Unit 5(Complex Numbers And Quadratic Equations)

Short Answer Type Questions

1. For a positive integer n, find the value of $(1+i)^{n}\left(1-\frac{1}{i}\right)^{n}$.

Sol. $(1-i)^{n}\left(1-\frac{1}{i}\right)^{n}=(1-i)^{n}\left(1-\frac{i}{i^{2}}\right)^{n}=(1-i)^{n}(1+i)^{n}=\left(1-i^{2}\right)^{n}=2^{n}$
2. Evaluate $\sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)$, where $n \in N$.

Sol. $\sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)=\sum_{n=1}^{13}(1+i) i^{n}$

$$
\begin{aligned}
& =(1+i)\left(i+i^{2}+i^{3}+i^{4}+i^{5}+i^{6}+i^{7}+i^{8}+i^{9}+i^{10}+i^{11}+i^{12}+i^{13}\right) \\
& =(1+i)(i-1-i+1+i-1-i+1+i-1-i+1+i) \\
& =(1+i) i=i+i^{2}=i-1
\end{aligned}
$$

Alternative method:

$$
\begin{aligned}
& \sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)= \sum_{n=1}^{13}(1+i) i^{n} \\
&=(1+i)\left(i+i^{2}+i^{3}+i^{4}+i^{5}+i^{6}+i^{7}+i^{8}+i^{9}+i^{10}+i^{11}\right. \\
&\left.\quad+i^{12}+i^{13}\right) \\
&=(1+i) \frac{i\left(i^{13}-1\right)}{i-1}=(1+i) \frac{i(i-1)}{i-1}=(1+i) i=i+i^{2}=i-1
\end{aligned}
$$

3. If $\left(\frac{1+i}{1-i}\right)^{3}-\left(\frac{1-i}{1+i}\right)^{3}=x+i y$, then find (x, y).

Sol. $x+i y=\left(\frac{1+i}{1-i}\right)^{3}-\left(\frac{1-i}{1+i}\right)^{3}$

$$
\begin{aligned}
= & \left(\frac{(1+i)^{2}}{1-i^{2}}\right)^{3}-\left(\frac{(1-i)^{2}}{1-i^{2}}\right)^{3}=\left(\frac{1+2 i+i^{2}}{1+1}\right)^{3}-\left(\frac{1-2 i+i^{2}}{1+1}\right)^{3} \\
= & \left(\frac{2 i}{2}\right)^{3}-\left(\frac{-2 i}{2}\right)^{3}=i^{3}-\left(-i^{3}\right)=2 i^{3}=0-2 i \\
\Rightarrow \quad & x=0 \text { and } y=-2
\end{aligned}
$$

4. If $\frac{(1+i)^{2}}{2-i}=x+i y$, then find the value of $x+y$.

Sol. $x+i y=\frac{(1+i)^{2}}{2-i}=\frac{1+2 i+i^{2}}{2-i}=\frac{2 i}{2-i}=\frac{2 i(2+i)}{(2-i)(2+i)}=\frac{4 i+2 i^{2}}{4-i^{2}}$

$$
\begin{aligned}
& =\frac{4 i-2}{4+1}=\frac{-2}{5}+\frac{4 i}{5} \\
\Rightarrow \quad x=\frac{-2}{5}, y=\frac{4}{5} \Rightarrow x+y & =\frac{-2}{5}+\frac{4}{5}=\frac{2}{5}
\end{aligned}
$$

5. If $\left(\frac{1-i}{1+i}\right)^{100}=a+i b$, then find (a, b).

Sol. $a+i b=\left(\frac{1-i}{1+i}\right)^{10}=\left[\frac{(1-i)}{(1+i)} \cdot \frac{(1-i)}{(1-i)}\right]^{100}=\left[\frac{(1-i)^{2}}{1-i^{2}}\right]^{100}$

$$
\begin{aligned}
= & \left(\frac{1-2 i+i^{2}}{1+1}\right)^{100}=\left(\frac{-2 i}{2}\right)^{100}=\left(i^{4}\right)^{25}=1 \\
\therefore \quad & (a, b)=(1,0)
\end{aligned}
$$

Q6. If $a=\cos \theta+i \sin \theta$, then find the value of $(1+a / 1-a)$
Sol: $a=\cos \theta+i \sin \theta$

$$
\begin{aligned}
\therefore \quad \frac{1+a}{1-a} & =\frac{(1+\cos \theta)+i \sin \theta}{(1-\cos \theta)-i \sin \theta} \\
& =\frac{2 \cos ^{2} \frac{\theta}{2}+i 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}-i 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}=\frac{2 \cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)}{2 \sin \frac{\theta}{2}\left(\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}\right)} \\
& =\frac{i \cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)}{\sin \frac{\theta}{2}\left(i \sin \frac{\theta}{2}-i^{2} \cos \frac{\theta}{2}\right)}=\frac{i \cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)}{\sin \frac{\theta}{2}\left(i \sin \frac{\theta}{2}+\cos \frac{\theta}{2}\right)}=i \cot \frac{\theta}{2}
\end{aligned}
$$

7. If $(1+i) z=(1-i) \bar{z}$, then show that $z=-i \bar{z}$.

Sol. We have, $(1+i) z=(1-i) \bar{z}$

$$
\Rightarrow \quad z=\frac{1-i}{1+i} \bar{z}=\frac{(1-i)(1-i)}{(1+i)(1-i)} \bar{z}=\frac{(1-i)^{2}}{\left(1-i^{2}\right)} \bar{z}=\frac{1-2 i+i^{2}}{1+1} \bar{z}=\frac{1-2 i-1}{2} \bar{z}=-i \bar{z}
$$

8. If $z=x+i y$, then show that $z \bar{z}+2(z+\bar{z})+b=0$, where $b \in R$, represents a circle.
Sol. Given that, $z=x+i y \quad \Rightarrow \quad \bar{z}=x-i y$
Now, $\quad z \bar{z}+2(z+\bar{z})+b=0$
$\Rightarrow \quad(x+i y)(x-i y)+2(x+i y+x-i y)+b=0$
$\Rightarrow \quad x^{2}+y^{2}+4 x+b=0$; this is the equation of a circle
9. If the real part of $\frac{\bar{z}+2}{\bar{z}-1}$ is 4 , then show that the locus of the point representing z in the complex plane is a circle.
Sol. Let $z=x+i y$
Now, $\quad \frac{\bar{z}+2}{\bar{z}-1}=\frac{x-i y+2}{x-i y-1}=\frac{[(x+2)-i y][(x-1)+i y]}{[(x-1)-i y][(x-1)+i y]}$

$$
=\frac{(x-1)(x+2)+y^{2}+i[(x+2) y-(x-1) y]}{(x-1)^{2}+y^{2}}
$$

Given that real part is 4 .

$$
\begin{aligned}
& \Rightarrow \quad \frac{(x-1)(x+2)+y^{2}}{(x-1)^{2}+y^{2}}=4 \Rightarrow x^{2}+x-2+y^{2}=4\left(x^{2}-2 x+1+y^{2}\right) \\
& \Rightarrow \quad 3 x^{2}+3 y^{2}-9 x+6=0, \text { which represents a circle. } \\
& \text { Hence, locus of } z \text { is circle }
\end{aligned}
$$

Q10. Show that the complex number z, satisfying the condition arg lies on $\arg (z-1 / z+1)=$ $\pi / 4$ lies on a circle.

Sol: Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$

Given that, $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$

$$
\begin{array}{ll}
\Rightarrow & \arg (z-1)-\arg (z+1)=\pi / 4 \\
\Rightarrow & \arg (x+i y-1)-\arg (x+i y+1)=\pi / 4 \\
\Rightarrow & \arg (x-1+i y)-\arg (x+1+i y)=\pi / 4 \\
\Rightarrow & \tan ^{-1} \frac{y}{x-1}+\tan ^{-1} \frac{y}{x+1}=\frac{\pi}{4} \Rightarrow \tan ^{-1}\left[\frac{\frac{y}{x-1}-\frac{y}{x+1}}{1+\left(\frac{y}{x-1}\right)\left(\frac{y}{x+1}\right)}\right]=\frac{\pi}{4} \\
\Rightarrow & \frac{y(x+1-x+1)}{x^{2}-1+y^{2}}=\tan \frac{\pi}{4} \Rightarrow \frac{2 y}{x^{2}+y^{2}-1}=1 \\
\Rightarrow & x^{2}+y^{2}-1=2 y \\
\Rightarrow & x^{2}+y^{2}-2 y-1=0, \text { which represents a circle. }
\end{array}
$$

Q11. Solve the equation $|z|=z+1+2 i$.
Sol: We have $|z|=z+1+2 i$
Putting $z=x+i y$, we get
$|x+i y|=x+i y+1+2 i$
$\Rightarrow \quad \sqrt{x^{2}+y^{2}}=(x+1)+i(y+2) \quad\left[\because|z|=\sqrt{x^{2}+y^{2}}\right]$
Comparing real and imaginary parts, we get

$$
\sqrt{x^{2}+y^{2}}=x+1
$$

And $\quad 0=y+2 \Rightarrow y=-2$
Putting this value of y in $\sqrt{x^{2}+y^{2}}=x+1$, we get

$$
\begin{array}{ll}
& x^{2}+(-2)^{2}=(x+1)^{2} \\
\Rightarrow \quad & x^{2}+4=x^{2}+2 x+1 \\
\therefore \quad & z=x+i y=3 / 2-2 i
\end{array} \quad \Rightarrow x=3 / 2
$$

Long Answer Type Questions
Q12. If $|z+1|=z+2(1+i)$, then find the value of z.
Sol: We have $\mid z+11=z+2(1+i)$
Putting $z=x+i y$, we get
Then, $1 \mathrm{x}+\mathrm{iy}+11=\mathrm{x}+\mathrm{iy}+2(1+\mathrm{i})$
$\Longrightarrow \mid x+i y+\|=x+i y+2(1+i)$
Comparing real and imaginary parts, we get

$$
\sqrt{(x+1)^{2}+y^{2}}=x+2
$$

And

$$
y+2=0 \Rightarrow y=-2
$$

Putting $y=-2$ into $\sqrt{(x+1)^{2}+y^{2}}=x+2$, we get

$$
\begin{array}{ll}
& (x+1)^{2}+(-2)^{2}=(x+2)^{2} \\
\Rightarrow & x^{2}+2 x+1+4=x^{2}+4 x+4 \quad \Rightarrow 2 x=1 \quad \Rightarrow x=\frac{1}{2} \\
\therefore & z=x+i y=\frac{1}{2}-2 i
\end{array}
$$

Q13. If $\arg (z-1)=\arg (z+3 i)$, then find $(x-1): y$, where $z=x+i y$.
Sol: We have $\arg (z-1)=\arg (z+3 i)$, where $z=x+i y$
$\Rightarrow \arg (x+i y-1)=\arg (x+i y+3 i)$
$\Rightarrow>\arg (x-1+i y)=\arg [x+i(y+3)]$

$$
\begin{array}{ll}
\Rightarrow & \tan ^{-1} \frac{y}{x-1}=\tan ^{-1} \frac{y+3}{x} \Rightarrow \frac{y}{x-1}=\frac{y+3}{x} \\
\Rightarrow & x y=(x-1)(y+3) \\
\Rightarrow & x y=x y-y+3 x-3 \quad \Rightarrow 3 x-3=y \\
\Rightarrow & \frac{x-1}{y}=\frac{1}{3} \\
\therefore & (x-1): y=1: 3
\end{array}
$$

Q14. Show that $|z-2 / z-3|=2$ represents a circle . Find its center and radius .
Sol: We have $|z-2 / z-3|=2$
Puttingz=x + iy, we get

$$
\begin{array}{ll}
& \left|\frac{x+i y-2}{x+i y-3}\right|=2 \\
\Rightarrow & |x-2+i y|=2|x-3+i y| \Rightarrow \sqrt{(x-2)^{2}+y^{2}}=2 \sqrt{(x-3)^{2}+y^{2}} \\
\Rightarrow & x^{2}-4 x+4+y^{2}=4\left(x^{2}-6 x+9+y^{2}\right) \Rightarrow 3 x^{2}+3 y^{2}-20 x+32=0 \\
\Rightarrow & x^{2}+y^{2}-\frac{20}{3} x+\frac{32}{3}=0 \Rightarrow\left(x-\frac{10}{3}\right)^{2}+y^{2}+\frac{32}{3}-\frac{100}{9}=0 \\
\Rightarrow & \left(x-\frac{10}{3}\right)^{2}+(y-0)^{2}=\frac{4}{9}
\end{array}
$$

Hence, centre of the circle is $\left(\frac{10}{3}, 0\right)$ and radius is $\frac{2}{3}$.

Q15. If $z-1 / z+1$ is a purely imaginary number $(z \neq 1)$, then find the value of $|z|$.

Sol: Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$

$$
\begin{aligned}
\Rightarrow \quad \frac{z-1}{z+1} & =\frac{x+i y-1}{x+i y+1}, z \neq-1 \\
& =\frac{x-1+i y}{x+1+i y}=\frac{(x-1+i y)(x+1-i y)}{(x+1+i y)(x+1-i y)} \\
& =\frac{\left(x^{2}-1\right)+y^{2}+i[y(x+1)-y(x-1)]}{(x+1)^{2}+y^{2}}
\end{aligned}
$$

It is given that $\frac{z-1}{z+1}$ is a purely imaginary.

$$
\begin{aligned}
& \Rightarrow \quad \frac{\left(x^{2}-1\right)+y^{2}}{(x+1)^{2}+y^{2}}=0 \quad \Rightarrow x^{2}-1+y^{2}=0 \quad \Rightarrow x^{2}+y^{2}=1 \\
& \Rightarrow \\
& \Rightarrow \quad \sqrt{x^{2}+y^{2}}=1 \\
& |z|=1
\end{aligned}
$$

Alternative method:

Since $\frac{z-1}{z+1}$ is a purely imaginary number, we have

$$
\begin{array}{ll}
& \frac{z-1}{z+1}+\overline{\left(\frac{z-1}{z+1}\right)}=0 \\
\Rightarrow & \frac{z-1}{z+1}+\frac{\bar{z}-1}{\bar{z}+1}=0 \Rightarrow \frac{(z-1)(\bar{z}+1)+(z+1)(\bar{z}-1)}{(z+1)(\bar{z}+1)}=0 \\
\Rightarrow & z \bar{z}+z-\bar{z}-1+z \bar{z}-z+\bar{z}-1=0 \Rightarrow 2 z \bar{z}-2=0 \\
\Rightarrow & |z|^{2}-1=0 \\
\Rightarrow & |z|=1
\end{array}
$$

16. z_{1} and z_{2} are two complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|$ and $\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
$=\pi$, then show that $z_{1}=-\bar{z}_{2}$.
Sol. Let $z_{1}=\left|z_{1}\right|\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=\left|z_{2}\right|\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
Given that, $\left|z_{1}\right|=\left|z_{2}\right|$
And $\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=\pi$
$\Rightarrow \quad \theta_{1}+\theta_{2}=\pi \quad \Rightarrow \theta_{1}=\pi-\theta_{2}$
Now, $\quad z_{1}=\left|z_{2}\right|\left[\cos \left(\pi-\theta_{2}\right)+i \sin \left(\pi-\theta_{2}\right)\right]$
$\Rightarrow \quad z_{1}=\left|z_{2}\right|\left(-\cos \theta_{2}+i \sin \theta_{2}\right) \Rightarrow z_{1}=-\left|z_{2}\right|\left(\cos \theta_{2}-i \sin \theta_{2}\right)$
$\Rightarrow \quad z_{1}=-\left[\left|z_{2}\right|\left(\cos \theta_{2}-i \sin \theta_{2}\right)\right] \quad \Rightarrow z_{1}=-\bar{z}_{2}$

Q17. If $\left|z_{1}\right|=1\left(z_{1} \neq-1\right)$ and $z_{2}=z_{1}-1 / z_{1}+1$, then show that real part of z_{2} is zero
Sol. Let $z_{1}=x+i y$

$$
\begin{aligned}
& \Rightarrow \quad\left|z_{1}\right|=\sqrt{x^{2}+y^{2}}=1 \text { (given) } \\
& \text { Now, } \quad z_{2}=\frac{z_{1}-1}{z_{1}+1} \\
& =\frac{x+i y-1}{x+i y+1}=\frac{x-1+i y}{x+1+i y} \\
& =\frac{(x-1+i y)(x+1-i y)}{(x+1+i y)(x+1-i y)} \\
& =\frac{\left(x^{2}-1\right)+y^{2}+i[y(x+1)-y(x-1)]}{(x+1)^{2}+y^{2}} \\
& =\frac{x^{2}+y^{2}-1+2 i y}{(x+1)^{2}+y^{2}}=\frac{1-1+2 i y}{(x+1)^{2}+y^{2}} \quad\left[\because x^{2}+y^{2}=1\right] \\
& =0+\frac{2 y i}{(x+1)^{2}+y^{2}}
\end{aligned}
$$

Hence, the real part of z_{2} is zero.

Q18. If Z_{1}, Z_{2} and Z_{3}, Z_{4} are two pairs of conjugate complex numbers, then find $\arg \left(Z_{1 /} Z_{4}\right)$ $+\arg \left(Z_{2 /} Z_{3}\right)$
Sol. It is given that z_{1} and z_{2} are conjugate complex numbers.
$\Rightarrow \quad z_{2}=\bar{z}_{1}$
Also, z_{3} and z_{4} are conjugate complex numbers.
$\Rightarrow \quad z_{4}=\bar{z}_{3}$
Now, $\quad \arg \left(\frac{z_{1}}{z_{4}}\right)+\arg \left(\frac{z_{2}}{z_{3}}\right)=\arg \left(\frac{z_{1}}{z_{4}}\right)\left(\frac{z_{2}}{z_{3}}\right)$

$$
\begin{aligned}
& =\arg \left(\frac{z_{1}}{\bar{z}_{3}}\right)\left(\frac{\bar{z}_{1}}{z_{3}}\right)=\arg \left(\frac{z_{1} \bar{z}_{1}}{z_{3} \bar{z}_{3}}\right) \\
& =\arg \left(\frac{\left|z_{1}\right|^{2}}{\left|z_{3}\right|^{2}}\right)=0 \quad\left(\because \frac{\left|z_{1}\right|^{2}}{\left|z_{3}\right|^{2}} \text { is purely real }\right)
\end{aligned}
$$

19. If $\left|z_{1}\right|=\left|z_{2}\right|=\ldots=\left|z_{n}\right|=1$, then show that $\left|z_{1}+z_{2}+z_{3}+\ldots+z_{n}\right|$

$$
=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}+\cdots+\frac{1}{z_{n}}\right|
$$

Sol. Given that $\left|z_{1}\right|=\left|z_{2}\right|=\ldots=\left|z_{n}\right|=1$

$$
\begin{array}{ll}
\Rightarrow & \left|z_{1}\right|^{2}=\left|z_{2}\right|^{2}=\ldots=\left|z_{n}\right|^{2}=1 \\
\Rightarrow & z_{1} \bar{z}_{1}=z_{2} \bar{z}_{2}=z_{3} \bar{z}_{3}=\ldots=z_{n} \bar{z}_{n}=1 \\
\Rightarrow & z_{1}=\frac{1}{\bar{z}_{1}}, z_{2}=\frac{1}{\bar{z}_{2}}, \ldots, z_{n}=\frac{1}{\bar{z}_{n}} \\
\text { Now, }\left|z_{1}+z_{2}+z_{3}+z_{4}+\ldots+z_{n}\right| \\
& =\left|\frac{z_{1} \bar{z}_{1}}{\bar{z}_{1}}+\frac{z_{2} \bar{z}_{2}}{z_{2}}+\frac{z_{3} \bar{z}_{3}}{\bar{z}_{3}}+\cdots+\frac{z_{n} \bar{z}_{n}}{z_{n}}\right|=\left|\frac{1}{\bar{z}_{1}}+\frac{1}{\bar{z}_{2}}+\frac{1}{\bar{z}_{3}}+\cdots+\frac{1}{\bar{z}_{n}}\right| \\
& =\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}+\cdots+\frac{1}{z_{n}}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\cdots+\frac{1}{z_{n}}\right|
\end{array}
$$

Q20. If for complex number z_{1} and z_{2}, $\arg \left(z_{1}\right)-\arg \left(z_{2}\right)=0$, then show that $\left|z_{1}-z_{2}\right|=\left|z_{1}\right|-$ $\left|z_{2}\right|$

Sol. Let $z_{1}=\left|z_{1}\right|\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=\left|z_{2}\right|\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
$\Rightarrow \quad \arg \left(z_{1}\right)=\theta_{1}$ and $\arg \left(z_{2}\right)=\theta_{2}$
It is given that

$$
\begin{array}{ll}
& \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=0 \\
\Rightarrow \quad & \theta_{1}-\theta_{2}=0 \quad \Rightarrow \theta_{1}=\theta_{2}
\end{array}
$$

$$
\text { Now, } z_{2}=\left|z_{2}\right|\left(\cos \theta_{1}+i \sin \theta_{1}\right) \quad\left[\because \theta_{1}=\theta_{2}\right]
$$

$$
\text { So, } z_{1}-z_{2}=\left(\left|z_{1}\right| \cos \theta_{1}-\left|z_{2}\right| \cos \theta_{1}\right)+i\left(\left|z_{1}\right| \sin \theta_{1}-\left|z_{2}\right| \sin \theta_{1}\right)
$$

$$
\begin{aligned}
\Rightarrow \quad\left|z_{1}-z_{2}\right| & =\sqrt{\left(\left|z_{1}\right| \cos \theta_{1}-\left|z_{2}\right| \cos \theta_{1}\right)^{2}+\left(\left|z_{1}\right| \sin \theta_{1}-\left|z_{2}\right| \sin \theta_{1}\right)^{2}} \\
& =\sqrt{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right| \cos ^{2} \theta_{1}-2\left|z_{1}\right|\left|z_{2}\right| \sin ^{2} \theta_{1}} \\
& =\sqrt{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right|\left[\cos ^{2} \theta_{1}+\sin ^{2} \theta_{1}\right]} \\
& =\sqrt{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right|}=\sqrt{\left(\left|z_{1}\right|-\left|z_{2}\right|\right)^{2}} \\
\Rightarrow \quad\left|z_{1}-z_{2}\right| & =\left|z_{1}\right|-\left|z_{2}\right|
\end{aligned}
$$

Alternative method:

Let $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ be on the Argand plane.
It is given that $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$.
So, A and B lie on the same ray emanating from origin O.
So, points O, A and B are collinear.
$\Rightarrow \quad A B=O A-O B \quad$ (Assuming

$$
\begin{aligned}
& \left.\left|z_{1}\right|>\left|z_{2}\right|\right) \\
& \Rightarrow \quad\left|z_{1}-z_{2}\right|=\left|z_{1}\right|-\left|z_{2}\right|
\end{aligned}
$$

Q21. Solve the system of equations $\operatorname{Re}\left(z^{2}\right)=0,|z|=2$.

Sol: Given that, $\operatorname{Re}\left(z^{2}\right)=0,|z|=2$

Let $z=x+i y$. Then $|z|=\sqrt{x^{2}+y^{2}}$.
Given that $\sqrt{x^{2}+y^{2}}=2$

$$
\begin{equation*}
\Rightarrow \quad x^{2}+y^{2}=4 \tag{i}
\end{equation*}
$$

Also, $z^{2}=x^{2}+2 i x y-y^{2}=\left(x^{2}-y^{2}\right)+2 i x y$
Now, $\operatorname{Re}\left(z^{2}\right)=0$
$\Rightarrow \quad x^{2}-y^{2}=0$
Solving (i) and (ii), we get

$$
\begin{array}{ll}
\Rightarrow & x^{2}=y^{2}=2 \tag{ii}\\
\Rightarrow & x= \pm \sqrt{2} \text { and } y= \pm \sqrt{2} \\
\therefore & z=x+i y= \pm \sqrt{2} \pm i \sqrt{2}
\end{array}
$$

Hence, we have four complex numbers.

Q22. Find the complex number satisfying the equation $z+\sqrt{ } 2|(z+1)|+i=0$.

Sol. We have $z+\sqrt{2}|(z+1)|+i=0$
Putting $z=x+i y$, we get

$$
\begin{array}{ll}
& x+i y+\sqrt{2}|x+i y+1|+i=0 \\
\Rightarrow & x+i(1+y)+\sqrt{2}\left[\sqrt{(x+1)^{2}+y^{2}}\right]=0 \\
\Rightarrow & \left.x+i(1+y)+\sqrt{2} \sqrt{\left(x^{2}+2 x+1+y^{2}\right.}\right)=0
\end{array}
$$

Comparing real and imaginary parts to zero, we get

$$
\begin{equation*}
x+\sqrt{2} \sqrt{x^{2}+2 x+1+y^{2}}=0 \tag{ii}
\end{equation*}
$$

And $y+1=0 \Rightarrow y=-1$
Putting $y=-1$ into (ii), we get

$$
\begin{array}{ll}
& x+\sqrt{2} \sqrt{x^{2}+2 x+1+1}=0 \\
\Rightarrow & \sqrt{2} \sqrt{x^{2}+2 x+2}=-x \\
\Rightarrow & 2 x^{2}+4 x+4=x^{2} \quad \Rightarrow x^{2}+4 x+4=0 \Rightarrow(x+2)^{2}=0 \\
\Rightarrow & x=-2 \\
\therefore & z=x+i y=-2-i
\end{array}
$$

23. Write the complex number $z=\frac{1-i}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$ in polar form.

Sol. $z=\frac{1-i}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$

$$
\begin{aligned}
& =\frac{\sqrt{2}\left[\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right]}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}=\frac{\sqrt{2}\left[\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right]}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}} \\
& =\sqrt{2}\left[\cos \left(-\frac{\pi}{4}-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{4}-\frac{\pi}{3}\right)\right] \\
& =\sqrt{2}\left[\cos \left(-\frac{7 \pi}{12}\right)+i \sin \left(-\frac{7 \pi}{12}\right)\right] \\
& =-\sqrt{2}\left[\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right]
\end{aligned}
$$

24. If z and w are two complex numbers such that $|z w|=1$ and $\arg (z)-\arg (w)=$ $\frac{\pi}{2}$, then show that $\bar{z} w=-i$.
Sol. Let $z=|z|\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $w=|w|\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
Given that, $|z w|=|z||w|=1$

$$
\begin{aligned}
& \text { Also, } \begin{aligned}
& \arg (z)-\arg (w)=\frac{\pi}{2} \Rightarrow \theta_{1}-\theta_{2}=\frac{\pi}{2} \\
& \text { Now, } \begin{aligned}
\bar{z} w & =|z|\left(\cos \theta_{1}-i \sin \theta_{1}\right)|w|\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& =|z||w|\left(\cos \left(-\theta_{1}\right)+i \sin \left(-\theta_{1}\right)\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& =1\left[\cos \left(\theta_{2}-\theta_{1}\right)+i \sin \left(\theta_{2}-\theta_{1}\right)\right]=[\cos (-\pi / 2)+i \sin (-\pi / 2)] \\
& =1[0-i]=-i
\end{aligned}
\end{aligned} . \begin{array}{l}
=1
\end{array}
\end{aligned}
$$

Fill in the blanks
25. Fill in the blanks of the following
(i) For any two complex numbers z_{1}, z_{2} and any real numbers a, b,

$$
\left|a z_{1}-b z_{2}\right|^{2}+\left|b z_{1}+a z_{2}\right|^{2}=
$$

\qquad .
(ii) The value of $\sqrt{-25} \times \sqrt{-9}$ is \qquad .
(iii) The number $\frac{(1-i)^{3}}{1-i^{3}}$ is equal to \qquad -.
(iv) The sum of the series $i+i^{2}+i^{3}+\ldots$ upto 1000 terms is \qquad -
(v) Multiplicative inverse of $1+i$ is \qquad .
(vi) If z_{1} and z_{2} are complex numbers such that $z_{1}+z_{2}$ is a real number, then $z_{1}=$ \qquad -.
(vii) $\arg (z)+\operatorname{are} \bar{z}$ where, $(\bar{z} \neq 0)$ is \qquad .
(viii) If $|z+4| \leq 3$, then the greatest and least values of $|z+1|$ are \qquad and
(ix) If $\left|\frac{z-2}{z+2}\right|=\frac{\pi}{6}$, then the locus of z is \qquad $-$
(x) If $|z|=4$ and $\arg (z)=\frac{5 \pi}{6}$, then $z=$ \qquad -

Sol. (i) $\left|a z_{1}-b z_{2}\right|^{2}+\left|b z_{1}+a z_{2}\right|^{2}$

$$
\begin{aligned}
& =\left|a z_{1}\right|^{2}+\left|b z_{2}\right|^{2}-2 \operatorname{Re}\left(a z_{1} \times b \bar{z}_{2}\right)+\left|b z_{1}\right|^{2}+\left|a z_{2}\right|^{2}+2 \operatorname{Re}\left(b z_{1} \times a \bar{z}_{2}\right) \\
& =\left(a^{2}+b^{2}\right)\left|z_{1}\right|^{2}+\left(a^{2}+b^{2}\right)\left|z_{2}\right|^{2}=\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)
\end{aligned}
$$

(ii) $\sqrt{-25} \times \sqrt{-9}=i \sqrt{25} \times i \sqrt{9}=i^{2}(5 \times 3)=-15$
(iii) $\frac{(1-i)^{3}}{1-i^{3}}=\frac{(1-i)^{3}}{(1-i)\left(1+i+i^{2}\right)}=\frac{(1-i)^{2}}{i}=\frac{1+i^{2}-2 i}{i}=\frac{-2 i}{i}=-2$
(iv) $i+i^{2}+i^{3}+\ldots$ upto 1000 terms

$$
\begin{aligned}
& =\left(i+i^{2}+i^{3}+i^{4}\right)+\left(i^{5}+i^{6}+i^{7}+i^{8}\right)+\ldots 250 \text { brackets } \\
& =0+0+0 \ldots+0 \quad\left[\because i^{n}+i^{n+1}+i^{n+2}+i^{n+3}=0, \text { where } n \in N\right]
\end{aligned}
$$

(v) Multiplicative inverse of $1+i=\frac{1}{1+i}=\frac{1-i}{1-i^{2}}=\frac{1}{2}(1-i)$
(vi) Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$
$z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)$, which is real
$\Rightarrow y_{1}+y_{2}=0 \Rightarrow y_{1}=-y_{2}$
$\because z_{2}=x_{1}-i y_{1} \quad$ [Assuming $x_{1}=x_{2}$]
$\Rightarrow \quad z_{2}=\bar{z}_{1}$
(vii) $\arg (z)+\arg (\bar{z})=\theta+(-\theta)=0$
(viii) Given that, $|z+4| \leq 3$

For the greatest value of $|z+1|$,

$$
|z+1|=|z+4-3|
$$

or $\quad|z+1| \leq|z+4|+|-3|$.
or $\quad|z+1| \leq 3+3$
or $\quad|z+1| \leq 6$
So, greatest value of $|z+1|$ is 6 .
We know that the least value of the modulus of a complex number is zero. So, the least value of $|z+1|$ is zero.
(ix) We have $\left|\frac{z-2}{z+2}\right|=\frac{\pi}{6}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{|x+i y-2|}{|x+i y+2|}=\frac{\pi}{6} \Rightarrow \frac{|x-2+i y|}{|x+2+i y|}=\frac{\pi}{6} \\
& \Rightarrow \quad 6|x-2+i y|=\pi|x+2+i y| \Rightarrow 36|x-2+i y|^{2}=\pi^{2}|x+2+i y|^{2} \\
& \Rightarrow \quad 36\left[x^{2}-4 x+4+y^{2}\right]=\pi^{2}\left[x^{2}+4 x+4+y^{2}\right] \\
& \Rightarrow \quad\left(36-\pi^{2}\right) x^{2}+\left(36-\pi^{2}\right) y^{2}-\left(144+4 \pi^{2}\right) x+144-4 \pi^{2}=0, \text { which is } \\
& \\
& \quad \text { a circle. }
\end{aligned}
$$

(x) Let $z=|z|(\cos \theta+i \sin \theta)$

Where $\theta=\arg (z)$
Given that $|z|=4$ and $\arg (z)=\frac{5 \pi}{6}$

$$
\begin{aligned}
\Rightarrow \quad z & =4\left[\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right] \quad(z \text { lies in II quadrant }) \\
& =4\left[-\frac{\sqrt{3}}{2}+i \frac{1}{2}\right]=-2 \sqrt{3}+2 i
\end{aligned}
$$

True/False Type Questions

Q26. State true or false for the following.
(i) The order relation is defined on the set of complex numbers.
(ii) Multiplication of a non-zero complex number by -i rotates the point about origin through a right angle in the anti-clockwise direction.
(iii) For any complex number z, the minimum value of $|z|+\mid z-11$ is 1 .
(iv) The locus represented by $|z-11=|z-i|$ is a line perpendicular to the join of the points
$(1,0)$ and $(0,1)$.
(v) If z is a complex number such that $z \neq 0$ and $\operatorname{Re}(z)=0$, then $\operatorname{Im}\left(z^{2}\right)=0$.
(vi) The inequality $|z-4|<|z-2|$ represents the region given by $x>3$.
(vii) Let Z_{1} and Z_{2} be two complex numbers such that $\left|z_{,}+z_{2}\right|=\left|z_{1} j+\left|z_{2}\right|\right.$, then $\arg \left(z_{1}-z_{2}\right)$ $=0$.
(viii) 2 is not a complex number.

Sol:(i) False
We can compare two complex numbers when they are purely real. Otherwise comparison of complex numbers is not possible or has no meaning.
(ii) False

Let $\mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y}$, where $\mathrm{x}, \mathrm{y}>0$
i.e., z or point $A(x, y)$ lies in first quadrant. Now, $-i z=-i(x+i y)$
$=-i x-i^{2} y=y-i x$
Now, point $B(y,-x)$ lies in fourth quadrant. Also, $\angle A O B=90^{\circ}$
Thus, B is obtained by rotating A in clockwise direction about origin.

(iii) True

$$
|z|+|z-1|
$$

We know that $\left|z_{1}\right|+\left|z_{2}\right| \geq\left|z_{1}-z_{1}\right|$
$\Rightarrow \quad|z|+|z-1| \geq|z-(z-1)| \quad \Rightarrow|z|+|z-1| \geq 1$
So, minimum value of $|z|+|z-1|$ is 1 .

Alternative method:

Let $A(z)$ and $B(1)$.
$\Rightarrow|z|+|z-1|=O A+A B$, where O is origin
From triangular inequality, we get

$$
O A+A B \geq O B
$$

$\Rightarrow \quad(O A+A B)_{\min .}=O B=1$
(iv) True

We have, $|z-1|=|z-i|$
Putting $z=x+i y$, we get
$\Rightarrow \quad|x-1+i y|=|x-i(1-y)|$
$\Rightarrow \quad(x-1)^{2}+y^{2}=x^{2}+(1-y)^{2} \Rightarrow x^{2}-2 x+1+y^{2}=x^{2}+1+y^{2}-2 y$
$\Rightarrow \quad-2 x+1=1-2 y \quad \Rightarrow-2 x+2 y=0 \quad \Rightarrow x-y=0$
Now, equation of a line through the points $(1,0)$ and $(0,1)$ is:

$$
y-0=\frac{1-0}{0-1}(x-1)
$$

or $\quad x+y=1$
This line is perpendicular to the line $x-y=0$.
(v) False

Let $z=x+i y, z \neq 0$ and $\operatorname{Re}(z)=0$.
i.e., $\quad x=0$
$\therefore \quad z=i y$
$\operatorname{Im}\left(z^{2}\right)=i^{2} y^{2}=-y^{2} \neq 0$
(vi) True

We have, $|z-4|<|z-2|$
Putting $z=x+i y$, we get

$$
|x-4+i y|<|x-2+i y|
$$

$\Rightarrow \quad \sqrt{(x-4)^{2}+y^{2}}<\sqrt{(x-2)^{2}+y^{2}}$

$$
\begin{aligned}
& \Rightarrow \quad(x-4)^{2}+y^{2}<(x-2)^{2}+y^{2} \\
& \Rightarrow \quad x^{2}-8 x+16+y^{2}<x^{2}-4 x+4+y^{2} \\
& \Rightarrow \quad-8 x+16<-4 x+4 \\
& \Rightarrow \quad 4 x>12 \\
& \Rightarrow \quad x>3
\end{aligned}
$$

(vii) False

$$
\begin{aligned}
& \left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right| \\
\Rightarrow & \left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left|z_{1}\right|\left|z_{2}\right| \\
\Rightarrow & \left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left|z_{1}\right|\left|z_{2}\right| \\
\Rightarrow & 2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=2\left|z_{1}\right|\left|z_{2}\right| \quad \Rightarrow \cos \left(\theta_{1}-\theta_{2}\right)=1 \\
\Rightarrow \quad & \theta_{1}-\theta_{2}=0 \quad \Rightarrow \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=0
\end{aligned}
$$

(viii) False

We know that, any real number is also a complex number.

Matching Column Type Questions
Q24. Match the statements of Column A and Column B.

Column A			Column B
(a)	The polar form of $\mathrm{i}+\sqrt{ } 3$ is	(i)	Perpendicular bisector of segment joining ($-2,0$) and (2,0)
(b)	The amplitude of $1+\sqrt{ }-3$ is	(ii)	On or outside the circle having centre at ($0,-4$) and radius 3 .
(c)	It $\|z+2\|=\|z-2\|$, then locus of z is	(iii)	2/3
(d)	It $\|z+2 i\|=\|z-2 i\|$, then locus of z is	(iv)	Perpendicular bisector of segment joining ($0,-2$) and (0,2)
(e)	Region represented by $\|z+4 i\| \geq 3$ is	(v)	$2(\cos / 6+1 \sin / 6)$
(0	Region represented by $\|z+4\| \leq 3$ is	(Vi)	On or inside the circle having centre (4,0) and radius 3 units.
(g)	Conjugate of $1+2 \mathrm{i} / 1-\mathrm{l}$ lies in	(vii)	First quadrant
(h)	Reciprocal of 1 - ilies in	(viii)	Third quadrant

Sol. (a) Given that, $z=i+\sqrt{3}$ -
So, $|z|=|i+\sqrt{3}|=\sqrt{1^{2}+(\sqrt{3})^{2}}=2$
Also, z lies in first quadrant.
$\Rightarrow \arg (z)=\tan ^{-1} \frac{1}{\sqrt{3}}=\frac{\pi}{6}$
So, the polar from of z is $2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$.
(b) We have, $z=-1+\sqrt{-3}=-1+i \sqrt{3}$

Here z lies in second quadrant.
$\Rightarrow \quad \arg (z)=\operatorname{amp}(z)=\pi-\tan ^{-1}\left|\frac{\sqrt{3}}{-1}\right|=\pi-\tan ^{-1} \sqrt{3}=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
(c) Given that, $|z+2|=|z-2|$

$$
\begin{array}{ll}
\Rightarrow & |x+2+i y|=|x-2+i y| \\
\Rightarrow & (x+2)^{2}+y^{2}=(x-2)^{2}+y^{2} \quad .
\end{array} \quad \Rightarrow x^{2}+4 x+4=x^{2}-4 x+4 .
$$

It is a straight line which is a perpendicular bisector of segment joining the points $(-2,0)$ and $(2,0)$.
(d) We have $|z+2 i|=|z-2 i|$

Putting $z=x+i y$, we get
$\Rightarrow|x+i(y+2)|^{2}=|x+i(y-2)|^{2} \quad \Rightarrow x^{2}+(y+2)^{2}=x^{2}+(y-2)^{2}$
$\Rightarrow 4 y=0 \quad \Rightarrow y=0$
It is a straight line, which is a perpendicular bisector of segment joining $(0,-2)$ and $(0,2)$.

Alternative method:

We know that $\left|z_{1}-z_{2}\right|=$ distance between z_{1} and z_{2}
Now, $|z+2 i|=|z-2 i|$
$\Rightarrow \quad|z-(-2 i)|=|z-2 i|$
\Rightarrow Distance between z and $-2 i=$ Distance between z and $2 i$
Thus, z lies on the perpendicular bisector of the line segment joining $-2 i$ and $2 i$.
Hence, z lies on the x-axis as shown in the figure.

(e) Given that, $|z+4 i| \geq 3$

$$
\begin{aligned}
& \Rightarrow|x+i y+4 i| \geq 3 \quad \Rightarrow|x+i(y+3)| \geq 3 \\
& \Rightarrow \sqrt{x^{2}+(y+4)^{2}} \geq 3 \quad \Rightarrow x^{2}+y^{2}+8 y+16 \geq 9 \\
& \Rightarrow \quad x^{2}+y^{2}+8 y+7 \geq 0
\end{aligned}
$$

This represents the region on or outside the circle having centre $(0,-4)$ and radius 3.
(f) Given that, $|z+4| \leq 3$

$$
\begin{array}{ll}
\Rightarrow \quad|x+i y+4| \leq 3 & \Rightarrow|x+4+i y| \leq 3 \\
\Rightarrow \quad \sqrt{(x+4)^{2}+y^{2}} \leq 3 & \Rightarrow(x+4)^{2}+y^{2} \leq 9 \\
\Rightarrow \quad x^{2}+8 x+16+y^{2} \leq 9 & \Rightarrow x^{2}+8 x+y^{2}+7 \leq 0
\end{array}
$$

This represents the region on or inside circle having centre $(-4,0)$ and radius 3.
(g) $z=\frac{1+2 i}{1-i}=\frac{(1+2 i)(1+i)}{(1+i)(1+i)}=\frac{1+2 i+i+2 i^{2}}{1-i^{2}}$

$$
=\frac{1-2+3 i}{1+1}=\frac{-1}{2}+\frac{3 i}{2}
$$

Hence, \bar{z} lies in the third quadrant.
(h) Given that, $z=1-i$

$$
\Rightarrow \quad \frac{1}{z}=\frac{1}{1-i}=\frac{1+i}{(1-i)(1+i)}=\frac{1+i}{1-i^{2}}=\frac{1}{2}(1+i)
$$

Thus, reciprocal of z lies in first quadrant.
Q28. What is the conjugate of $2-\mathrm{i} /(1-2 \mathrm{i})^{2}$

Sol. We have $z=\frac{2-i}{(1-2 i)^{2}}$

$$
\begin{aligned}
\Rightarrow \quad & z
\end{aligned} \begin{aligned}
1+4 i^{2}-4 i & \frac{2-i}{1-4-4 i}=\frac{2-i}{-3-4 i} \\
& =\frac{(2-i)}{-(3+4 i)}=-\left[\frac{(2-i)(3-4 i)}{(3+4 i)(3-4 i)}\right] \\
& =-\left(\frac{6-8 i-3 i+4 i^{2}}{9+16}\right)=-\frac{(-11 i+2)}{25} \\
& =\frac{-1}{25}(2-11 i)=\frac{1}{25}(-2+11 i) \\
\therefore \quad & \bar{z}
\end{aligned}
$$

Q29. If $\left|Z_{1}\right|=\left|Z_{2}\right|$, is it necessary that $Z_{1}=Z_{2}$?
Sol: If $\left|Z_{1}\right|=\left|Z_{2}\right|$ then z_{1} and z_{2} are at the same distance from origin.
But if $\arg \left(Z_{1}\right) \neq \arg \left(z_{2}\right)$, then z_{1} and z_{2} are different.
So, if $\left(z_{1}\left|=\left|z_{2}\right|\right.\right.$, then it is not necessary that $z_{1}=z_{2}$.
Consider $Z_{1}=3+4 i$ and $Z_{2}=4+3 i$

Q30.If $\left(a^{2}+1\right)^{2} / 2 a-i=x+i y$, then what is the value of $x^{2}+y^{2}$?
Sol: $\left(a^{2}+1\right)^{2} / 2 a-i=x+i y$

$$
\begin{aligned}
& \Rightarrow \quad\left|\frac{\left(a^{2}+1\right)^{2}}{2 a-i}\right|=|x+i y| \\
& \Rightarrow \quad \frac{\left|\left(a^{2}+1\right)^{2}\right|}{|2 a-i|}=|x+i y| \Rightarrow \frac{\left(a^{2}+1\right)^{2}}{\sqrt{(2 a)^{2}+(-1)^{2}}}=\sqrt{x^{2}+y^{2}} \\
& \therefore \quad x^{2}+y^{2}=\frac{\left(a^{2}+1\right)^{4}}{4 a^{2}+1}
\end{aligned}
$$

Q31. Find the value of z, if $|z|=4$ and $\arg (z)=5 \pi / 6$

Sol. Let $z=|z|(\cos \theta+i \sin \theta)$, where $\theta=\arg (z)$.
Given that, $|z|=4$ and $\arg (z)=\frac{5 \pi}{6}$.

$$
\begin{aligned}
\Rightarrow \quad z & =4\left[\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right] \quad(z \text { lies in II quadrant }) \\
& =4\left[-\frac{\sqrt{3}}{2}+i \frac{1}{2}\right]=-2 \sqrt{3}+2 i
\end{aligned}
$$

32. Find the value of $\left|(1+i) \frac{(2+i)}{(3+i)}\right|$.

Sol. $\left|(1+i) \frac{(2+i)}{(3+i)}\right|=|1+i| \frac{|2+i|}{|3+i|}=\sqrt{1^{2}+1^{2}} \frac{\sqrt{2^{2}+1^{2}}}{\sqrt{3^{2}+1^{2}}}=\sqrt{2} \frac{\sqrt{5}}{\sqrt{10}}=1$
33. Find the principal argument of $(1+i \sqrt{3})^{2}$.

Sol. We have,

$$
z=(1+i \sqrt{3})^{2}=1-3+2 i \sqrt{3}=-2+i(2 \sqrt{3})
$$

So, z lies in second quadrant.

$$
\Rightarrow \quad \arg (z)=\pi-\tan ^{-1}\left|\frac{2 \sqrt{3}}{-2}\right|=\pi-\tan ^{-1} \sqrt{3}=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}
$$

Q34. Where does z lies, if $|z-5 i / z+5 i|=1$?
Sol: We have | $z-5 i / z+5 i \mid$

$$
\begin{array}{ll}
\Rightarrow & |z-5 i|=|z+5 i| \quad \Rightarrow|x+i y-5 i|=|x+i y+5 i| \\
\Rightarrow & |x+i(y-5)|^{2}=|x+i(y+5)|^{2} \quad \Rightarrow x^{2}+(y-5)^{2}=x^{2}+(y+5)^{2} \\
\Rightarrow & 20 y=0 \quad \Rightarrow y=0
\end{array}
$$

So, z lies on the x-axis (real axis).

Alternative method:

We know that $\left|z_{1}-z_{2}\right|=$ Distance between z_{1} and z_{2}
Now, $\left|\frac{z-5 i}{z+5 i}\right|=1$
$\Rightarrow \quad|z-5 i|=|z+5 i| \quad \Rightarrow|z-5 i|=|z-(-5 i)|$
\Rightarrow Distance between ' z ' and ' $5 i$ ' $=$ Distance between ' z ' and ' $-5 i$ '
This means that z lies on the perpendicular bisector of the line segment joining ' $5 i$ ' and ' $-5 i$ '.
Hence, z lies on the x-axis as shown in the figure.

Instruction for Exercises 35-40: Choose the correct answer from the given four options indicated against each of the Exercises.

Q35. $\sin x+i \cos 2 x$ and $\cos x-i \sin 2 x$ are conjugate to each other for
(a) $x=n \pi$
(b) $x=\left(n+\frac{1}{2}\right) \frac{\pi}{2}$
(c) $x=0$
(d) no value of x

Sol. (d) Given that,
$\sin x+i \cos 2 x$ and $\cos x-i \sin 2 x$ are conjugate to each other

$$
\begin{array}{ll}
\Rightarrow & \quad \overline{\sin x+i \cos 2 x}=\cos x-i \sin 2 x \\
\Rightarrow & \sin x-i \cos 2 x=\cos x-i \sin 2 x
\end{array}
$$

On comparing real and imaginary parts of both the sides, we get $\sin x=\cos x$ and $\cos 2 x=\sin 2 x$
$\Rightarrow \quad \tan x=1$ and $\tan 2 x=1$

Now, $\tan 2 x=1$
$\Rightarrow \frac{2 \tan x}{1-\tan ^{2} x}=1$, which is not satisfied by $\tan x=1$
Hence, no value of x is possible.
36. The real value of α for which the expression $\frac{1-i \sin \alpha}{1+2 i \sin \alpha}$ is purely real is
(a) $(n+1) \frac{\pi}{2}$
(b) $(2 n+1) \frac{\pi}{2}$
(c) $n \pi$
(d) none of these

Sol. (c) $z=\frac{1-i \sin \alpha}{1+2 i \sin \alpha}$

$$
\begin{aligned}
& =\frac{(1-i \sin \alpha)(1-2 i \sin \alpha)}{(1+2 i \sin \alpha)(1-2 i \sin \alpha)}=\frac{1-i \sin \alpha-2 i \sin \alpha+2 i^{2} \sin ^{2} \alpha}{1-4 i^{2} \sin ^{2} \alpha} \\
& =\frac{1-3 i \sin \alpha-2 \sin ^{2} \alpha}{1+4 \sin ^{2} \alpha}=\frac{1-2 \sin ^{2} \alpha}{1+4 \sin ^{2} \alpha}-\frac{3 i \sin \alpha}{1+4 \sin ^{2} \alpha}
\end{aligned}
$$

It is given that z is a purely real.

$$
\begin{aligned}
& \Rightarrow \quad \frac{-3 \sin \alpha}{1+4 \sin ^{2} \alpha}=0 \quad \Rightarrow-3 \sin \alpha=0 \quad \Rightarrow \sin \alpha=0 \\
& \Rightarrow \quad \alpha=n \pi, n \in I
\end{aligned}
$$

37. If $z=x+i y$ lies in the third quadrant, then $\frac{\bar{z}}{z}$ also lies in the third quadrant,
if
(a) $x>y>0$
(b) $x<y<0$
(c) $y<x<0$
(d) $y>x>0$

Sol. (c) Since $z=x+i y$ lies in the third quadrant, we get

$$
x<0 \text { and } y<0
$$

Now, $\quad \frac{\bar{z}}{z}=\frac{x-i y}{x+i y}=\frac{(x-i y)(x-i y)}{(x+i y)(x-i y)}=\frac{x^{2}-y^{2}-2 i x y}{x^{2}+y^{2}}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}-\frac{2 i x y}{x^{2}+y^{2}}$
Since $\frac{\bar{z}}{z}$ also lies in third quadrant, we get

$$
\begin{array}{ll}
& \frac{x^{2}-y^{2}}{x^{2}+y^{2}}<0 \text { and } \frac{-2 x y}{x^{2}+y^{2}}<0 \\
\Rightarrow & x^{2}-y^{2}<0 \text { and }-2 x y<0 \\
\Rightarrow & x^{2}<y^{2} \text { and } x y>0 \\
\text { But } x, y<0 \\
\Rightarrow \quad y<x<0
\end{array}
$$

38. The value of $(z+3)(\bar{z}+3)$ is equivalent to
(a) $|z+3|^{2}$
(b) $|z-3|$
(c) $z^{2}+3$
(d) none of these

Sol. (a) Let $z=x+i y$. Then

$$
\begin{aligned}
(z+3)(\bar{z}+3) & =(x+i y+3)(x-i y+3) \\
& =(x+3)^{2}-(i y)^{2}=(x+3)^{2}+y^{2}=|x+3+i y|^{2}=|z+3|^{2}
\end{aligned}
$$

Alternative method:

$$
\begin{aligned}
(z+3)(\bar{z}+3) & =(z+3)(\overline{z+3}) \\
& =|z+3|^{2} \quad\left(\because z \bar{z}=|z|^{2}\right)
\end{aligned}
$$

39. If $\left(\frac{1+i}{1-i}\right)^{x}=1$, then
(a) $x=2 n+1$
(b) $x=4 n$
(c) $x=2 n$
(d) $x=4 n+1$
where, $n \in N$
Sol. (b) $\left(\frac{1+i}{1-i}\right)^{x}=1$

$$
\begin{array}{ll}
\Rightarrow & {\left[\frac{(1+i)(1+i)}{(1-i)(1+i)}\right]^{x}=1 \Rightarrow\left[\frac{1+2 i+i^{2}}{1-i^{2}}\right]^{x}=1 \Rightarrow\left[\frac{2 i}{1+1}\right]^{x}=1} \\
\Rightarrow & i^{x}=1 \\
\Rightarrow & x=4 n, n \in N
\end{array}
$$

Q41. Which of the following is correct for any two complex numbers z_{1} and z_{2} ?
(a) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
(b) $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right) \times \arg \left(z_{2}\right)$
(c) $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$
(d) $\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$

Sol. (a) Clearly, $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
Proof:
Let $\quad z_{1}=\left|z_{1}\right|\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=\left|z_{2}\right|\left(\cos \theta_{2}+i \sin \theta_{2}\right)$

Now, $\quad z_{1} z_{2}=\left|z_{1}\right|\left|z_{2}\right|\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
$=\left|z_{1}\right|\left|z_{2}\right|\left[\cos \theta_{1} \cos \theta_{2}+i \sin \theta_{1} \cos \theta_{2}+i \cos \theta_{1} \sin \theta_{2}\right.$ $+i^{2} \sin \theta_{1} \sin \theta_{2}$]
$=\left|z_{1}\right|\left|z_{2}\right|\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$
$\Rightarrow \quad\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
And $\arg \left(z_{1} z_{2}\right)=\theta_{1}+\theta_{2}=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
$\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ is true only when z_{1}, z_{2} and O (origin) are collinear.
Also, $\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$

