, because $x + iy = x iy \Rightarrow y = 0 \Rightarrow$ number lies on x-axis.
- (iv) True, $\arg(z) = \arg(1 + i\sqrt{3}) + \arg(1 + i) + \arg(\cos\theta + i\sin\theta)$

$$\frac{\pi}{3} + \frac{\pi}{4} + \theta = \frac{7\pi}{12} + \theta$$

- (v) False, because |x+iy+1| < |x+iy-1| $\Rightarrow (x+1)^2 + y^2 < (x-1)^2 + y^2$ which gives 4x < 0.
- (vi) False, because if z_1, z_2 and z_3 are in A.P., then $z_2 = \frac{z_1 + z_3}{2} \Rightarrow z_2$ is the midpoint of z_1 and z_3 , which implies that the points z_1, z_2, z_3 are collinear.

(vii) True, because
$$i^n + (i)^{n+1} + (i)^{n+2} + (i)^{n+3}$$

= $i^n (1 + i + i^2 + i^3) = i^n (1 + i - 1 - i)$
= $i^n (0) = 0$

Example 18 Match the statements of column A and B.

ColumnA

- (a) The value of $1+i^2 + i^4 + i^6 + \dots i^{20}$ is
- (b) The value of i^{-1097} is
- (c) Conjugate of 1+i lies in 1+2i

(d)
$$\frac{1-i}{1-i}$$
 lies in

- (e) If $a, b, c \in \mathbb{R}$ and $b^2 4ac < 0$, then the roots of the equation $ax^2 + bx + c = 0$ are non real (complex) and
- (f) If $a, b, c \in \mathbb{R}$ and $b^2 4ac > 0$, and $b^2 - 4ac$ is a perfect square, then the roots of the equation $ax^2 + bx + c = 0$

Column B

- (i) purely imaginary complex number
- (ii) purely real complex number
- (iii) second quadrant
- (iv) Fourth quadrant
- (v) may not occur in conjugate pairs
- (vi) may occur in conjugate pairs

Solution

(a) \Leftrightarrow (ii), because $1 + i^2 + i^4 + i^6 + \dots + i^{20}$ = $1 - 1 + 1 - 1 + \dots + 1 = 1$ (which is purely a real complex number)

(b)
$$\Leftrightarrow$$
 (i), because $i^{-1097} = \frac{1}{(i)^{1097}} = \frac{1}{i^{4 \times 274 + 1}} = \frac{1}{\{(i)^4\}^{274}(i)} = \frac{1}{i} = \frac{i}{i^2} = -i$

which is purely imaginary complex number.

(c) \Leftrightarrow (iv), conjugate of 1 + i is 1 - i, which is represented by the point (1, -1) in the fourth quadrant.

(d)
$$\Leftrightarrow$$
 (iii), because $\frac{1+2i}{1-i} = \frac{1+2i}{1-i} \times \frac{1+i}{1+i} = \frac{-1+3i}{2} = -\frac{1}{2} + \frac{3}{2}i$, which is represented by the point $\left(-\frac{1}{2}, \frac{3}{2}\right)$ in the second quadrant.

(e)
$$\Leftrightarrow$$
 (vi), If $b^2 - 4ac < 0 = D < 0$, i.e., square root of D is a imaginary
number, therefore, roots are $x = \frac{-b \pm \text{Imaginary Number}}{2a}$, i.e., roots are in
conjugate pairs.

(f) \Leftrightarrow (v), Consider the equation $x^2 - (5 + \sqrt{2}) x + 5 \sqrt{2} = 0$, where a = 1, $b = -(5 + \sqrt{2}), c = 5\sqrt{2}$, clearly $a, b, c \in \mathbb{R}$. Now $D = b^2 - 4ac = \{-(5 + \sqrt{2})\}^2 - 4.1.5\sqrt{2} = (5 - \sqrt{2})^2$.

Therefore $x = \frac{5 + \sqrt{2} \pm 5 - \sqrt{2}}{2} = 5$, $\sqrt{2}$ which do not form a conjugate pair.

Example 19 What is the value of $\frac{i^{4n+1} - i^{4n-1}}{2}$? Solution *i*, because $\frac{i^{4n+1} - i^{4n-1}}{2} = \frac{i^{4n}i - i^{4n}i^{-i}}{2}$ $= \frac{i - \frac{1}{2}}{2} = \frac{i^2 - 1}{2i} = \frac{-2}{2i} = i$

Example 20 What is the smallest positive integer *n*, for which $(1 + i)^{2n} = (1 - i)^{2n}$?

Solution n = 2, because $(1 + i)^{2n} = (1 - i)^{2n} = \left(\frac{1 + i}{1 - i}\right)^{2n} = 1$ $\Rightarrow \qquad (i)^{2n} = 1$ which is possible if n = 2 ($\therefore i^4 = 1$) Example 21 What is the reciprocal of $3 + \sqrt{7}i$

Solution Reciprocal of $z = \frac{\overline{z}}{|z|^2}$ Therefore, reciprocal of $3 + \sqrt{7}$ $i = \frac{3 - \sqrt{7}i}{16} = \frac{3}{16} - \frac{\sqrt{7}i}{16}$

Example 22 If $z_1 = \sqrt{3} + i\sqrt{3}$ and $z_2 = \sqrt{3} + i$, then find the quadrant in which

 $\left(\frac{z_1}{z_2}\right) \text{ lies.}$ Solution $\frac{z_1}{z_2} = \frac{\sqrt{3} + i\sqrt{3}}{\sqrt{3} + i} = \left(\frac{3 + \sqrt{3}}{4}\right) + \left(\frac{3 - \sqrt{3}}{4}\right)i$

which is represented by a point in first quadrant.

Example 23 What is the conjugate of
$$\frac{\sqrt{5+12i} + \sqrt{5-12i}}{\sqrt{5+12i} - \sqrt{5-12i}}$$
?

Solution Let

$$z = \frac{\sqrt{5+12i} + \sqrt{5-12i}}{\sqrt{5+12i} - \sqrt{5-12i}} \times \frac{\sqrt{5+12i} + \sqrt{5-12i}}{\sqrt{5+12i} + \sqrt{5-12i}}$$
$$= \frac{5+12i + 5 - 12i + 2\sqrt{25+144}}{5+12i - 5 + 12i}$$
$$= \frac{3}{2i} = \frac{3i}{-2} = 0 - \frac{3}{2}i$$

Therefore, the conjugate of $z = 0 + \frac{3}{2}i$

Example 24 What is the principal value of amplitude of 1 - i?

Solution Let θ be the principle value of amplitude of 1 - i. Since

$$\tan \theta = -1 \Rightarrow \tan \theta = \tan \left(-\frac{\pi}{4}\right) \Rightarrow \theta = -\frac{\pi}{4}$$

Example 25 What is the polar form of the complex number $(i^{25})^3$? **Solution** $z = (i^{25})^3 = (i)^{75} = i^{4 \times 18+3} = (i^4)^{18}$ $(i)^3 = i^3 = -i = 0 - i$

Polar form of $z = r (\cos \theta + i \sin \theta)$

$$= 1\left\{\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right\}$$
$$= \cos\frac{\pi}{2} - i\sin\frac{\pi}{2}$$

Example 26 What is the locus of z, if amplitude of z - 2 - 3i is $\frac{\pi}{4}$? **Solution** Let z = x + iy. Then z - 2 - 3i = (x - 2) + i(y - 3)Let θ be the amplitude of z - 2 - 3i. Then $\tan \theta = \frac{y - 3}{x - 2}$

$$\Rightarrow \qquad \tan\frac{\pi}{4} = \frac{y-3}{x-2} \left(\operatorname{since} \theta = \frac{\pi}{4}\right)$$

$$\Rightarrow \qquad 1 = \frac{y-3}{x-2} \text{ i.e. } x - y + 1 = 0$$

Hence, the locus of z is a straight line.

Example 27 If 1 - i, is a root of the equation $x^2 + ax + b = 0$, where $a, b \in \mathbf{R}$, then find the values of *a* and *b*.

Solution Sum of roots $\frac{-a}{1} = (1-i) + (1+i) \Rightarrow a = -2$.

(since non real complex roots occur in conjugate pairs)

Product of roots,
$$\frac{b}{1} = (1-i)(1+i) \Rightarrow b = 2$$

Choose the correct options out of given four options in each of the Examples from 28 to 33 (M.C.Q.).

Example 28 $1 + i^2 + i^4 + i^6 + ... + i^{2n}$ is

- (A) positive (B) negative
- (C) 0 (D) can not be evaluated

Solution (D), $1 + i^2 + i^4 + i^6 + ... + i^{2n} = 1 - 1 + 1 - 1 + ... (-1)^n$

which can not be evaluated unless n is known.

Example 29 If the complex number z = x + iy satisfies the condition |z+1| = 1, then z lies on

- (A) x-axis
- (B) circle with centre (1, 0) and radius 1
- (C) circle with centre (-1, 0) and radius 1
- (D) y-axis

Solution (C),
$$|z+1|=1 \Rightarrow |(x+1)+iy|=1$$

 $\Rightarrow (x+1)^2 + y^2 = 1$

which is a circle with centre (-1, 0) and radius 1.

Example 30 The area of the triangle on the complex plane formed by the complex numbers $z_{z} - iz$ and z + iz is:

(A)
$$|z|^2$$

(B) $|\overline{z}|^2$
(C) $\frac{|z|^2}{2}$
(D) none of these

Solution (C), Let z = x + iy. Then -iz = y - ix. Therefore, z + iz = (x - y) + i(x + y)

Required area of the triangle = $\frac{1}{2}(x^2 + y^2) = \frac{|z|^2}{2}$

Example 31 The equation |z+1-i| = |z-1+i| represents a

- (A) straight line (B) circle
- (C) parabola (D) hyperbola

Solution (A), |z+1-i| = |z-1+i|

$$\Rightarrow \qquad |z - (-1 + i)| = |z - (1 - i)|$$

- $\Rightarrow PA = PB, where A denotes the point (-1, 1), B denotes the point (1, -1) and P denotes the point (x, y)$
- \Rightarrow z lies on the perpendicular bisector of the line joining A and B and perpendicular bisector is a straight line.

= 0

Example 32 Number of solutions of the equation $z^2 + |z|^2 = 0$ is

(A) 1 (B) 2 (C) 3 (D) infinitely many

Solution (D), $z^2 + |z|^2 = 0, z \neq 0$

$$\Rightarrow \qquad x^2 - y^2 + i2xy + x^2 + y^2 = 0$$

$$\Rightarrow \qquad 2x^2 + i2xy = 0 \implies 2x (x + iy)$$

 \Rightarrow x = 0 or x + iy = 0 (not possible)

Therefore, x = 0 and $z \neq 0$

So y can have any real value. Hence infinitely many solutions.

Example 33 The amplitude of
$$\sin \frac{\pi}{5} + i(1 - \cos \frac{\pi}{5})$$
 is
(A) $\frac{2\pi}{5}$ (B) $\frac{\pi}{5}$ (C) $\frac{\pi}{15}$ (D) $\frac{\pi}{10}$
Solution (D), Here $r \cos \theta = \sin \left(\frac{\pi}{5}\right)$ and $r \sin \theta = 1 - \cos \frac{\pi}{5}$

Therefore,
$$\tan \theta = \frac{1 - \cos \frac{\pi}{5}}{\sin \frac{\pi}{5}} = \frac{2 \sin^2 \left(\frac{\pi}{10}\right)}{2 \sin \left(\frac{\pi}{10}\right) \cdot \cos \left(\frac{\pi}{10}\right)}$$

 $\Rightarrow \qquad \tan \theta = \tan \left(\frac{\pi}{10}\right) \text{ i.e., } \theta = \frac{\pi}{10}$

5.3 EXERCISE

Short Answer Type

- 1. For a positive integer *n*, find the value of $(1-i)^n \left(1-\frac{1}{i}\right)^n$
- 2. Evaluate $\sum_{n=1}^{13} (i^n + i^{n+1})$, where $n \in \mathbb{N}$. 3. If $\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3 = x + iy$, then find (x, y).

4. If
$$\frac{(1+i)^2}{2-i} = x + iy$$
, then find the value of $x + y$

5. If
$$\left(\frac{1-i}{1+i}\right)^{100} = a+ib$$
, then find (a, b) .

- 6. If $a = \cos \theta + i \sin \theta$, find the value of $\frac{1+a}{1-a}$.
- 7. If $(1+i) z = (1-i) \overline{z}$, then show that $z = -i \overline{z}$.
- 8. If z = x + iy, then show that $z \overline{z} + 2(z + \overline{z}) + b = 0$, where $b \in \mathbf{R}$, represents a circle.
- 9. If the real part of $\frac{\overline{z}+2}{\overline{z}-1}$ is 4, then show that the locus of the point representing z in the complex plane is a circle.
- 10. Show that the complex number z, satisfying the condition $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{4}$ lies on a circle.
- 11. Solve the equation |z| = z + 1 + 2i.

Long Answer Type

12. If |z+1| = z+2(1+i), then find z.

- **13.** If $\arg(z-1) = \arg(z+3i)$, then find x-1 : y. where z = x + iy
- 14. Show that $\left|\frac{z-2}{z-3}\right| = 2$ represents a circle. Find its centre and radius.
- 15. If $\frac{z-1}{z+1}$ is a purely imaginary number $(z \neq -1)$, then find the value of |z|.
- z_1 and z_2 are two complex numbers such that $|z_1| = |z_2|$ and $\arg(z_1) + \arg(z_2) =$ **16.** π , then show that $z_1 = -\overline{z}_2$.
- 17. If $|z_1| = 1$ $(z_1 \neq -1)$ and $z_2 = \frac{z_1 1}{z_1 + 1}$, then show that the real part of z_2 is zero.
- **18.** If z_1, z_2 and z_3, z_4 are two pairs of conjugate complex numbers, then find

$$\operatorname{arg}\left(\frac{z_1}{z_4}\right) + \operatorname{arg}\left(\frac{z_2}{z_3}\right).$$

arg
$$\begin{pmatrix} z_4 \end{pmatrix}^+$$
 arg $\begin{pmatrix} -z_1 \\ z_3 \end{pmatrix}^-$
19. If $|z_1| = |z_2| = ... = |z_n| = 1$, then

show that
$$|z_1 + z_2 + z_3 + \dots + z_n| = \left|\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} + \dots + \frac{1}{z_n}\right|$$

- 20. If for complex numbers z_1 and z_2 , arg $(z_1) \arg(z_2) = 0$, then show that $|z_1 - z_2| = |z_1| - |z_2|$
- Solve the system of equations Re $(z^2) = 0$, |z|=2. 21.
- Find the complex number satisfying the equation $z + \sqrt{2} |(z+1)| + i = 0$. 22.
- Write the complex number $z = \frac{1-i}{\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}}$ in polar form. 23.
- 24. If z and w are two complex numbers such that |zw|=1 and $\arg(z) \arg(w) =$ $\frac{\pi}{2}$, then show that $\overline{z} w = -i$.

Objective Type Questions

- **25.** Fill in the blanks of the following
 - (i) For any two complex numbers z_1 , z_2 and any real numbers a, b, $|az_1 - bz_2|^2 + |bz_1 + az_2|^2 = \dots$
 - (ii) The value of $\sqrt{-25} \times \sqrt{-9}$ is
 - (iii) The number $\frac{(1-i)^3}{1-i^3}$ is equal to
 - (iv) The sum of the series $i + i^2 + i^3 + \dots$ up to 1000 terms is
 - (v) Multiplicative inverse of 1 + i is
 - (vi) If z_1 and z_2 are complex numbers such that $z_1 + z_2$ is a real number, (vii) $\arg(z) + \arg \overline{z}$ ($\overline{z} \neq 0$) is

 - (viii) If $|z+4| \le 3$, then the greatest and least values of |z+1| are and

(ix) If
$$\left|\frac{z-2}{z+2}\right| = \frac{\pi}{6}$$
, then the locus of z is

- (x) If |z| = 4 and arg $(z) = \frac{5\pi}{6}$, then $z = \dots$
- State True or False for the following : **26**.
 - The order relation is defined on the set of complex numbers. (i)
 - (ii) Multiplication of a non zero complex number by -i rotates the point about origin through a right angle in the anti-clockwise direction.
 - For any complex number z the minimum value of |z| + |z-1| is 1. (iii)
 - (iv) The locus represented by |z-1| = |z-i| is a line perpendicular to the join of (1, 0) and (0, 1).
 - (v) If z is a complex number such that $z \neq 0$ and Re (z) = 0, then Im $(z^2) = 0$.
 - (vi) The inequality |z-4| < |z-2| represents the region given by x > 3.

(vii) Let z_1 and z_2 be two complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then arg $(z_1 - z_2) = 0$.

(iii)

(viii) 2 is not a complex number.

ColumnA

27. Match the statements of Column A and Column B.

Column B

- (a) The polar form of $i + \sqrt{3}$ is
- (b) The amplitude of $-1 + \sqrt{-3}$ is (ii) On or outside the circle having centre
- (c) If |z+2|=|z-2|, then locus of z is
- (d) If |z+2i| = |z-2i|, then locus of z is
- (e) Region represented by

 $|z+4i| \ge 3$ is

- (f) Region represented by $|z+4| \le 3$ is
- (iv) Perpendicular bisector of segment joining (0, -2) and (0, 2).

(i) Perpendicular bisector of segment

joining (-2, 0) and (2, 0)

at (0, -4) and radius 3.

- (v) $2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$
- (vi) On or inside the circle having centre(-4, 0) and radius 3 units.
- (g) Conjugate of $\frac{1+2i}{1-i}$ lies in (vii) First quadrant
- (h) Reciprocal of 1 i lies in (viii) Third quadrant

28. What is the conjugate of
$$\frac{2-i}{(1-2i)^2}$$
?

29. If $|z_1| = |z_2|$, is it necessary that $z_1 = z_2$? 30. If $\frac{(a^2 + 1)^2}{2a - i} = x + iy$, what is the value of $x^2 + y^2$?

- **31.** Find z if |z| = 4 and arg $(z) = \frac{5\pi}{6}$.
- **32.** Find $(1+i)\frac{(2+i)}{(3+i)}$
- **33.** Find principal argument of $(1 + i\sqrt{3})^2$.
- 34. Where does z lie, if $\left| \frac{z-5i}{z+5i} \right| = 1$.

Choose the correct answer from the given four options indicated against each of the Exercises from 35 to 50 (M.C.Q)

- **35.** $\sin x + i \cos 2x$ and $\cos x i \sin 2x$ are conjugate to each other for:
 - (A) $x = n\pi$ (B) $x = \left(n + \frac{1}{2}\right)\frac{\pi}{2}$

(C)
$$x = 0$$
 (D) No value of x

36. The real value of α for which the expression $\frac{1-i\sin\alpha}{1+2i\sin\alpha}$ is purely real is :

(A) $(n+1)\frac{\pi}{2}$ (B) $(2n+1)\frac{\pi}{2}$ (D) None of these, where $n \in \mathbb{N}$

37. If z = x + iy lies in the third quadrant, then $\frac{\overline{z}}{z}$ also lies in the third quadrant if

- (A) x > y > 0(B) x < y < 0(D) y > x > 0
- $(C) \quad y < x < 0 \qquad (D) \quad y > x > 0$

38. The value of (z + 3) ($\overline{z} + 3$) is equivalent to

- (A) $|z+3|^2$ (B) |z-3|(C) z^2+3 (D) None of these
- **39.** If $\left(\frac{1+i}{1-i}\right)^x = 1$, then (A) x = 2n+1 (B) x = 4n(C) x = 2n (D) x = 4n + 1, where $n \in \mathbb{N}$

40. A real value of x satisfies the equation $\left(\frac{3-4ix}{3+4ix}\right) = \alpha - i\beta \ (\alpha, \beta \in \mathbf{R})$ if $\alpha^2 + \beta^2 =$ (A) 1 (B) – 1 (C) 2 (D) -2**41.** Which of the following is correct for any two complex numbers z_1 and z_2 ? (A) $|z_1 z_2| = |z_1| |z_2|$ (B) $\arg(z_1z_2) = \arg(z_1)$. $\arg(z_2)$ (C) $|z_1 + z_2| = |z_1| + |z_2|$ (D) $|z_1 + z_2| \ge |z_1| - |z_2|$ 42. The point represented by the complex number 2-i is rotated about origin through an angle $\frac{\pi}{2}$ in the clockwise direction, the new position of point is: (C) 2+i(D) -1+2i(A) 1 + 2i(B) -1 - 2i**43.** Let $x, y \in \mathbf{R}$, then x + iy is a non real complex number if: (D) $y \neq 0$ (A) x = 0(B) y = 0(C) $x \neq 0$ **44.** If a + ib = c + id, then (B) $b^2 + c^2 = 0$ (D) $a^2 + b^2 = c^2 + d^2$ (A) $a^2 + c^2 = 0$ (C) $b^2 + d^2 = 0$ The complex number z which satisfies the condition $\left|\frac{i+z}{i-z}\right| = 1$ lies on **45**. (A) circle $x^2 + y^2 = 1$ (B) the x-axis (C) the y-axis (D) the line x + y = 1. 46. If z is a complex number, then (A) $|z^2| > |z|^2$ (B) $|z^2| = |z|^2$ (C) $|z^2| < |z|^2$ (D) $|z^2| \ge |z|^2$ **47.** $|z_1 + z_2| = |z_1| + |z_2|$ is possible if (B) $z_2 = \frac{1}{z_1}$ (A) $z_2 = \overline{z_1}$ (C) $\arg(z_1) = \arg(z_2)$ (D) $|z_1| = |z_2|$

48. The real value of θ for which the expression $\frac{1+i\cos\theta}{1-2i\cos\theta}$ is a real number is:

(A)
$$n\pi + \frac{\pi}{4}$$
 (B) $n\pi + (-1)^n \frac{\pi}{4}$

(C)
$$2n\pi \pm \frac{\pi}{2}$$
 (D) none of these.

49. The value of arg (x) when x < 0 is:

- (B) $\frac{\pi}{2}$ (D) none of these (A) 0
- (C) π

50. If
$$f(z) = \frac{7-z}{1-z^2}$$
, where $z = 1 + 2i$, then $|f(z)|$ is

(A) $\frac{|z|}{2}$ (C) 2|z|

Z. none of these. (D)

(B)