Chapter 5. Complex Numbers and Quadratic Equations

Question-1

If $z_{1}, z_{2} \in C$, show that $\left(z_{1}+z_{2}\right)^{2}=z_{1}{ }^{2}+2 z_{1} z_{2}+z_{2}{ }^{2}$

Solution:

Let $z_{1}=x_{1}+i y_{1}$
$z^{2}=x_{2}+i y_{2}$

$$
\begin{aligned}
\left(z_{1}+z_{2}\right)^{2} & =\left[\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)\right]^{2} \\
= & {\left[\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)\right]^{2} } \\
= & \left(x_{1}+x_{2}\right)^{2}+2 i\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)-\left(y_{1}+y_{2}\right)^{2} \\
= & x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}+2 i x_{1} y_{1}+2 i x_{1} y_{2}+2 i x_{2} y_{1}+2 i x_{2} y_{2}-y_{1}^{2}-2 y_{1} y_{2}-y_{2}^{2} \\
= & x_{1}^{2}+2 i x_{1} y_{1}-y_{1}^{2}+x_{2}^{2}+2 i x_{2} y_{2}-y_{2}^{2}+2\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right) \\
= & x_{1}^{2}+2 i x_{1} y_{1}+\left(i y_{1}\right)^{2}+x_{2}^{2}+2 i x_{2} y_{2}+\left(i y_{2}\right)^{2}+2\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right) \\
= & \left(x_{1}+i y_{1}\right)^{2}+\left(x_{2}+i y_{2}\right)^{2}+2 z_{1} z_{2} \\
& =z_{1}^{2}+2 z_{1} z_{2}+z_{2}^{2}
\end{aligned}
$$

Question-2

Write the following as complex numbers
i. $\sqrt{-16}$
ii. $1+\sqrt{-1}$
iii. $-1-\sqrt{-5}$
iv $\frac{\sqrt{3}}{2}-\frac{\sqrt{-2}}{\sqrt{7}}$
v. $\sqrt{x},(x>0)$
vi. $-b+\sqrt{-4 a c},(a, c>0)$

Solution:
i. $\sqrt{-16}=\sqrt{-1 \times 16}=\sqrt{-1} \sqrt{16}=\mathrm{i} \sqrt{16}$
ii. $1+\sqrt{-1}=1+\mathrm{i}$
iii. $-1-\sqrt{-5}=-1-\sqrt{-1} \sqrt{5}=-1-\mathrm{i} \sqrt{5}$
iv. $\frac{\sqrt{3}}{2}-\frac{\sqrt{-2}}{\sqrt{7}}=\frac{\sqrt{3}}{2}-\frac{\sqrt{-1} \sqrt{2}}{\sqrt{7}}=\frac{\sqrt{3}}{2}-\frac{\mathrm{i} \sqrt{2}}{\sqrt{7}}$
v. $\sqrt{x}=\sqrt{x}+i 0$
vi. $-b+\sqrt{-4 a c}=-b+\sqrt{-1} \sqrt{4 a c}=-b+2 i \sqrt{a c}$

Question-3

Obtain a quadratic equation whose root are 2 and 3 .

Solution:

Let α, β be the roots of the equation.

Sum of the roots $\alpha+\beta=2+3=5$

Product of the roots $\alpha \times \beta=2 \times 3=6$
\therefore The equation is given by
$x^{2}-($ sum of roots $) x+$ product of roots $=0$
\therefore Equation is $x^{2}-5 x+6=0$.

Question-4

Solve the following equation: $25 x^{2}-30 x+9=0$.

Solution:
$25 x^{2}-30 x+9=0$
$D=b^{2}-4 a c=900-4 \times 25 \times 9=900-900=0$
Hence the two real equal roots of the equation are : $\frac{30}{50}, \frac{30}{50}$ i.e $\frac{3}{5}, \frac{3}{5}$

Question-5

Write the real and imaginary parts of the following complex numbers below:
i. $\frac{\sqrt{17}}{2}+\frac{\mathrm{i} 2}{\sqrt{70}}$
ii. $-\frac{1}{5}+\frac{i}{5}$
iii. $\sqrt{37}+\sqrt{-19}$
iv. $\sqrt{3}+i \frac{\sqrt{2}}{76}$
v. 7
vi. 3i

Solution:

i. Let $z=\frac{\sqrt{17}}{2}+\frac{i 2}{\sqrt{70}}$
$\operatorname{Re} z=\frac{\sqrt{17}}{2}, \operatorname{lm} z=\frac{2}{\sqrt{70}}$
ii. Let $z=-\frac{1}{5}+\frac{i}{5}$
$\operatorname{Re} z=-\frac{1}{5}, \operatorname{Im} z=\frac{1}{5}$
iii. Let $z=\sqrt{37}+\sqrt{-19}=\sqrt{37}+i \sqrt{19}$
$\operatorname{Re} z=\sqrt{37}, \operatorname{Im} z=\sqrt{19}$
iv. $\sqrt{3}+\mathrm{i} \frac{\sqrt{2}}{76}$
$\operatorname{Re} z=\sqrt{3}, \operatorname{Im} z=\frac{\sqrt{2}}{76}$
v. 7
$\operatorname{Re} z=7, \operatorname{Im} z=0$
vi. $3 i$
$\operatorname{Re} z=0, I m z=3$

Without computing the roots of $3 x^{2}+2 x+6=0$, find (i) $\frac{1}{\alpha}+\frac{1}{\beta}$ (ii) $\alpha 2+\beta 2$ (iii) $\alpha^{3}+\beta^{3}$

Solution:

If α and β an the root of the equation $3 x^{2}+2 x+6=0$
Sum of the roots $\alpha+\beta=\frac{-b}{a}=\frac{-2}{3}$
Product of roots $\alpha \beta=\frac{c}{a}=\frac{6}{3}=2$
(i) $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{-2}{3} \times \frac{1}{2}=\frac{-1}{3}$
(ii) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=\left(\frac{-2}{3}\right)^{2}-2 \times 2=\frac{4}{9}-4=\frac{4-36}{9}=-\frac{32}{9}$
(iii $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)=\left(\frac{-2}{3}\right)^{3}-3(2)\left(\frac{-2}{3}\right)=\frac{-8}{27}+4=3 \frac{19}{27}$.

Question-7

Show that $(1-i)^{2}=-2 i$.

Solution:
$(1-i)^{2}=1^{2}-2(i)(1)+(i)^{2}=1-2(-i)+(i)^{2}=1-2 i-1=-2 \mathrm{i}$

Question-8

Solve the following equation: $2 x^{2}-2 \sqrt{ } 3 x+1=0$.

Solution:

$2 x^{2}-2 \sqrt{ } 3 x+1=0$

$$
\begin{aligned}
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=12-4 \times 2 \times 1=12-8=4>0 \\
& \sqrt{D}=2
\end{aligned}
$$

Hence the two real and unequal roots are : $\frac{2 \sqrt{3}+2}{4}, \frac{2 \sqrt{3}-2}{4}$
i.e $\frac{\sqrt{3}+1}{2}, \frac{\sqrt{3}-1}{2}$

Question-9

Solve the equation $\sqrt{x}=(x-2)$ in C.

Solution:

Squaring both sides
$(\sqrt{x})^{2}=(x-2)^{2}$
$x=x^{2}-2(x)(2)+4$
$0=x^{2}-4 x+4-x$
$=x^{2}-5 x+4$
$x^{2}-5 x+4=0$
$x^{2}-4 x-x+4=0$
$x(x-4)-(x-4)=0$
$x=4$ or $x=1$
$\mathrm{x}=1$ doesn't satisfy the equation
$\therefore \mathrm{x}=4$.

Question-10

Find the conjugate of the following complex numbers
i. $3+i$
ii. 3 - \mathbf{i}
iii. $-\sqrt{5}-\mathrm{i} \sqrt{7}$
iv. $-\mathrm{i} \sqrt{5}$
v. $4 / 5$
vi. 49 - i/7

Solution:

i. Conjugate of $3+i$ is $3-i$.
ii. Conjugate of $3-i$ is $3+i$.
iii. Conjugate of $-\sqrt{5}-\mathrm{i} \sqrt{7}$ is $-\sqrt{5}+\mathrm{i} \sqrt{7}$
iv. Conjugate of $-\mathrm{i} \sqrt{5}$ is $\mathrm{i} \sqrt{5}$.
v. Conjugate of $4 / 5$ is $4 / 5$.
vi. Conjugate of $49-i / 7$ is $49+i / 7$.

Question-1 1

Solve the following equation: $\sqrt{3 x+1}-\sqrt{x-1}=2$.

Solution:

$$
\sqrt{3 x+1}-\sqrt{x-1}=2
$$

Squaring,
$(3 x+1)+(x-1)-2 \sqrt{3 x+1} \times \sqrt{x-1}=4$
$4 x-2 \sqrt{3 x+1} \times \sqrt{x-1}=4$
$\sqrt{3 x+1} \times \sqrt{x-1}=2 x-2$
Squaring,
$3 x^{2}-2 x-1=(2 x-2)^{2}$
$3 x^{2}-2 x-1=4 x^{2}-8 x+4$
$x^{2}-6 x+5=0$
$D=b^{2}-4 a c=36-4 \times 1 \times 5=16>0$
$\sqrt{D}=4$
Hence the two real and unequal roots are : $\frac{6+4}{2}, \frac{6-4}{2}$
i.e 5,1

Question-12

Find the conjugate of $\frac{1-i}{1+i}$.

Solution:
$\frac{1-\mathrm{i}}{1+\mathrm{i}}=\frac{(1-i)(1-i)}{(1+i)(1-i)}=\frac{(1-i)^{2}}{1^{2}-(i)^{2}}=\frac{1-2 i+i^{2}}{1+1}=\frac{1-2 i-1}{2}=\frac{-2 i}{2}=-i$.
\therefore Conjugate of $\frac{1-\mathrm{i}}{1+\mathrm{i}}=\mathrm{i}$

Question-13

Show that if $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \in \mathbf{R}, \overline{(a+i b)(c+i d)}=(a-i b)(c-i d)=(\mathbf{a}-\mathbf{i b})$ (c-id).

Solution:
$(a+i b)(c+i d)=a c+i a d+i b c+i^{2} b d=a c+i(a d+b c)-b d=(a c-b d)+i(a d+b c)$
$\therefore \overline{\mathrm{ac}-\mathrm{bd}+\mathrm{i}(\mathrm{ad}+\mathrm{bc})}$
$=(a c-b d)-i(a d+b c)---(1)$
$(a-i b)(c-i d)=(a c-b d)-i(b c+a d)$

From (1) and (2) $\overline{(a+i b)(c+i d)}=(a-i b)\left(c-i d^{\prime}\right)$

Question-14

Find the value of x and y, if $4 x+i(3 x-y)=3-i 6$.

Solution:

$4 x+i(3 x-y)=3-i 6$

Equating the real and imaginary, we have

$$
\begin{aligned}
& 4 x=3 \\
& x=3 / 4 \\
& 3 x-y=-6 \\
& 3(3 / 4)-y=-6 \\
& 9 / 4-y=-6 \\
& -y=-6-9 / 4 \\
& y=33 / 4
\end{aligned}
$$

Question-15

Solve the following equation: $2 x^{2}+1=0$.

Solution:

$2 x^{2}+1=0 \Rightarrow x^{2}=-1 / 2$
Hence the complex roots of the equation are $+i \frac{\sqrt{2}}{2},-i \frac{\sqrt{2}}{2}$.

Question-16

Does the equation $2 x^{2}-4 x+3=0$ have equal roots? Find the roots.

Solution:

The given equation is $2 x^{2}-4 x+3=0$.
Comparing with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
$a=2, b=-4, c=3$
$b^{2}-4 a c=(-4)^{2}-4 \times 2 \times 3=16-24=-8<0$
The roots are not equal.
Hence the roots of the given equation is $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}-\frac{4 \pm \sqrt{-8}}{2 \times 2}=\frac{4 \pm 2 \sqrt{2 i}}{4}=1 \pm \frac{1}{\sqrt{2}} \mathrm{i}$

Question-17

Find the value of x and y, if $(3 y-2)+i(7-2 x)=0$.

Solution:
$(3 y-2)+i(7-2 x)=0$
Equating the real and imaginary, we have
$3 y-2=0$
$y=2 / 3$
$7-2 x=0$
$2 x=7$
$x=7 / 2$

The value of $x=7 / 2$ and $y=2 / 3$.

Question-18

If two complex numbers $z_{1} z_{2}$ are such that $\left|z_{1}\right|=\left|z_{2}\right|$, is it then necessary that $\mathrm{z}_{1}=\mathrm{z}_{2}$?

Solution:

$$
\begin{aligned}
& \left|z_{1}\right|=\left|x_{1}+i y\right|=\sqrt{x_{1}^{2}+y_{1}{ }^{2}} \\
& \left|z_{2}\right|=\left|x_{2}+i y_{2}\right|=\sqrt{x_{2}^{2}+y_{2}{ }^{2}} \\
& \therefore \quad\left|z_{1}\right|=\left|z_{2}\right| \\
& \sqrt{x_{1}^{2}+y_{1}{ }^{2}}=\sqrt{x_{2}^{2}+y_{2}^{2}} \\
& x_{1}{ }^{2}+y_{1}{ }^{2}=x 2^{2}+y_{2}{ }^{2} \\
& x_{1}{ }^{2}=x_{2}{ }^{2} \text { and } y_{1}{ }^{2}=y_{2}{ }^{2} \\
& x_{1}= \pm x_{2} y_{1}= \pm y
\end{aligned}
$$

$\therefore \mathrm{z}_{1}$ need not be z_{2}

Question-19

Solve the following equation: $x^{2}-4 x+7=0$.

Solution:

$x^{2}-4 x+7=0$
$D=b^{2}-4 a c=16-4 \times 1 \times 7=16-28=-12<0$
$\sqrt{5}=2 \sqrt{3} \mathrm{i}$
Hence the two complex roots are : $\frac{4+2 \sqrt{3 i}}{2}, \frac{4-2 \sqrt{3 i}}{2}$
i.e $2+\sqrt{3}$ i, $2+\sqrt{3}$ i

Question-20

For what values of a is one of the roots of the equation $x^{2}+(2 a+1) x+a^{2}+$ $2=0$ twice the value of the other.

Solution:
Let the roots be $\alpha, 2 \alpha$.
$\alpha+2 \alpha=\frac{-(2 a+1)}{1}$
$\Rightarrow 3 \alpha=-2 \alpha-1$
$\Rightarrow \alpha=\frac{-2 a-1}{3}$
$\alpha \cdot 2 \alpha=\frac{\alpha^{2}+2}{1}$
$2 \alpha^{2}=\frac{\alpha^{2}+2}{1}$
$2\left(\frac{-(2 \alpha+1)}{3}\right)^{2}=\alpha^{2}+2$
$2\left(4 \alpha^{2}+4 \alpha+1\right)=9\left(\alpha^{2}+2\right)$
$8 \alpha^{2}+8 \alpha+2=9 \alpha^{2}+18$
$-\alpha^{2}+8 \alpha-16=0$
$\alpha^{2}-8 \alpha+16=0$
$\alpha^{2}-4 \alpha-4 \alpha+16=0$
$\alpha(\alpha-4)-4(\alpha-4)=0$
$\therefore \alpha=4$ or $\alpha=4$

Question-21

If the difference of the root of $x^{2}-b x+c=0$ is the same as that of the roots of $\mathrm{x}^{2}-\mathrm{cx}+\mathrm{b}=0$ then $\mathrm{b}+\mathrm{c}+4=0$ unless $\mathrm{b}-\mathrm{c}=0$.

Solution:
Let α, β be the root of the equation $x^{2}-b x+c=0 ; \gamma$, $\overline{\text { and }}$ be the roots of the equation $x^{2}-c x+b=0$.
Then $a+b=b, \alpha \beta=c, \gamma+\bar{\delta}=c$ and $\gamma \bar{\delta}=b$
Given that $\mathrm{a}-\mathrm{b}=\mathrm{g}-\overline{\mathrm{o}}$
$(\alpha-\beta)^{2}=(\gamma-\delta)^{2}$
$(\alpha+\beta)^{2}-4 \alpha \beta=(\gamma+\delta)^{2}-4 \gamma \delta$
$b^{2}-4 c=c^{2}-4 b$
$b^{2}-c^{2}+4 b-4 c=0$
$(b-c)(b+c)+4(b-c)=0$
(b-c) $(b+c+4)=0$
Hence $b-c=0$ or $b+c+4=0$
(ie) $b+c+4=0$ or $b=c$

Question-22

Find the value of x and y, if $\left(\frac{3}{\sqrt{5}} x-5\right)+i 2 \sqrt{5} y=\sqrt{2}$.

Solution:

$\left(\frac{3}{\sqrt{5}} \times-5\right)+i 2 \sqrt{5} y=\sqrt{2}$
Equating the real and imaginary, we have
$\left(\frac{3}{\sqrt{5}} \times-5\right)=\sqrt{2}$
$\frac{3}{\sqrt{5}} \mathrm{x}=\sqrt{2}+5$
$\mathrm{x}=\sqrt{5}(\sqrt{2}+5) / 3$
$2 \sqrt{5} y=0$
$y=0$

The value of $x=\sqrt{5}(\sqrt{2}+5) / 3$ and $y=0$.

Question-23

If z_{1}, z_{2}, z_{3} are 3 complex numbers such that there exists a z with $\mid z_{1}$ -$z\left|=\left|z_{2^{-}} z\right|=\left|z_{3}-z\right|\right.$ show that z_{1}, z_{2}, z_{3} lie on a circle in the plane diagram.

Solution:

Let z_{1}, z_{2}, z_{3} be $x_{1}+i y_{1}, x_{2}+i y_{2}$ and $x_{3}+i y_{3}$ respectively.

Representing points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$

Let the z be point O given by $x+i y$.
$\left|z_{1}-z\right|=\sqrt{\left(x_{1}-x\right)^{2}+\left(y_{1}-y\right)^{2}}=\mathrm{OP}$

Similarly $\left|z_{2}-z\right|=O Q$
and $\left|z_{3}-z\right|=O R$
$\left|z_{1}-z\right|=\left|z_{2}-z\right|=\left|z_{3}-z\right|$
$O P=O Q=O R=r$

This means $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are points on a circle with centre O and radius r .

Or z_{1}, z_{2}, z_{3} lie on a circle.

Question-24

Solve the following equation: $\mathrm{x}^{2}+\mathrm{x}+1=0$.

Solution:

$$
\begin{aligned}
& x^{2}+x+1=0 \\
& D=b^{2}-4 a c=1-4=-3<0 \\
& \sqrt{D}=\sqrt{3} i
\end{aligned}
$$

Hence the two complex roots are : $\frac{-1+\sqrt{3 i}}{2}, \frac{-1-\sqrt{3 i}}{2}$

Question-25

Plot the following number and their complex conjugates on a complex number plane and find their absolute values: 4 - i3.

Solution:

Conjugate of $4-3 i$ is $4+$ $3 i$.

The absolute value of 4 $3 i$

Question-26

A group of students decided to buy a tape-records from 170 to 195 rupee. But at the last moment two student backed out of the decision so that the remaining student had to pay 1 rupee more than they had planned. What was the price of the tape recorder if the student paid equal shares ?

Solution:

Let the price of the tape recorder be Rs. x
Let no. of student be n.

At the last moment
No. of students $=(n-2)$
Increased contribution $=\frac{x}{n-2}$
Original contribution $=\frac{x}{n}$

According to the question
$\frac{x}{n-2}=\frac{x}{n}+1$
$\frac{x}{n-2}=\frac{x+n}{n}$
$n x=(n-2)(x+n)=n x+n^{2}-2 x-2 n$
$n^{2}-2 n=2 x$
$\mathrm{X}=\frac{n^{2}-2 n}{2}$, Also $170<\mathrm{X}<195$
$170<\frac{n^{2}-2 n}{2}<195$
$\Rightarrow 340 \leq n^{2}-2 n \leq 390$
Either $340 \leq n^{2}-2 n$
$n^{2}-2 n-340 \geq 0$

Roots are given by
$\mathrm{n}=\frac{2 \pm \sqrt{4+1360}}{2}=\frac{1 \pm \sqrt{341}}{2}$
$\mathrm{n} \geq 1+\sqrt{341}$ or $\mathrm{n} \leq 1-\sqrt{341}$
$\mathrm{n}=20$ or $\mathrm{n}^{2}-2 \mathrm{n}-390<0-(1)$
$\mathrm{n}=\frac{2 \pm \sqrt{1564}}{2} \mathrm{n}=\frac{1 \pm \sqrt{391}}{2}$
$\therefore 1-\sqrt{391} \leq \mathrm{n}<1+\sqrt{391}$

Since n is a natural no. $\mathrm{n}=1,2,3$ $20-$ - (2)
From (1) and (2),
$\mathrm{n}=20$
Cost of tape - recorder $\mathrm{X}=\frac{n^{2}-2 n}{2}=\frac{20^{2}-2(20)}{2}==$ Rs. 180.
Question-27
Solve the following equation: $x^{2}+2 x+2=0$.
Solution:

$$
\begin{aligned}
& \mathrm{x}^{2}+2 \mathrm{x}+2=0 \\
& \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=4-4 \times 2=-4<0 \\
& \sqrt{5}=2 \mathrm{i}
\end{aligned}
$$

Hence the two complex roots are : $\frac{-2+2 i}{2}, \frac{-2-2 i}{2}$
i.e $-1-\mathrm{i},-1+\mathrm{i}$

Question-28

Plot the following number and their complex conjugates on a complex number plane and find their absolute values: $\mathbf{- 3 + i 5}$

Solution:

Conjugate of $-3+i 5$ is $-3-\mathrm{i} 5$.
The absolute value of $-3+i 5$

$$
\begin{aligned}
& =\sqrt{(-3)^{2}+5^{2}} \\
& =\sqrt{9+25} \\
& =\sqrt{34}
\end{aligned}
$$

Question-29

Solve $\left(x^{2}-5 x+7\right)^{2}-(x-2)(x-3)=1$.

Solution:

$\left(x^{2}-5 x+7\right)^{2}-(x-2)(x-3)=1$
$\left(x^{2}-5 x+7\right)^{2}-\left[x^{2}-(2+3) x+2 \times 3\right]=1$
$\left(x^{2}-5 x+7\right)^{2}-\left[x^{2}-5 x+6\right]-1=0$
Let $\mathrm{x}^{2}-5 \mathrm{x}=\mathrm{y}$
$(y+7)^{2}-(y+6)-1=0$
$y^{2}+14 y+49-y-6-1=0$
$y^{2}+13 y+42=0$
$y=\frac{-13 \pm \sqrt{13^{2}-4(1)(42)}}{2 \times 1}$

$$
\begin{aligned}
& =\frac{-13 \pm \sqrt{169-168}}{2} \\
& =\frac{-13 \pm \sqrt{1}}{2} \\
& =\frac{-13+1}{2} \text { or } \frac{-13-1}{2} \\
& =\frac{-12}{2} \text { or } \frac{-14}{2} \\
& =-6 \text { or }-7
\end{aligned}
$$

$\therefore \mathrm{y}=-6$ or -7

Substituting $y=-6$ in (1)
$x^{2}-5 x=-6$
$x^{2}-5 x+6=0$
$x=3$ or $x=2$

Substituting $y=-7$ in (1)

$$
\begin{aligned}
& x^{2}-5 x=-7 \\
& x^{2}-5 x+7=0 \\
& x=\frac{5 \pm \sqrt{3} i}{2}
\end{aligned}
$$

Question-30

Solve the following equation: $25 x^{2}-30 x+11=0$.

Solution:

$$
\begin{aligned}
25 \mathrm{x}^{2}-30 \mathrm{x} & +11=0 \\
\mathrm{D} & =\mathrm{b}^{2}-4 \mathrm{ac}=900-4 \times 25 \times 11=-200<0 \\
\sqrt{5} & =10 \sqrt{2} \mathrm{i}
\end{aligned}
$$

Hence the two complex roots are: $\frac{30+10 \sqrt{2 i}}{50}, \frac{30-10 \sqrt{2 i}}{50}$
i.e $\frac{3+\sqrt{2}}{5}, \frac{3-\sqrt{2 i}}{5}$

Question-31

Prove that $x^{4}+4=(x+1+i)(x+1-i)(x-1+i)(x-1-i)$.

Solution:

$$
\begin{aligned}
(x+1+i)(x+1-i)(x-1+i)(x-1-i) & =\left[(x+1)^{2}-i^{2}\right]\left[(x-1)^{2}-i^{2}\right] \\
& =\left(x^{2}+2 x+1+1\right)\left(x^{2}-2 x+1+1\right) \\
& =\left[\left(x^{2}+2\right)+2 x\right][(x+2)-2 x] \\
& =\left(x^{2}+2\right)^{2}-4 x^{2} \\
& =x^{4}+4 x^{2}+4-4 x^{2} \\
& =x^{4}+4
\end{aligned}
$$

Question-32

Solve the following equation: $5 x^{2}-6 x+2=0$.

Solution:

$5 x^{2}-6 x+2=0$
$D=b^{2}-4 a c=36-4 \times 5 \times 2=-4<0$
$\sqrt{D}=2 i$
Hence the two complex roots are : $\frac{6+2 i}{10}, \frac{6-2 i}{10}$
i.e $\frac{3+i}{5}, \frac{3-i}{5}$

Question-33

Plot the following number and their complex conjugates on a complex number plane and find their absolute values: 5

Solution:

Conjugate of 5 is 5 .
The absolute value of $5=\sqrt{5^{2}+0^{2}}$

$$
\begin{aligned}
& =\sqrt{25} \\
& =5
\end{aligned}
$$

Question-34

If $(1+x)^{n}=p_{0}+p_{1} x+p_{2} x^{2}+\ldots \ldots \ldots \ldots . p_{n} x^{n}$, prove that : $p_{0}+p_{3}+p_{6}+\ldots \ldots \ldots . .=$ $\frac{1}{3}\left(2^{n}+2 \cos \frac{n \pi}{3}\right)$.

Solution:
$(1+\mathrm{x})^{\mathrm{n}}=\mathrm{p}_{0}+\mathrm{p}_{1} \mathrm{x}+\mathrm{p}_{2} \mathrm{x}^{2}+$ \qquad $\mathrm{p}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$
Put $x=1, w, w^{2}$ in (1) and add
$\left[1+w=-w^{2}\right.$ and $\left.1+w^{2}=-w\right]$
$3\left(\mathrm{p}_{\mathrm{o}}+\mathrm{p}_{3}+\mathrm{p}_{6} \ldots \ldots \ldots \ldots ..\right)=2^{\mathrm{n}}+\left(-\mathrm{w}^{2}\right)^{\mathrm{n}}+(-\mathrm{w})^{\mathrm{n}}$
Now w $=\frac{-1+\mathrm{i} \sqrt{3}}{2}$
$\therefore-\mathrm{W}=\frac{1}{2}-\mathrm{i} \frac{\sqrt{3}}{2}=\cos \frac{\pi}{3}-\mathrm{i} \sin \frac{\pi}{3},\left(\ldots \mathrm{r}=1, \theta=\frac{\pi}{3}\right)$
$-w^{2}=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$
$\therefore(-\mathrm{w})^{\mathrm{n}}+\left(-\mathrm{w}^{2}\right)^{\mathrm{n}}=2 \cos \frac{\mathrm{n} \mathrm{\pi}}{3}$ (Demoivre' s Theorem)
Substituting in (2), $3\left(\mathrm{p}_{0}+\mathrm{p}_{3}+\mathrm{p}_{6} \ldots \ldots \ldots \ldots ..\right)=2^{\mathrm{n}}+2 \cos \frac{n \pi}{3}$
or $\mathrm{p}_{\mathrm{o}}+\mathrm{p}_{3}+\mathrm{p}_{6}$. $=\frac{1}{3}\left(2^{n}+2 \cos \frac{n \pi}{3}\right)$.

Question-35

From an equation whose roots are the squares of the sum and difference of the roots of
$2 \mathrm{x}^{2}+2(\mathrm{~m}+\mathrm{n}) \mathrm{x}+\mathrm{m}^{2}+\mathrm{n}^{2}=0$.

Solution:

Let α, β be the roots of the equation $2 x^{2}+2(m+n) x+m^{2}+n^{2}=0$.
Then $\alpha+\beta=-2(m+n) / 2=-(m+n)$
$\alpha \beta=\left(m^{2}+n^{2}\right) / 2$
The roots of the required equation are $(\alpha+\beta)^{2}$ and $(\alpha-\beta)^{2}$
Sum of the roots $=(\alpha+\beta)^{2}+(\alpha-\beta)^{2}=(\alpha+\beta)^{2}+\left[(\alpha+\beta)^{2}-4 \alpha \beta\right]$

$$
\begin{aligned}
& =(m+n)^{2}+\left[(m+n)^{2}-\frac{4\left(m^{2}+n^{2}\right)}{2}\right] \\
& =4 m n
\end{aligned}
$$

Product of the roots $=(\alpha+\beta)^{2}(\alpha-\beta)^{2}=(\alpha+\beta)^{2}\left[(\alpha+\beta)^{2}-4 \alpha \beta\right]$

$$
\begin{aligned}
& =(m+n)^{2}\left[(m+n)^{2}-\frac{4\left(m^{2}+n^{2}\right)}{2}\right] \\
& =(m+n)^{2}\left[2 m n-m^{2}-n^{2}\right]
\end{aligned}
$$

The required equation is $x^{2}-4 m n x+(m+n)^{2}\left[2 m n-m^{2}-n^{2}\right]=0$
or $x^{2}-4 m n x+(m+n)^{2}\left[-(m-n)^{2}\right]=0$
or $x^{2}-4 m n x-\left(m^{2}-n^{2}\right)^{2}=0$

Question-36

Find the values of the root $\sqrt{1-\mathrm{i}}$.

Solution:

$$
\begin{aligned}
1-\mathrm{i} & =\sqrt{2}\left(\cos \frac{\pi}{4}-\mathrm{i} \sin \frac{\pi}{4}\right) \\
& =\sqrt{2}\left[\cos \left(2 n \pi+\frac{\pi}{4}\right)\right]-\mathrm{i} \sin \left(2 n \pi+\frac{\pi}{4}\right) \\
& =\sqrt{2}\left(\cos (8 n+1) \frac{\pi}{4}-\sin (8 n+1) \frac{\pi}{4}\right) \\
\sqrt{1-\mathrm{i}} & =2^{1 / 4}\left[\cos (8 \mathrm{n}+1) \frac{\pi}{8}-\mathrm{i} \sin (8 n+1) \frac{\pi}{8}\right] \\
& =2^{1 / 4}\left(\cos \frac{\pi}{8}-\mathrm{i} \sin \frac{\pi}{8}\right) \text { for } \mathrm{n}=0 \\
& =2^{1 / 4}\left(\cos \left(\pi+\frac{\pi}{8}\right)-\mathrm{i} \sin \left(\pi+\frac{\pi}{8}\right) \text { for } \mathrm{n}=1\right. \\
& =-2^{1 / 4}\left(\cos \frac{\pi}{8}-\mathrm{i} \sin \frac{\pi}{8}\right) \text { where } \\
\cos & \frac{\pi}{8}=\sqrt{\left(\frac{\sqrt{2}+1}{2 \sqrt{2}}\right)}, \sin \frac{\pi}{8}=\sqrt{\left(\frac{\sqrt{2}-1}{2 \sqrt{2}}\right)}
\end{aligned}
$$

Question-37

Solve the following equation: $3 x^{2}-7 x+5=0$.

Solution:
$3 x^{2}-7 x+5=0$
$D=b^{2}-4 a c=49-4 \times 3 \times 5=-11<0$
$\sqrt{D}=\sqrt{11} \mathrm{i}$
Hence the two complex roots are : $\frac{7+\sqrt{11 \mathrm{i}}}{6}, \frac{7-\sqrt{11 i}}{6}$

Question-38

Solve the equation $25 x^{2}-30 x+9=0$.

Solution:

$X=\frac{+30 \pm \sqrt{30^{2}-4(25)(9)}}{2 \times 25}=\frac{30 \pm \sqrt{900-900}}{50}=\frac{30}{50}$
$x=\frac{3}{5}, \frac{3}{5}$

Question-39

Plot the following number and their complex conjugates on a complex number plane and find their absolute values: $\mathbf{2 i}$

Solution:

Conjugate of 2 i is -2 i .
The absolute value of $2 i=\sqrt{0^{2}+2^{2}}$

$$
\begin{aligned}
& =\sqrt{4} \\
& =2
\end{aligned}
$$

Question-40

Plot the following number and their complex conjugates on a complex number plane and find their absolute values: -1/2-3i

Solution:

Conjugate of $-\frac{1}{2}$ - is is $-\frac{1}{2}+i 3$

The absolute value of $-\frac{1}{2}+i 3$

$$
\begin{aligned}
& =\sqrt{\left(-\frac{1}{2}\right)^{2}+3^{2}} \\
& =\sqrt{\frac{1}{4}+9} \\
& =\sqrt{\frac{37}{4}}
\end{aligned}
$$

Question-41

If the roots of $x^{2}-I x+m=0$ differ by 1 , then prove that $I^{2}=4 m+1$.

Solution:

Let a, b be the roots of the equation $\mathrm{x}^{2}-\mathrm{l} \mathrm{x}+\mathrm{m}=0$.
$\alpha+\beta=1$
$\alpha \beta=m$
$\alpha-\beta=1$
$(\alpha+\beta)^{2}=(\alpha-\beta)^{2}+4 \alpha \beta$
$\mathrm{I}^{2}=1+4 \mathrm{~m}$

Question-42

Solve the following equation: $13 x^{2}-7 x+1=0$.

Solution:
$13 x^{2}-7 x+1=0$
$D=b^{2}-4 a c=49-4 \times 13 \times 1=-3<0$
$\sqrt{D}=\sqrt{3} i$
Hence the two complex roots are : $\frac{7+\sqrt{33}}{26}, \frac{7-\sqrt{3 i}}{26}$

Question-43

If $z=x+i y$ and $z^{1 / 3}=a-i b$ then show that $\frac{x}{a}-\frac{y}{b}-4\left(a^{2}-b^{2}\right)$.

Solution:

$z=x+i y$ and $2^{1 / 3}=a-i b$
$(x+i y)^{1 / 3}=a-i b$
Cubing both sides,

$$
\begin{aligned}
& x+i y=(a-i b)^{3} \\
& =a^{3}+b^{3} i-3 a b i(a-i b) \\
& =a^{3}+b^{3} i-3 a^{2} b i-3 a b^{2}
\end{aligned}
$$

Equating the real and imaginary,

$$
\begin{aligned}
& x=a^{3}-3 a b^{2} \\
& y=b^{3}-3 a^{2} b \\
& \frac{x}{y}-\frac{y}{b}-a^{2}-3 b^{2}-b^{2}+3 a^{2} \\
&=4\left(a^{2}-b^{2}\right)
\end{aligned}
$$

Question-44

$\left(1-w+w^{2}\right)\left(1-w^{2}+w^{4}\right)\left(1-w^{4}+w^{8}\right) \ldots \ldots \ldots$ to $2 n$ factors $=2^{2 n}$.

Solution:
$\left(1-w+w^{2}\right)\left(1-w^{2}+w^{4}\right)\left(1-w^{4}+w^{8}\right) \ldots \ldots \ldots \ldots . . .2 n$ factors.
$=\left(1-w+w^{2}\right)\left(1-w^{2}+w\right)\left(1-w+w^{2}\right) \ldots \ldots \ldots \ldots . . .2 n$ factors.
$\left(\right.$ since $\left.w^{4}=w, w^{8}=w^{2} \ldots \ldots ..\right)$
$=(-2 w)\left(-2 w^{2}\right)(-2 w)\left(-2 w^{2}\right) \ldots \ldots \ldots \ldots \ldots \ldots . . .2 n$ factors.
$=\left(2^{2} w^{3}\right)\left(2^{2} w^{3}\right) \ldots \ldots \ldots \ldots \ldots . . n$ factors.
$=\left(2^{2}\right)^{n}=2^{2 n}$

Question-45

Plot the following number and their complex conjugates on a complex

 number plane and find their absolute values: $\sqrt{ }(-3)$
Solution:

$\sqrt{-3}=3 i$
Conjugate of $3 i$ is $-3 i$.
The absolute value of $3 i=\sqrt{3^{2}}=$ $\sqrt{9}=3$

Question-46

Solve the following equation: $9 x^{2}+10 x+3=0$.

Solution:
$9 x^{2}+10 x+3=0$
$D=b^{2}-4 a c=100-4 \times 9 \times 3=-8<0$
$\sqrt{D}=2 \sqrt{2} \mathrm{i}$
Hence the two complex roots are : $\frac{-10+2 \sqrt{2}}{18}, \frac{-10-2 \sqrt{2 i}}{18}$
i.e $\frac{-5+\sqrt{2 i}}{9}, \frac{-5-\sqrt{2 i}}{9}$

Complex Numbers \& Quadratic Equations

1. For a positive integer n, find the value of $(1-i)^{n}\left(1-\frac{1}{i}\right)^{n}$
2. Evaluate $\sum_{n=1}^{13}\left(f^{n}+t^{n+1}\right)$, where $n \in \mathbf{N}$.
3. If $\left(\frac{1+i}{1-i}\right)^{3}-\left(\frac{1-i}{1+i}\right)^{3}=x+t y$, then find (x, y).
4. If $\frac{(1+1)^{2}}{2-1}=x+t y$, then find the value of $x+y$.
5. If $\left(\frac{1-i}{1+i}\right)^{100}=a+i b$, then find (a, b).
6. If $a=\cos \theta+i \sin \theta$, find the value of $\frac{1+a}{1-a}$.
7. If $(1+i) z=(1-i) \bar{z}$, then show that $z=-i \bar{z}$.
8. If $z=x+i y$, then show that $z \bar{z}+2(z+\bar{z})+b=0$, where $b \in \mathbf{R}$, represents a circle.
9. If the real part of $\frac{\bar{z}+2}{\bar{z}-1}$ is 4 , then show that the locus of the point representing z in the complex plane is a circle.
10. Show that the complex number z, satisfying the condition arg $\left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$ lies on a circle.
11. Solve the equation $|z|=z+1+2 i$.
12. If $|z+1|=z+2(1+i)$, then find z.
13. If $\arg (z-1)=\arg (z+3 i)$, then find $x-1: y$. where $z=x+t y$
14. Show that $\left|\frac{z-2}{z-3}\right|=2$ represents a circle. Find its centre and radius.
15. If $\frac{z-1}{z+1}$ is a purely imaginary number $(z \neq-1)$, then find the value of $|z|$.
16. z_{1} and z_{2} are two complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|$ and $\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=$ π, then show that $z_{1}=-\bar{z}_{2}$.
17. If $\left|z_{1}\right|=1\left(z_{1} \neq-1\right)$ and $z_{2}=\frac{z_{1}-1}{z_{1}+1}$, then show that the real part of z_{2} is zero.
18. If z_{1}, z_{2} and z_{3}, z_{4} are two pairs of conjugate complex numbers, then find $\arg \left(\frac{z_{1}}{z_{4}}\right)+\arg \left(\frac{z_{2}}{z_{3}}\right)$.
19. If $\left|z_{1}\right|=\left|z_{2}\right|=\ldots=\left|z_{n}\right|=1$, then show that $\left|z_{1}+z_{2}+z_{3}+\ldots+z_{n}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}+\ldots+\frac{1}{z_{n}}\right|$.
20. If for complex numbers z_{1} and $z_{2}, \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=0$, then show that $\left|z_{1}-z_{2}\right|=\left|z_{1}\right|-\left|z_{2}\right|$
21. Solve the system of equations $\operatorname{Re}\left(z^{2}\right)=0,|z|=2$.
22. Find the complex number satisfying the equation $z+\sqrt{2}|(z+1)|+i=0$.
23. Write the complex number $z=\frac{1-i}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$ in polar form.
24. If z and w are two complex numbers such that $|z w|=1$ and $\arg (z)-\arg (w)=$ $\frac{\pi}{2}$, then show that $\bar{z} w=-i$.
25. What is the conjugate of $\frac{2-i}{(1-2 i)^{2}}$?
26. If $\left|z_{1}\right|=\left|z_{2}\right|$, is it necessary that $z_{1}=z_{2}$?
27. If $\frac{\left(a^{2}+1\right)^{2}}{2 a-i}=x+i y$, what is the value of $x^{2}+y^{2}$?
28. Find z if $|z|=4$ and $\arg (z)=\frac{5 \pi}{6}$.
29. Find $\left|(1+i) \frac{(2+i)}{(3+i)}\right|$
30. Find principal argument of $(1+i \sqrt{3})^{2}$.
31. Where does z lie, if $\left|\frac{z-5 i}{z+5 i}\right|=1$.
32. $\sin x+i \cos 2 x$ and $\cos x-i \sin 2 x$ are conjugate to each other for:
(A) $x=n \pi$
(B) $x=\left(n+\frac{1}{2}\right) \frac{\pi}{2}$
(C) $x=0$
(D) No value of x
33. The real value of α for which the expression $\frac{1-i \sin \alpha}{1+2 i \sin \alpha}$ is purely real is :
(A) $(n+1) \frac{\pi}{2}$
(B) $(2 n+1) \frac{\pi}{2}$
(C) $n \pi$
(D) None of these, where $n \in \mathbf{N}$
34. If $z=x+t y$ lies in the third quadrant, then $\frac{Z}{z}$ also lies in the third quadrant if
(A) $x>y>0$
(B) $x<y<0$
(C) $y<x<0$
(D) $y>x>0$
35. The value of $(z+3)(z+3)$ is equivalent to
(A) $|z+3|^{2}$
(B) $|z-3|$
(C) $z^{2}+3$
(D) None of these
36. If $\left(\frac{1+i}{1-i}\right)^{x}=1$, then
(A) $x=2 n+1$
(B) $x=4 n$
(C) $x=2 n$
(D) $x=4 n+1$, where $n \in \mathrm{~N}$
37. A real value of x satisfies the equation $\left(\frac{3-4 i x}{3+4 i x}\right)=\alpha-i \beta(\alpha, \beta \in \mathbf{R})$ if $\alpha^{2}+\beta^{2}=$
(A) 1
(B) -1
(C) 2
(D) -2
38. Which of the following is correct for any two complex numbers z_{1} and z_{2} ?
(A) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
(B) $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right) \cdot \arg \left(z_{2}\right)$
(C) $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$
(D) $\left|z_{1}+z_{2}\right| \geq\left|z_{2}\right|-\left|z_{2}\right|$
39. The point represented by the complex number $2-f$ is rotated about origin through
an angle $\frac{\pi}{2}$ in the clockwise direction, the new position of point is:
(A) $1+2 i$
(B) $-1-2 i$
(C) $2+i$
(D) $-1+2 i$
40. Let $x, y \in \mathbf{R}$, then $x+t y$ is a non real complex number if:
(A) $x=0$
(B) $y=0$
(C) $x \neq 0$
(D) $y \neq 0$
41. If $a+i b=c+i d$, then
(A) $a^{2}+c^{2}=0$
(B) $b^{2}+c^{2}=0$
(C) $b^{2}+a^{2}=0$
(D) $a^{2}+b^{2}=c^{2}+d^{2}$
42. The complex number z which satisfies the condition $\left|\frac{i+z}{i-z}\right|=1$ lies on
(A) circle $x^{2}+y^{2}=1$
(B) the x-axis
(C) the y-axis
(D) the line $x+y=1$.
43. If z is a complex number, then
(A) $\left|z^{2}\right|>|z|^{2}$
(B) $\left|z^{2}\right|=|z|^{2}$
(C) $\left|z^{2}\right|<|z|^{2}$
(D) $\left|z^{2}\right| \geq|z|^{2}$
44. $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ is possible if
(A) $z_{2}=\bar{z}_{1}$
(B) $z_{2}=\frac{1}{z_{1}}$
(C) $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$
(D) $\left|z_{1}\right|=\left|z_{2}\right|$
45. The real value of θ for which the expression $\frac{1+i \cos \theta}{1-2 i \cos \theta}$ is a real number is:
(A) $n \pi+\frac{\pi}{4}$
(B) $n \pi+(-1)^{n} \frac{\pi}{4}$
(C) $2 n \pi \pm \frac{\pi}{2}$
(D) none of these.
46. The value of $\arg (x)$ when $x<0$ is:
(A) 0
(B) $\frac{\pi}{2}$
(C) π
(D) none of these
47. If $f(z)=\frac{7-z}{1-z^{2}}$, where $z=1+2 i$, then $|f(z)|$ is
(A) $\frac{|z|}{2}$
(B) $|z|$
(C) $2|z|$
(D) none of these.

CBSE Class 11 Mathematics

Important Questions

Chapter 5

Complex Numbers and Quadratic Equations

1 Marks Questions

1. Evaluate \mathbf{i}^{-39}

Ans. $i^{-39}=\frac{1}{i^{39}}=\frac{1}{\left(i^{4}\right)^{9} \cdot i^{3}}$
$=\frac{1}{1 \times(-i)} \quad\left[\begin{array}{ll}\because i^{4}=1 \\ i^{3} & =-i\end{array}\right.$
$=\frac{1}{-i} \times \frac{i}{i}$
$=\frac{i}{-i^{2}}=\frac{i}{-(-1)}=i \quad\left[\because i^{2}=-1\right.$
2. Solved the quadratic equation $x^{2}+x+\frac{1}{\sqrt{2}}=0$

Ans. $\frac{x^{2}}{1}+\frac{x}{1}+\frac{1}{\sqrt{2}}=0$
$\frac{\sqrt{2} x^{2}+\sqrt{2} x+1}{\sqrt{2}}=\frac{0}{1}$
$\sqrt{2} x^{2}+\sqrt{2} x+1=0$
$x=\frac{-b \pm \sqrt{D}}{2 a}$
$=\frac{-\sqrt{2} \pm \sqrt{2-4 \sqrt{2}}}{2 \times \sqrt{2}}$
$=\frac{-\sqrt{2} \pm \sqrt{2} \sqrt{1-2 \sqrt{2}}}{2 \sqrt{2}}$
$=\frac{-1 \pm \sqrt{2 \sqrt{2}-1} i}{2}$
3. If $\left(\frac{1+i}{1-i}\right)^{m}=\mathbf{1}$, then find the least positive integral value of m.

Ans. $\left(\frac{1+i}{1-i}\right)^{m}=1$
$\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{m}=1$
$\left(\frac{1+i^{2}+2 i}{1-i^{2}}\right)^{m}=1$
$\left(\frac{\not \partial-\not \partial+2 i}{2}\right)^{m}=1 \quad\left[\because i^{2}=-1\right.$
$i^{m}=1$
$\mathrm{m}=4$
4. Evaluate $(1+i)^{4}$

Ans. $(1+i)^{4}=\left[(1+i)^{2}\right]^{2}$
$=\left(1+i^{2}+2 i\right)^{2}$
$=(1-1+2 i)^{2}$
$=(2 i)^{2}=4 i^{2}$
$=4(-1)=-4$
5. Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$

Ans. Let $\mathrm{z}=\frac{1+i}{1-i}-\frac{1-i}{1+i}$
$=\frac{(1+i)^{2}-(1-i)^{2}}{(1-i)(1+i)}$
$=\frac{4 i}{2}$
$=2 i$
$z=0+2 i$
$|z|=\sqrt{(0)^{2}+(2)^{2}}$
$=2$
6. Express in the form of a $+\mathbf{i b} .(1+3 i)^{-1}$

Ans. $(1+3 i)^{-1}=\frac{1}{1+3 i} \times \frac{1-3 i}{1-3 i}$
$=\frac{1-3 i}{(1)^{2}-(3 i)^{2}}$
$=\frac{1-3 i}{1-9 i^{2}}$
$=\frac{1-3 i}{1+9} \quad\left[i^{2}=-1\right.$
$=\frac{1-3 i}{10}$
$=\frac{1}{10}-\frac{3 i}{10}$
7. Explain the fallacy in $\mathbf{- 1}=$ i. i. $=\sqrt{-1} \cdot \sqrt{-1}=\sqrt{(-1)(-1)}=\sqrt{1}=1$

Ans. $1=\sqrt{1}=\sqrt{(-1)(-1)}$ is okay but
$\sqrt{(-1)(-1)}=\sqrt{-1} \sqrt{-1}$ is wrong.
8. Find the conjugate of $\frac{1}{2-3 i}$

Ans. Let $\mathrm{z}=\frac{1}{2-3 i}$
$z=\frac{1}{2-3 i} \times \frac{2+3 i}{2+3 i} i$
$=\frac{2+3 i}{(2)^{2}-(3 i)^{2}}$
$=\frac{2+3 i}{4+9}$
$=\frac{2+3 i}{13}$
$z=\frac{2}{13}+\frac{3}{13} i$
$\bar{z}=\frac{2}{13}-\frac{3}{13}$
9. Find the conjugate of $-3 i-5$.

Ans. Let $\mathrm{z}=3 \mathrm{i}-5$
$\bar{z}=3 i-5$
10. Let $\mathrm{z}_{1}=2-\mathbf{i}, \mathrm{z}_{2}=-2+\mathbf{i}$ Find $\operatorname{Re}\left(\frac{z_{1} z_{2}}{\overline{z_{1}}}\right)$

Ans. $z_{1} z_{2}=(2-i)(-2+i)$
$=-4+2 i+2 i-i^{2}$
$=-4+4 i+1$
$=4 i-3$
$\overline{z_{1}}=2+i$
$\frac{z_{1} z_{2}}{\bar{z}_{1}}=\frac{4 i-3}{2+i} \times \frac{2-i}{2-i}$
$=\frac{8 i-6-4 i^{2}+3 i}{4-i^{2}}$
$=\frac{11 i-2}{5}$
$\frac{z_{1} z_{2}}{z_{1}}=\frac{11}{5} i-\frac{2}{5}$
$\operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)=-\frac{2}{5}$
11. Express in the form of $a+i b(3 i-7)+(7-4 i)-(6+3 i)+i^{23}$

Ans. Let
$\mathrm{Z}=\nexists j y-7+7-4 i-6-\not p j+\left(i^{4}\right)^{5} i^{3}$
$=-4 i-6-i \quad\left[\begin{array}{l}\because \mathrm{i}^{4}=1 \\ \mathrm{i}^{3}=-\mathrm{i}\end{array}\right.$
$=-5 i-6$
$=-6+(-5 i)$
12. Find the conjugate of $\sqrt{-3}+4 i^{2}$

Ans. Let $\mathrm{z}=\sqrt{-3}+4 i^{2}$

$$
=\sqrt{3} \mathrm{i}-4
$$

$$
\bar{z}=-\sqrt{3} \mathrm{i}-4
$$

13. Solve for x and $y, 3 x+(2 x-y) i=6-3 i$

Ans. $3 \mathrm{x}=6$
$x=2$
$2 x-y=-3$
$2 \times 2-y=-3$
$-y=-3-4$
$y=7$
14. Find the value of $1+i^{2}+i^{4}+i^{6}+i^{8}+\ldots--+i^{20}$

Ans. $1+i^{2}+\left(i^{2}\right)^{2}+\left(i^{2}\right)^{3}+\left(i^{2}\right)^{4}+----+\left(i^{2}\right)^{10}=1$
$\left[\because i^{2}=-1\right.$
15. Multiply 3-2i by its conjugate.

Ans.Let $\mathrm{z}=3-2 \mathrm{i}$
$\bar{z}=3+2 i$
$z \bar{z}=(3-2 i)(3+2 i)$
$=9+66-6 / 6 \mathrm{i}^{2}$
$=9-4(-1)$
$=13$
16. Find the multiplicative inverse 4-3i.

Ans. Let $\mathrm{z}=4-3 \mathrm{i}$
$\bar{z}=4+3 i$
$|z|=\sqrt{16+9}=5 i$
$z^{-1}=\frac{\bar{z}}{|z|^{2}}$
$=\frac{4+3 i}{25}$
$=\frac{4}{25}+\frac{3}{25}$
17. Express in term of $\mathbf{a}+\mathbf{i b}$
$\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})}$

Ans. $=\frac{(3)^{2}-(i \sqrt{5})^{2}}{\sqrt{\gamma}+\sqrt{2} i-\sqrt{\gamma}+i \sqrt{2}}$
$=\frac{9+5}{2 \sqrt{2} i}=\frac{147}{2 \sqrt{2} i}$
$=\frac{7}{\sqrt{2} i} \times \frac{\sqrt{2} i}{\sqrt{2} i}=\frac{7 \sqrt{2} i}{-2}$
18. Evaluate $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}$

Ans. $=i^{n}+i^{n} \cdot i^{1}+i^{n} \cdot i^{2}+i^{n} \cdot i^{3}$
$=i^{n}+i^{n} \cdot i-i^{n}+i^{n} \cdot(-i) \quad\left[\begin{array}{l}i^{3}=-i \\ i^{2}=-1\end{array}\right.$
$=0$
19. If $1, w, w^{2}$ are three cube root of unity, show that $\left(1-w+w^{2}\right)\left(1+w-w^{2}\right)=4$

Ans. $\left(1-\mathrm{w}+\mathrm{w}^{2}\right)\left(1+\mathrm{w}-\mathrm{w}^{2}\right)$
$\left(1+w^{2}-w\right)\left(1+w-w^{2}\right)$
$(-w-w)\left(-w^{2}-w^{2}\right) \quad\left[\begin{array}{l}\because 1+w=-w^{2} \\ 1+w^{2}=-w\end{array}\right.$
$(-2 w)\left(-2 w^{2}\right)$
$4 w^{3} \quad\left[w^{3}=1\right.$
4×1
$=4$
20. Find that sum product of the complex number $-\sqrt{3}+\sqrt{-2}$ and $2 \sqrt{3}-i$

Ans. $z_{1}+z_{2}=-\sqrt{3}+\sqrt{2} i+2 \sqrt{3}-i$
$=\sqrt{3}+(\sqrt{2}-1) i$
$z_{1} z_{2}=(-\sqrt{3}+\sqrt{2} i)(2 \sqrt{3}-i)$
$=-6+\sqrt{3} i+2 \sqrt{6} i-\sqrt{2} i^{2}$
$=-6+\sqrt{3} i+2 \sqrt{6} i+\sqrt{2}$
$=(-6+\sqrt{2})+(\sqrt{3}+2 \sqrt{6}) i$
21. Write the real and imaginary part $1-2 \mathrm{i}^{2}$

Ans. Let $\mathrm{z}=1-2 \mathrm{i}^{2}$
$=1-2(-1)$
$=1+2$
$=3$
$=3+0 . \mathrm{i}$
$\operatorname{Re}(\mathrm{z})=3, \operatorname{Im}(\mathrm{z})=0$
22. If two complex number $\mathrm{z}_{1}, \mathrm{z}_{2}$ are such that $\left|\mathrm{z}_{1}\right|=\left|\mathrm{z}_{2}\right|$, is it then necessary that $\mathrm{z}_{1}=$ z_{2}

Ans.Let $\mathrm{z}_{1}=\mathrm{a}+\mathrm{ib}$
$\left|z_{1}\right|=\sqrt{a^{2}+b^{2}}$
$z_{2}=b+i a$
$\left|z_{2}\right|=\sqrt{b^{2}+a^{2}}$
Hence $\left|z_{1}\right|=\left|z_{2}\right|$ but $z_{1} \neq z_{2}$
23. Find the conjugate and modulus of $\overline{9-i}+\overline{6+i^{3}}-\overline{9+i^{2}}$

Ans. Let $z=\overline{9-i}+\overline{6-i}-\overline{9-1}$
$=9+i+6+i-0$
$=5+2 i$
$\bar{z}=5-2 i$
$|z|=\sqrt{(5)^{2}+(-2)^{2}}$
$=\sqrt{25+4}$
$=\sqrt{29}$
24. Find the number of non zero integral solution of the equation $|1-i|^{x}=2^{x}$

Ans. $|1-i|^{x}=2^{x}$
$\left(\sqrt{(1)^{2}+(-1)^{2}}\right)^{x}=2^{x}$
$(\sqrt{2})^{x}=2^{x}$
$(2)^{\frac{1}{2} x}=2^{x}$
$\frac{1}{2} x=x$
$\frac{1}{2}=1$
$1=2$
Which is false no value of x satisfies.
25. If $(\mathbf{a}+\mathbf{i b})(\mathbf{c}+\mathrm{id})(\mathrm{e}+\mathrm{if})(\mathrm{g}+\mathrm{ih})=\mathrm{A}+\mathrm{iB}$ then show that

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}
$$

Ans. $(a+i b)(c+i d)(e+i f)(g+i h)=A+i B$
$\Rightarrow|(a+i b)(c+i d)(e+i f)(g+i h)|=|A+i B|$
$|a+i b||c+i d||e+i f||g+i h|=|A+i B|$
$\left(\sqrt{a^{2}+b^{2}}\right)\left(\sqrt{c^{2}+d^{2}}\right)\left(\sqrt{e^{2}+f^{2}}\right)\left(\sqrt{g^{2}+h^{2}}\right)=\sqrt{A^{2}+B^{2}}$
sq. both side
$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}$

CBSE Class 12 Mathematics

Important Questions

Chapter 5

Complex Numbers and Quadratic Equations

4 Marks Questions

1.If $\mathbf{x}+\mathbf{i} \mathbf{y}=\frac{a+i b}{a-i b}$ Prove that $\mathbf{x}^{2}+\mathbf{y}^{2}=\mathbf{1}$

Ans. $x+i y=\frac{a+i b}{a-i b}$ (i) (Given)
taking conjugate both side
$x-i y=\frac{a-i b}{a+i b}$
(i) \times (ii)
$(x+i y)(x-i y)=\left(\frac{a+i b}{a-i b}\right) \times\left(\frac{a-i b}{a+i b}\right)$
$(x)^{2}-(i y)^{2}=1$
$x^{2}+y^{2}=1$
$\left[i^{2}=-1\right.$
2.Find real $\boldsymbol{\theta}$ such that $\frac{3+2 i \operatorname{Sin} \theta}{1-2 i \operatorname{Sin} \theta}$ is purely real.

Ans. $\frac{3+2 i \operatorname{Sin} \theta}{1-2 i \operatorname{Sin} \theta}=\frac{3+2 i \operatorname{Sin} \theta}{1-2 i \operatorname{Sin} \theta} \times \frac{1+2 i \operatorname{Sin} \theta}{1+2 i \operatorname{Sin} \theta}$
$=\frac{3+6 i \operatorname{Sin} \theta+2 i \operatorname{Sin} \theta-4 \operatorname{Sin}^{2} \theta}{1+4 \operatorname{Sin}^{2} \theta}$
$=\frac{3-4 \operatorname{Sin}^{2} \theta}{1+4 \operatorname{Sin}^{2} \theta}+\frac{8 i \operatorname{Sin} \theta}{1+4 \operatorname{Sin}^{2} \theta}$
For purely real
$\operatorname{Im}(z)=0$
$\frac{8 \operatorname{Sin} \theta}{1+4 \operatorname{Sin}^{2} \theta}=0$
$\operatorname{Sin} \theta=0$
$\theta=n \pi$
3.Find the modulus of $\frac{(1+i)(2+i)}{3+i}$

Ans. $\left|\frac{(1+i)(2+i)}{3+i}\right|=\frac{|(1+i)||2+i|}{|3+i|}$
$=\frac{\left(\sqrt{1^{2}+1^{2}}\right)(\sqrt{4+1})}{\sqrt{(3)^{2}+(1)^{2}}}$
$=\frac{(\sqrt{2})(\sqrt{5})}{\sqrt{10}}$
$=\frac{\sqrt{2} \times \sqrt{5}}{\sqrt{2} \times \sqrt{5}}$
$=1$
4.If $|a+i b|=1$, then Show that $\frac{1+b+a i}{1+b-a i}=b+a i$

Ans. $|a+i b|=1$

$$
\begin{aligned}
& \sqrt{a^{2}+b^{2}}=1 \\
& a^{2}+b^{2}=1
\end{aligned}
$$

$$
\frac{1+b+a i}{1+b-a i}=\frac{(1+b)+a i}{(1+b)-a i} \times \frac{(1+b)+a i}{(1+b)+a i}
$$

$$
=\frac{(1+b)^{2}+(a i)^{2}+2(1+b)(a i)}{(1+b)^{2}-(a i)^{2}}
$$

$$
=\frac{1+b^{2}+2 b-a^{2}+2 a i+2 a b c}{1+b^{2}+2 a-a^{2}}
$$

$$
=\frac{\left(a^{2}+b^{2}\right)+b^{2}+2 b-a^{2}+2 a i+2 a b i}{\left(a^{2}+b^{2}\right)+b^{2}+2 b-a^{2}}
$$

$$
=\frac{2 b^{2}+2 b+2 a i+2 a b i}{2 b^{2}+2 b}
$$

$$
=\frac{b^{2}+b+a i+a b i}{b^{2}+b}
$$

$$
=\frac{b(b+1)+a i(b+1)}{b(b+1)}
$$

$$
=b+a i
$$

5.If x - iy $=\sqrt{\frac{a-i b}{c-i d}}$ Prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$

Ans. $x-i y=\sqrt{\frac{a-i b}{c-i d}}$
(1) (Given)

Taking conjugate both side
$x+i y=\sqrt{\frac{a+i b}{c+i d}}$
(i) \times (ii)
$(x-i y) \times(x+i y)=\sqrt{\frac{a-i b}{c-i d}} \times \sqrt{\frac{a+i b}{c+i d}}$
$(x)^{2}-(i y)^{2}=\sqrt{\frac{(a)^{2}-(i b)^{2}}{(c)^{2}-(i d)^{2}}}$
$x^{2}+y^{2}=\sqrt{\frac{a^{2}+b^{2}}{c^{2}+d^{2}}}$
squaring both side
$\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$
6.If $a+i b=\frac{c+i}{c-i}$, where $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are real prove that $\mathbf{a}^{2}+\mathbf{b}^{\mathbf{2}}=\mathbf{1}$ and $\frac{b}{a}=\frac{2 c}{c^{2}-1}$

Ans. $a+i b=\frac{c+i}{c-i}$ (Given) (i)
$a+i b=\frac{c+i}{c-i} \times \frac{c+i}{c+i}$
$a+i b=\frac{c^{2}+2 c i+i^{2}}{c^{2}-i^{2}}$
$a+i b=\frac{c^{2}-1}{c^{2}+1}+\frac{2 c}{c^{2}+1} i$
$a=\frac{c^{2}-1}{c^{2}+1}, \mathrm{~b}=\frac{2 c}{c^{2}+1}$

$$
\begin{aligned}
& a^{2}+b^{2}=\left(\frac{c^{2}-1}{c^{2}+1}\right)^{2}+\frac{4 c^{2}}{\left(c^{2}+1\right)^{2}} \\
& =\frac{\left(c^{2}+1\right)^{2}}{\left(c^{2}+1\right)^{2}}
\end{aligned}
$$

$$
\mathrm{a}^{2}+\mathrm{b}^{2}=1
$$

$$
\frac{b}{a}=\frac{2 c}{c^{2}-1}
$$

$$
\frac{b}{a}=\frac{\frac{2 c}{c^{2}+1}}{\frac{c^{2}-1}{c^{2}+1}}
$$

7.If $\mathbf{z}_{\mathbf{1}}=\mathbf{2 - i}$ and $\mathbf{z}_{\mathbf{2}}=\mathbf{1}+\mathbf{i}$ Find $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|$

Ans. $\mathrm{z}_{1}+\mathrm{z}_{2}+1=2-\mathrm{i}+1+\mathrm{i}+1=4$

$$
\begin{aligned}
& z_{1}-z_{2}+i=2-i-1-i+i=1-i \\
& \left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|=\left|\frac{4}{1-i}\right|
\end{aligned}
$$

$$
=\frac{|4|}{|1-i|}
$$

$$
=\frac{4}{\sqrt{1^{2}+(-1)^{2}}}
$$

$$
=\frac{4}{\sqrt{2}}
$$

$=\frac{4}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$
$=\frac{4 \sqrt{2}}{2}$
$=2 \sqrt{2}$
8.If $(p+i q)^{2}=x+i y$ Prove that $\left(p^{2}+q^{2}\right)^{2}=x^{2}+y^{2}$

Ans. $(\mathrm{p}+\mathrm{iq})^{2}=\mathrm{x}+\mathrm{iy}(\mathrm{i})$
Taking conjugate both side
$(p-i q)^{2}=x-i y(i i)$
(i) \times (ii)
$(p+i q)^{2}(p-i q)^{2}=(x+i y)(x-i y)$
$[(p+i q)(p-i q)]^{2}=(x)^{2}-(i y)^{2}$
$\left[(p)^{2}-(i q)^{2}\right]^{2}=x^{2}-i^{2} y^{2}$
$\Rightarrow\left(p^{2}+q^{2}\right)^{2}=x^{2}+y^{2}$
9.If $a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$ Prove that $\mathrm{a}^{2}+\mathrm{b}^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$

Ans. $a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$ (i) (Given)
Taking conjugate both side
$a-i b=\frac{(x-i)^{2}}{2 x^{2}+1}$
(i) \times (ii)
$(a+i b)(a-i b)=\left(\frac{(x+i)^{2}}{2 x^{2}+1}\right) \times\left(\frac{(x-i)^{2}}{2 x^{2}+1}\right)$
$(a)^{2}-(i b)^{2}=\frac{\left(x^{2}-i^{2}\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$
$a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$ proved.
10.If $(x+i y)^{3}=u+i v$ then show that $\frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)$

Ans. $(x+i y)^{3}=4+i v$

$$
\begin{align*}
& x^{3}+(i y)^{3}+3 x^{2}(i y)+3 x(i y)^{2}=u+i v \\
& x^{3}-i y^{3}+3 x^{2} y i-3 x y^{2}=u+i v \\
& x^{3}-3 x y^{2}+\left(3 x^{2} y-y^{3}\right) i=u+i v \\
& x\left(x^{2}-3 y^{2}\right)+y\left(3 x^{2}-y^{2}\right) i=u+i v \\
& x\left(x^{2}-3 y^{2}\right)=u, y\left(3 x^{2}-y^{2}\right)=v \\
& x^{2}-3 y^{2}=\frac{u}{x} \text { (i) } 3 x^{2}-y^{2}=\frac{v}{y} \text { (ii) } \tag{ii}\\
& \text { (i) }+ \text { (ii) }
\end{align*}
$$

$4 \mathrm{x}^{2}-4 \mathrm{y}^{2}=\frac{u}{x}+\frac{v}{y}$
$4\left(x^{2}-y^{2}\right)=\frac{u}{x}+\frac{v}{y}$
11.Solve $\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$

Ans. $\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$
$\mathrm{a}=\sqrt{3}, b=-\sqrt{2}, c=3 \sqrt{3}$
$D=b^{2}-4 a c$
$=(-\sqrt{2})^{2}-4 \times \sqrt{3}(3 \sqrt{3})$
$=2-36$
$=-34$
$x=\frac{-b \pm \sqrt{D}}{2 a}$
$=\frac{-(-\sqrt{2}) \pm \sqrt{-34}}{2 \times \sqrt{3}}$
$=\frac{\sqrt{2} \pm \sqrt{34} \mathrm{i}}{2 \sqrt{3}}$
12.Find the modulus $i^{25}+(1+3 i)^{3}$

Ans. $\mathrm{i}^{25}+(1+3 \mathrm{i})^{3}$
$=\left(i^{4}\right)^{6} \cdot i+1+27 i^{3}+3(1)(3 i)(1+3 i)$
$=i+\left(1-27 i+9 i+27 i^{2}\right)$
$=i+1-18 i-27$
$=-26-17 i$
$\left|i^{25}+(1+3 i)^{3}\right|=|-26-17 i|$
$=\sqrt{(-26)^{2}+(-17)^{2}}$
$=\sqrt{676+289}$
$=\sqrt{965}$
13.If $a+i b=\frac{(x+i)^{2}}{2 x-i}$ prove that $\mathrm{a}^{2}+\mathrm{b}^{2}=\frac{\left(x^{2}+1\right)^{2}}{4 x^{2}+1}$

Ans. $a+i b=\frac{(x+i)^{2}}{2 x-i} \quad$ (i) (Given)
$\mathrm{a}-\mathrm{ib}=\frac{(x-i)^{2}}{2 x+i}$ (ii) [taking conjugate both side
(i) \times (ii)
$(a+i b)(a-i b)=\frac{(x+i)^{2}}{(2 x-i)} \times \frac{(x-i)^{2}}{(2 x+i)}$
$a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{4 x^{2}+1}$ proved.
14.Evaluate $\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}$

Ans.
$\left[\left(i^{4}\right)^{4} i^{2}+\frac{1}{i^{25}}\right]^{3}$
$\left[i^{2}+\frac{1}{\left(i^{4}\right)^{6} \cdot i}\right]^{3}$
$\left[-1+\frac{1}{i}\right]^{3}$
$\left[-1+\frac{i^{3}}{i^{4}}\right]^{3}$
$[-1-i]^{3}=-(1+i)^{3}$
$=-\left[1^{3}+i^{3}+3 \cdot 1 \cdot i(1+i)\right]$
$=-\left[1-i+3 i+3 i^{2}\right]$
$=-[1-i+3 i-3]$
$=-[-2+2 i]=2-2 i$
15.Find that modulus and argument $\frac{1+i}{1-i}$

Ans. $\frac{1+i}{1-i}=\frac{1+i}{1-i} \times \frac{1+i}{1+i}$
$=\frac{(1+i)^{2}}{1^{2}-i^{2}}$
$=\frac{1+i^{2}+2 i}{1+1}$
$=\frac{2 i}{2}$
$=i$
$z=0+i$
$r=|z|=\sqrt{(0)^{2}+(1)^{2}}=1$
Let α be the acute $\angle \mathrm{s}$
$\tan \alpha=\left|\frac{1}{0}\right|$
$\alpha=\pi / 2$
$\arg (z)=\pi / 2$
$r=1$
16. For what real value of x and y are numbers equal (1+i) $y^{2}+(6+i)$ and (2+i) x

Ans. $(1+i) y^{2}+(6+i)=(2+i) x$
$y^{2}+i y^{2}+6+i=2 x+x i$
$\left(y^{2}+6\right)+\left(y^{2}+1\right) i=2 x+x i$
$y^{2}+6=2 x$
$y^{2}+1=x$
$y^{2}=x-1$
$x-1+6=2 x$
$5=x$
$y= \pm 2$
17.If $\mathbf{x}+\mathbf{i} \mathbf{y}=\sqrt{\frac{1+i}{1-i}}$, prove that $\mathrm{x}^{2}+\mathrm{y}^{2}=1$

Ans. $x+i y=\sqrt{\frac{1+i}{1-i}} \quad$ (i) (Given)
taking conjugate both side
$x-i y=\sqrt{\frac{1-i}{1+i}}$
(i) \times (ii)
$(x+i y)(x-i y)=\sqrt{\frac{1+i}{1-i}} \times \sqrt{\frac{1-i}{1+i}}$
$(x)^{2}-(i y)^{2}=1$
$x^{2}+y^{2}=1$
Proved.
18.Convert in the polar form $\frac{1+7 i}{(2-i)^{2}}$

Ans. $\frac{1+7 i}{(2-i)^{2}}=\frac{1+7 i}{4+i^{2}-4 i}=\frac{1+7 i}{3-4 i}$
$=\frac{1+7 i}{3-4 i} \times \frac{3+4 i}{3+4 i}$
$=\frac{3+4 i+21 i+28 i^{2}}{9+16}$
$=\frac{25 i-25}{25}=i-1$
$=-1+i$
$r=|z|=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2}$
Let α be the acute $\angle \mathrm{s}$
$\operatorname{ten} \alpha=\left|\frac{1}{-1}\right|$
$\alpha=\pi / 4$
since $\operatorname{Re}(z)<0, \operatorname{Im}(z)>0$
$\theta=\pi-\alpha$
$=\pi-\frac{\pi}{4}=3 \pi / 4$
$z=r(\operatorname{Cos} \theta+\mathrm{i} \operatorname{Sin} \theta)$
$=\sqrt{2}\left(\operatorname{Cos} \frac{3 \pi}{4}+i \operatorname{Sin} \frac{3 \pi}{4}\right)$
19.Find the real values of x and y if $(x-i y)(3+5 i)$ is the conjugate of $-6-24 i$

Ans.
$(x-i y)(3+5 i)=-6+24 i$
$3 x+5 x i-3 y i-5 y i^{2}=-6+24 i$
$(3 x+5 y)+(5 x-3 y) i=-6+24 i$
$3 x+5 y=-6$
$5 x-3 y=24$
$x=3$
$y=-3$
20.If $\left|z_{1}\right|=\left|z_{2}\right|=1$, prove that $\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}\right|=\left|z_{1}+z_{2}\right|$

Ans.If $\left|z_{1}\right|=\left|z_{2}\right|=1 \quad$ (Given)
$\Rightarrow\left|z_{1}\right|^{2}=\left|z_{2}\right|^{2}=1$
$\Rightarrow z_{1} \overline{z_{1}}=1$
$\overline{z_{1}}=\frac{1}{z_{1}}$
$z_{2} \overline{z_{2}}=1$
$\overline{z_{2}}=\frac{1}{z_{2}}$
$\left[\because z \bar{z}=|z|^{2}\right.$
$\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}\right|=\left|\overline{z_{1}}+\overline{z_{2}}\right|$

$$
\begin{aligned}
& =\left|\overline{z_{1}+z_{2}}\right| \\
& =\left|z_{1}+z_{2}\right|
\end{aligned}
$$

$[\because|\bar{z}|=|z|$ proved.

CBSE Class 12 Mathematics

Important Questions

Chapter 5

Complex Numbers and Quadratic Equations

6 Marks Questions

1.If $\mathbf{z}=\mathbf{x}+\mathbf{i} \mathbf{y}$ and $\mathbf{w}=\frac{1-i^{2}}{z-i}$ Show that $|\mathbf{w}|=\mathbf{1} \Rightarrow \mathrm{z}$ is purely real.

Ans. $\mathrm{w}=\frac{1-i z}{z-i}$
$=\frac{1-i(x+i y)}{x+i y-i}$
$=\frac{1-i x-i^{2} y}{x+i(y-1)}$
$=\frac{(1+y)-i x}{x+i(y-1)}$
$\therefore|w|=1$
$\Rightarrow\left|\frac{(1+y)-i x}{x+i(y-1)}\right|=1$
$\frac{|(1+y)-i x|}{|x+i(y-1)|}=1$
$\frac{\sqrt{(1+y)^{2}+(-x)^{2}}}{\sqrt{x^{2}+(y-1)^{2}}}=1$
$1+y^{2}+2 y+x^{2}=x^{2}+y^{2}+1-2 y$
$4 y=0$
$y=0$
$\therefore \mathrm{z}=\mathrm{x}+\mathrm{i}$
is purely real
2.Convert into polar form $\frac{-16}{1+i \sqrt{3}}$

Ans. $\frac{-16}{1+i \sqrt{3}}=\frac{-16}{1+i \sqrt{3}} \times \frac{1-i \sqrt{3}}{1-i \sqrt{3}}$
$=\frac{-16(1-i \sqrt{3})}{(1)^{2}-(i \sqrt{3})^{2}}$
$=\frac{-16(1-i \sqrt{3})}{1+3}$
$=-4(1-i \sqrt{3})$
$z=-4+i 4 \sqrt{3}$
$r=|z|=\sqrt{(-4)^{2}+(4 \sqrt{3})^{2}}$
$=\sqrt{16+48}$
$=\sqrt{64}$
$=8$
Let α be the acute $\angle \mathrm{S}$
$\tan \alpha=\left|\frac{4 \sqrt{3}}{-A}\right|$
$\tan \alpha=\tan \frac{\pi}{3}$
$\alpha=\pi / 3$
Since $\operatorname{Re}(z)<0$, and $\operatorname{Im}(z)>0$
$\theta=\pi-\alpha$
$=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
$z=8\left(\operatorname{Cos} \frac{2 \pi}{3}+i \operatorname{Sin} \frac{2 \pi}{3}\right)$
3.Find two numbers such that their sum is 6 and the product is 14 .

Ans.Let x and y be the no.
$x+y=6$
$x y=14$
$x^{2}-6 x+14=0$
$D=-20$
$x=\frac{-(-6) \pm \sqrt{-20}}{2 \times 1}$
$=\frac{6 \pm 2 \sqrt{5} \mathrm{i}}{2}$
$=3 \pm \sqrt{5} \mathrm{i}$
$x=3+\sqrt{5}$ i
$y=6-(3+\sqrt{5} \mathrm{i})$
$=3-\sqrt{5} \mathrm{i}$
when $\mathrm{x}=3-\sqrt{5} \mathrm{i}$
$y=6-(3-\sqrt{5} \mathrm{i})$
$=3+\sqrt{5} \mathrm{i}$
4.Convert into polar form $z=\frac{i-1}{\cos \frac{\pi}{3}+i \operatorname{Sin} \frac{\pi}{3}}$

Ans. $z=\frac{i-1}{\frac{1}{2}+\frac{\sqrt{3}}{2} i}$
$=\frac{2(i-1)}{1+\sqrt{3} i} \times \frac{1-\sqrt{3} i}{1-\sqrt{3} i}$
$z=\frac{\sqrt{3}-1}{2}+\frac{\sqrt{3}+1}{2} i$
$r=|z|=\left(\frac{\sqrt{3}-1}{2}\right)^{2}+\left(\frac{\sqrt{3}+1}{2}\right)^{2}$
$r=2$
Let α be the acule $\angle \mathrm{s}$
$\tan \alpha=\left|\frac{\frac{\sqrt{3}+1}{2}}{\frac{\sqrt{3}-1}{2}}\right|$
$=\left|\frac{\sqrt{z}\left(1+\frac{1}{\sqrt{3}}\right)}{\sqrt{z}\left(1-\frac{1}{\sqrt{3}}\right)}\right|$
$=\left|\frac{\tan \frac{\pi}{4}+\tan \frac{\pi}{6}}{1-\tan \frac{\pi}{4} \tan \frac{\pi}{6}}\right|$
$\tan \alpha=\left|\tan \left(\frac{\pi}{4}+\frac{\pi}{6}\right)\right|$
$\alpha=\frac{\pi}{4}+\frac{\pi}{6}=\frac{5 \pi}{12}$
$z=2\left(\operatorname{Cos} \frac{5 \pi}{12}+i \operatorname{Sin} \frac{5 \pi}{12}\right)$
5.If α and β are different complex number with $|\beta|=1$ Then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$

Ans. $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|^{2}=\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right)\left(\frac{\overline{\beta-\alpha}}{1-\bar{\alpha} \beta}\right) \quad\left[\because|z|^{2}=z \bar{z}\right.$

$$
\begin{aligned}
& =\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right)\left(\frac{\bar{\beta}-\bar{\alpha}}{1-\alpha \bar{\beta}}\right) \\
& =\left(\frac{\beta \bar{\beta}-\beta \bar{\alpha}-\alpha \bar{\beta}+\alpha \bar{\alpha}}{1-\alpha \bar{\beta}-\bar{\alpha} \beta+\alpha \bar{\alpha} \beta \bar{\beta}}\right) \\
& =\left(\frac{|\beta|^{2}-\beta \bar{\alpha}-\alpha \bar{\beta}+|\alpha|^{2}}{1-\alpha \bar{\beta}-\bar{\alpha} \beta+|\alpha|^{2}|\beta|^{2}}\right) \\
& =\left(\frac{1-\beta \bar{\alpha}-\alpha \bar{\beta}+|\alpha|^{2}}{1-\alpha \bar{\beta}-\bar{\alpha} \beta+|\alpha|^{2}}\right) \quad[\because|\beta|=1 \\
& =1 \\
& \left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=\sqrt{1} \\
& \left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=1
\end{aligned}
$$

