Unit 11 (Conic Sections)

Short Answer Type Questions
Q1. Find the equation of the circle which touches the both axes in first quadrant and whose radius is a.
Sol: Given that the circle of radius ' a ' touches both axis. So, its centre is (a, a).

So, the equation of required circle is:

$$
(x-a)^{2}+(y-a)^{2}=a^{2}
$$

$\Rightarrow \quad x^{2}-2 a x+a^{2}+y^{2}-2 a y+a^{2}=a^{2}$
$\Rightarrow \quad x^{2}+y^{2}-2 a x-2 a y+a^{2}=0$

Q2. Show that the point (x, y) given by $x=\frac{2 a t}{1+t^{2}}$ and $y=\frac{1-t^{2}}{1+t^{2}}$ lies on a circle.
Sol. We have variable point as $x=\frac{2 a t}{1+t^{2}}$ and $y=\frac{a\left(1-t^{2}\right)}{1+t^{2}}$
On squaring and adding, we get

$$
x^{2}+y^{2}=\frac{4 a^{2} t^{2}}{\left(1+t^{2}\right)^{2}}+\frac{a^{2}\left(1-t^{2}\right)^{2}}{\left(1+t^{2}\right)^{2}}=\frac{a^{2}\left(4 t^{2}+\left(1-t^{2}\right)^{2}\right)}{\left(1+t^{2}\right)^{2}}=\frac{a^{2}\left(1+t^{2}\right)^{2}}{\left(1+t^{2}\right)^{2}}
$$

$\Rightarrow x^{2}+y^{2}=a^{2}$, which is circle .

Q3. If a circle passes through the point $(0,0)(a, 0),(0, b)$ then find the coordinates of its centre.

Sol: We have circle through the point $\mathrm{A}(0,0), \mathrm{B}(\mathrm{a}, 0)$ and $\mathrm{C}(0, \mathrm{~b})$.
Clearly triangle is right angled at vertex A .

So, centre of the circle is the mid point of hypotenuse $B C$ which is $(a / 2, b / 2)$

Q4. Find the equation of the circle which touches x-axis and whose centre is $(1,2)$.
Sol: Given that, circle with centre $(1,2)$ touches x-axis.
Radius of the circle is, $r=2$
So, the equation of the required circle is:
$(x-1)^{2}+(y-2)^{2}=2^{2}$
$=>x^{2}-2 x+1+y^{2}-4 y+4=4$
$\Rightarrow x^{2}+y^{2}-2 x-4 y+1=0$

Q5. If the lines $3 x-4 y+4=0$ and $6 x-8 y-7=0$ are tangents to a circle, then find the radius of the circle.
Sol: Given lines are $6 x-8 y+8=0$ and $6 x-8 y-7=0$.
These parallel lines are tangent to a circle.
$\therefore \quad$ Diameter of the circle $=$ Distance between the lines

$$
=\left|\frac{8-(-7)}{\sqrt{36+64}}\right|=\frac{15}{10}=\frac{3}{2}
$$

$\therefore \quad$ Radius of the circle $=\frac{3}{4}$

Q6. Find the equation of a circle which touches both the axes and the line $3 x-4 y+8=0$ and lies in the third quadrant.

Sol.

Since circle touches both the axes, its centre is $C(-a,-a)$ and radius is a.
Also, circle touches the line $3 x-4 y+8-0$.
Distance from centre C to this line is radius of the circle.
$\therefore \quad$ Radius of the circle, $a=\left|\frac{-3 a+4 a+8}{\sqrt{9+16}}\right|=\left|\frac{a+8}{5}\right|$

$$
\begin{array}{ll}
\therefore & \frac{a+8}{5}= \pm a \\
\Rightarrow & a+8=5 a \text { or } a+8=-5 a \\
\Rightarrow & a=2 \text { or } a=-4 / 3 \\
\therefore & a=2
\end{array}
$$

So, the equation of the required circle is:

$$
(x+2)^{2}+(y+2)^{2}=2^{2}
$$

$\Rightarrow \quad x^{2}+y^{2}+4 x+4 y+4=0$

Q7. If one end of a diameter of the circle $x^{2}+y^{2}-4 x-6 y+11=0$ is $(3,4)$, then find the coordinate of the other end of the diameter.
Sol: Given equation of the circle is:

$$
\begin{array}{ll}
& x^{2}+y^{2}-4 x-6 y+11=0 \\
\therefore \quad & 2 g=-4 \text { and } 2 f=-6
\end{array}
$$

So, the centre of the circle is $C(-\mathrm{g},-f) \equiv C(2,3)$
$A(3,4)$ is one end of the diameter.
Let the other end of the diameter be $B\left(x_{1}, y_{1}\right)$.
Here, mid point of $A B$ is C.

$$
\therefore \quad 2=\frac{3+x_{1}}{2} \text { and } 3=\frac{4+y_{1}}{2}
$$

$\Rightarrow \quad x_{1}=1$ and $y_{1}=2$
So, the coordinates of other end of the diameter are $(1,2)$

Q8. Find the equation of the circle having $(1,-2)$ as its centre and passing through $3 x+y=14$, $2 x+5 y=18$.
Sol: Given lines are $3 x+y=14$ and $2 x+5 y=18$.
Solving these equations, we get point of intersection of the lines as $A(4,2)$.
Now circle with centre $C(1,-2)$ passes through $A(4,2)$.

$$
\therefore \quad \text { Radius }=A C=\sqrt{(4-1)^{2}+(2+2)^{2}}=\sqrt{9+16}=5
$$

So, equation of the required circle is:

$$
\begin{aligned}
& (x-1)^{2}+(y+2)^{2}=5^{2} \\
& \Rightarrow \quad x^{2}-2 x+1+y^{2}+4 y+4=25 \Rightarrow x^{2}+y^{2}-2 x+4 y-20=0
\end{aligned}
$$

Q9. If the line $y=\sqrt{3} x+k$ touches the circle $x^{2}+y^{2}=16$, then find the value of
Sol: Given line is $y=\sqrt{ } 3 x+k$ and the circle is $x^{2}+y^{2}=16$.
Centre of the circle is $(0,0)$ and radius is 4 .
Since the line $y=\sqrt{3} x+k$ touches the circle, perpendicular distance from $(0,0)$ to line is equal to the radius of the circle.

$$
\therefore \quad\left|\frac{0-0+k}{\sqrt{3+1}}\right|=4 \Rightarrow \pm \frac{k}{2}=4 \Rightarrow k= \pm 8
$$

Q10. Find the equation of a circle concentric with the circle $x^{2}+y^{2}-6 x+12 y+15=0$ and has double of its area.
Sol: Given equation of the circle is:

$$
\begin{aligned}
& x^{2}+y^{2}-6 x+12 y+15=0 \\
& \text { or } \quad(x-3)^{2}+(y+6)^{2}=(\sqrt{30})^{2}
\end{aligned}
$$

Hence, centre is $(3,-6)$ and radius is $\sqrt{30}$.
Since the required circle is concentric with above circle, centre of the required circle is $(3,-6)$.
Let its radius be r.
Now it is given that,
Area of the required circle $=2 \times$ Area of the given circle
$\Rightarrow \quad \pi r^{2}=2 \times \pi(\sqrt{30})^{2} \Rightarrow r^{2}=60 \Rightarrow r=\sqrt{60}$
So, equation of the required circle is:

$$
\begin{array}{ll}
& (x-3)^{2}+(y+6)^{2}=60 \\
\Rightarrow \quad & x^{2}+y^{2}-6 x+12 y-15=0
\end{array}
$$

Q11. If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentricity.
Sol. Consider the equation of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
It is given that, length of latus rectum = half of minor axis

$$
\begin{aligned}
& \Rightarrow \quad \frac{2 b^{2}}{a}=b \Rightarrow a=2 b \\
& \text { Now, } \quad b^{2}=a^{2}\left(1-e^{2}\right) \\
& \Rightarrow \quad b^{2}=4 b^{2}\left(1-e^{2}\right) \Rightarrow 1-e^{2}=\frac{1}{4} \Rightarrow e^{2}=\frac{3}{4} \therefore e=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Q12. Given the ellipse with equation $9 x^{2}+25 y^{2}=225$, find the eccentricity and foci.
Sol. Given equation of ellipse, $9 x^{2}+25 y^{2}=225$

$$
\begin{aligned}
& \text { or } \quad \frac{x^{2}}{25}+\frac{y^{2}}{9}=1 \\
& \text { So, } \quad a=5, b=3 \\
& \text { Now, } b^{2}=a^{2}\left(1-e^{2}\right) \\
& \Rightarrow \quad 9=25\left(1-e^{2}\right) \Rightarrow \frac{9}{25}=1-e^{2} \Rightarrow e^{2}=1-\frac{9}{25}=\frac{16}{25} \\
& \therefore \quad e=\frac{4}{5} \\
& \text { Foci } \equiv(\pm a e, 0) \equiv(\pm 5 \times(4 / 5), 0) \equiv(\pm 4,0)
\end{aligned}
$$

Q13. If the eccentricity of an ellipse is $5 / 8$ and the distance between its foci is 10 , then find latus rectum of the ellipse.

Sol. Let equation of the ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$
Given that, eccentricity, $e=\frac{5}{8}$
Now the foci of this ellipse are $(\pm a e, 0)$.
Distance between foci $=10$ (Given)
$\therefore \quad 2 a e=10$
$\Rightarrow \quad \frac{5}{8} a=5 \Rightarrow a=8$
We know that, $b^{2}=a^{\dot{2}}\left(1-e^{2}\right)$
$\Rightarrow \quad b^{2}=64\left(1-\frac{25}{64}\right)=64-25=39$
$\therefore \quad$ Length of latus rectum of ellipse $=\frac{2 b^{2}}{a}=2 \times \frac{39}{8}=\frac{39}{4}$

Q14. Find the equation of ellipse whose eccentricity is $2 / 3$, latus rectum is 5 and thecentre is $(0,0)$.
Sol. Let equation of the ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$
Given that, $e=\frac{2}{3}$ and latus rectum $=5$

$$
\therefore \quad \frac{2 b^{2}}{a}=5 \Rightarrow b^{2}=\frac{5 a}{2}
$$

We know that, $b^{2}=a^{2}\left(1-e^{2}\right)$

$$
\begin{aligned}
& \Rightarrow \quad \frac{5 a}{2}=a^{2}\left(1-\frac{4}{9}\right) \Rightarrow \frac{5}{2}=\frac{5 a}{9} \Rightarrow a=\frac{9}{2} \\
& \therefore \quad b^{2}=\frac{5 \times 9}{2 \times 2}=\frac{45}{4}
\end{aligned}
$$

So, the required equation of the ellipse is $\frac{4 x^{2}}{81}+\frac{4 y^{2}}{45}=1$.

Q15. Find the distance between the directrices of the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$
Sol. The equation of ellipse is $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$.
$\therefore \quad a=6, b=2 \sqrt{5}$
We know that, $b^{2}=a^{2}\left(1-e^{2}\right)$

$$
\begin{array}{ll}
\Rightarrow & 20=36\left(1-e^{2}\right) \Rightarrow \frac{5}{9}=1-e^{2} \Rightarrow e^{2}=\frac{4}{9} \\
\therefore & e=\frac{2}{3}
\end{array}
$$

Now, directrices are: $x= \pm \frac{a}{e}$
\therefore Distance between direcrtrix $=\frac{2 a}{e}=\frac{2 \times 6}{2 / 3}=18$

Q16. Find the coordinates of a point on the parabola $y^{2}=8 x$ whose focal distance is 4 .
Sol: Given parabola is $\mathrm{y}^{2}=8 \mathrm{x}$

On comparing this parabola to the $y^{2}=4 a x$, we get $a=2$
Focal distance $=$ distance of any point on parabola from the focus.
Here, focus is $S(2,0)$.
Let any point on parabola be $P\left(x_{1}, y_{1}\right)$.
\Rightarrow Focal distance of point $P=S P=\sqrt{\left(x_{1}-2\right)^{2}+\left(y_{1}-0\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{x_{1}^{2}-4 x_{1}+4+y_{1}^{2}} \\
& =\sqrt{x_{1}^{2}-4 x_{1}+4+8 x_{1}} \\
& =\sqrt{\left(x_{1}+2\right)^{2}}=\left|x_{1}+2\right|
\end{aligned}
$$

Given that, $\left|x_{1}+2\right|=4$
$\Rightarrow \quad x_{1}+2= \pm 4$
$\therefore \quad x_{1}=2,-6$
But $x \neq-6$
For $x=2, y_{1}^{2}=8 \times 2=16$
$\therefore \quad y_{1}= \pm 4$
So, the points are $(2,4)$ and $(2,-4)$.

Q17. Find the length of the line-segment joining the vertex of the parabola $y^{2}=4 a x$ and a point on the parabola where the line-segment makes an angle 6 to the x-axis.
Sol: Given equation of the parabola isy ${ }^{2}=4 a x$.
Let the point on the parabola be $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$.

From the figure, slope of $O P=\tan \theta=\frac{y_{1}}{x_{1}}$
Also, $y_{1}{ }^{2}=4 a x_{1}$
Now, $O P=\sqrt{x_{1}^{2}+y_{1}^{2}}=\sqrt{x_{1}^{2}+\tan ^{2} \theta x_{1}^{2}}=\sqrt{x_{1}^{2} \sec ^{2} \theta}=x_{1} \sec \theta$
From (i) and (ii), we have

$$
\begin{aligned}
& \tan ^{2} \theta x_{1}^{2}=4 a x_{1} \Rightarrow x_{1}=\frac{4 a}{\tan ^{2} \theta} \\
\therefore \quad & O P=\frac{4 a \sec \theta}{\tan ^{2} \theta}=\frac{4 a \cos \theta}{\sin ^{2} \theta}
\end{aligned}
$$

Q18. If the points $(0,4)$ and $(0,2)$ are respectively the vertex and focus of a parabola, then find the equation of the parabola.

Sol.

Given that the vertex of the parabola is $A(0,4)$ and its focus is $S(0,2)$.
So, directrix of the parabola is $y=6$.
Now by definition of the parabola for any point $P(x, y)$ on the parabola,

$$
S P=P M
$$

$\Rightarrow \quad \sqrt{(x-0)^{2}+(y-2)^{2}}=\left|\frac{0+y-6}{\sqrt{0+1}}\right|$
$\Rightarrow \quad x^{2}+y^{2}-4 y+4=y^{2}-12 y+36 \Rightarrow x^{2}+8 y=32$

Q19. If the line $y=m x+1$ is tangent to the parabola $y^{2}=4 x$ then find the value of m.
Sol: Given that, liney $=m x+1$ is tangent to the parabola $y^{2}=4 x$.
Solving line with parabola, we have

$$
\begin{aligned}
& (m x+1)^{2}=4 x \\
\Rightarrow \quad & m^{2} x^{2}+2 m x+1=4 x \quad \Rightarrow \quad m^{2} x^{2}+x(2 m-4)+1=0
\end{aligned}
$$

Since the line touches the parabola, above equation must have equal roots.
$\therefore \quad$ Discriminant, $D=0$
$\Rightarrow \quad(2 m-4)^{2}-4 m^{2}=0 \quad \Rightarrow \quad 4 m^{2}-16 m+16-4 m^{2}=0$
$\Rightarrow \quad 16 m=16$
$\therefore \quad m=1$

Q20. If the distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{ } 2$, then obtain the equation of the hyperbola.
Sol. Let the equation of the hyperbola be $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Foci are $(\pm a e, 0)$.
Distance between foci $=2 a e=16$ (given)
Also, $e=\sqrt{2}$ (Given)

$$
\therefore \quad a=4 \sqrt{2}
$$

We know that, $b^{2}=a^{2}\left(e^{2}-1\right)$

$$
\Rightarrow \quad b^{2}=(4 \sqrt{2})^{2}\left[(\sqrt{2})^{2}-1\right]=16 \times 2(2-1)=32
$$

So, the equation of hyperbola is: $\frac{x^{2}}{32}-\frac{y^{2}}{32}=1$ or $x^{2}-y^{2}=32$

Q21. Find the eccentricity of the hyperbola $9 y^{2}-4 x^{2}=36$
Sol: We have the hyperbola: $9 y^{2}-4 x^{2}=36$
or

$$
\frac{x^{2}}{9}-\frac{y^{2}}{4}=-1
$$

We know that $a^{2}=b^{2}\left(e^{2}-1\right)$

$$
\begin{array}{ll}
\therefore & 9=4\left(e^{2}-1\right) \\
\Rightarrow & e=\sqrt{1+\frac{9}{4}}=\frac{\sqrt{13}}{2}
\end{array}
$$

Q22. Find the equation of the hyperbola with eccentricity $3 / 2$ and foci at $(\pm 2,0)$.
Sol. Let the equation of the hyperbola be $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Given that eccentricity, $e=\frac{3}{2}$ and foci $(\pm a e, 0) \equiv(\pm 2,0)$

$$
\begin{array}{ll}
\therefore & a e=2 \\
\Rightarrow & a \times \frac{3}{2}=2 \Rightarrow a=\frac{4}{3}
\end{array}
$$

We know that, $b^{2}=a^{2}\left(e^{2}-1\right)$

$$
\Rightarrow \quad b^{2}=\frac{16}{9}\left(\frac{9}{4}-1\right)=\frac{16}{9} \times \frac{5}{4}=\frac{20}{9}
$$

So, the equation of hyperbola is:

$$
\frac{x^{2}}{\frac{16}{9}}-\frac{y^{2}}{\frac{20}{9}}=1 \Rightarrow \frac{x^{2}}{16}-\frac{y^{2}}{20}=\frac{1}{9}
$$

Long Answer Type Questions

Q23. If the lines $2 x-3 y=5$ and $3 x-4 y=7$ are the diameters of a circle of area 154 square units, then obtain the equation of the circle.
Sol: Given that lines $2 x-3 y-5=0$ and $3 x-4 y-1=0$ are diameters of the circle. Solving these lines we get point of intersection as $(1,-1)$, which is centre of the circle.
Also given that are of the circle is 154 sq. units.
Let the radius of the circle be r.
Then, $\quad \pi r^{2}=154$
$\Rightarrow \quad \frac{22}{7} \times r^{2}=154 \quad \Rightarrow \quad r^{2}=\frac{154 \times 7}{22}=49$
$\therefore \quad r=7$
So, the equation of circle is:

$$
\begin{aligned}
& (x-1)^{2}+(y+1)^{2}=49 \\
\Rightarrow \quad & x^{2}-2 x+1+y^{2}+2 y+1=49 \quad \Rightarrow \quad x^{2}+y^{2}-2 x+2 y=47
\end{aligned}
$$

Q24. Find the equation of the circle which passes through the points $(2,3)$ and $(4,5)$ and the centre lies on the straight line $y-4 x+3=0$.
Sol: Let the centre of the circle be $C(h, k)$.
Given that the centre lies on the line $y-4 x+3=0$.
$\mathrm{k}-4 \mathrm{~h}+3=0$ or $\mathrm{k}=4 \mathrm{~h}-3$
So, the centre is $C(h, 4 h-3)$.

Now point $A(2,3)$ and $B(4,5)$ lies'on the circle.
$\therefore \quad A C^{2}=B C^{2}$
$\Rightarrow \quad(h-2)^{2}+(4 h-3-3)^{2}=(h-4)^{2}+(4 h-3-5)^{2}$
$\Rightarrow \quad(h-2)^{2}+(4 h-6)^{2}=(h-4)^{2}+(4 h-8)^{2}$
$\Rightarrow \quad-4 h+4-48 h+36=-8 h+16-64 h+64 \quad \Rightarrow \quad 20 h=40$
$\Rightarrow \quad h=2$
So, the centre is $C(2,5)$.
and radius $=A C=\sqrt{(2-2)^{2}+(3-5)^{2}}=2$
Therefore, equation of the circle is:

$$
\begin{array}{ll}
& (x-2)^{2}+(y-5)^{2}=4 \\
\Rightarrow \quad & x^{2}+y^{2}-4 x-10 y+25=0
\end{array}
$$

Q25. Find the equation of a circle whose centre is $(3,-1)$ and which cuts off a chord of length 6 units on the line $2 x-5 y+18=0$.

Sol: Given centre of the circle $0(3,-1)$

Chord of the circle is $A B$.

Given that equation of $A B$ is $2 x-5 y+18=0$.
Also, $A B=6$
Perpendicular distance from O to $A B$ is:

$$
O P=\left|\frac{2(3)-5(-1)+18}{\sqrt{4+25}}\right|=\frac{29}{\sqrt{29}}=\sqrt{29}
$$

In $\triangle O P B$, we have

$$
O B^{2}=O P^{2}+P B^{2} \Rightarrow O B^{2}=29+9=38
$$

So, the radius of circle is $\sqrt{38}$.
Thus, equation of the circle is:

$$
\begin{aligned}
& (x-3)^{2}+(y+1)^{2}=38 \\
& \Rightarrow \quad x^{2}-6 x+9+y^{2}+2 y+1=38 \quad \Rightarrow \quad x^{2}+y^{2}-6 x+2 y=28
\end{aligned}
$$

Q26. Find the equation of a circle of radius 5 which is touching another circle $x^{2}+y^{2}-2 x-$ $4 y-20=0$ at $(5,5)$.
Sol. Given circle is $x^{2}+y^{2}-2 x-4 y-20=0$
or

$$
(x-1)^{2}+(y-2)^{2}=5^{2}
$$

Centre of the this circle is $C_{1}(1,2)$.
Now, the required circle of radius ' 5 ' touches the above circle at $P(5,5)$.
Let the centre of the required circle

be $C_{2}(h, k)$.
Since the radius of the given circle and the required circle is same, point P is mid-point of $C_{1} C_{2}$.
$\therefore \quad 5=\frac{1+h}{2} \Rightarrow h=9$ and $5=\frac{2+k}{2} \Rightarrow k=8$
So, the equation of and required circle is:

$$
\begin{array}{ll}
& (x-9)^{2}+(y-8)^{2}=25 \\
\Rightarrow \quad & x^{2}-18 x+81+y^{2}-16 y+64=25 \\
\Rightarrow \quad & x^{2}+y^{2}-18 x-16 y+120=0
\end{array}
$$

Q27. Find the equation of a circle passing through the point $(7,3)$ having radius 3 units and whose centre lies on the line $y=x-1$.
Sol: Given that circle passes through the point $A(7,3)$ and its radius is 3 .
Also, centre of the circle lies on the line $y=x-1$.
Therefore, centre of the circle is $C(h, h-1)$.
Now, radius of the circle is $A C=3$ (given)

$$
\begin{array}{ll}
\therefore & (h-7)^{2}+(h-1-3)^{2}=9 \\
\Rightarrow & 2 h^{2}-22 h+56=0 \Rightarrow h^{2}-11 h+28=0 \\
\Rightarrow & (h-4)(h-7)=0 \\
\Rightarrow & h=4,7
\end{array}
$$

Thus, centre of the circle is $C(4,3)$ or $C(7,6)$.
Hence, equation of the circle can be:

$$
\begin{array}{ll}
& (x-4)^{2}+(y-3)^{2}=9 \text { and }(x-7)^{2}+(y-6)^{2}=9 \\
\Rightarrow \quad & x^{2}+y^{2}-8 x-6 y+16=0 \text { and } x^{2}+y^{2}-14 x-12 y+76=0
\end{array}
$$

Q28. Find the equation of each of the following parabolas.
(i) Directrix, $\mathrm{x}=0$, focus at $(6,0)$
(ii) Vertex at $(0,4)$, focus at $(0,2)$
(iii) Focus at $(-1,-2)$, directrix $x-2 y+3=0$

Sol: We know that the distance of any point on the parabola from its focus and its directrix is same.
(i) Given that, directrix, $x=0$ and focus $=(6,0)$

So, for any point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on the parabola
Distance of P from directrix $=$ Distance of P from focus $=>x^{2}=(x-6)^{2}+y^{2}$
$\Rightarrow \quad y^{2}-12 x+36=0$
(ii) Given that, vertex $=(0,4)$ and focus $=(0,2)$

Now distance between the vertex and directrix is same as the distance between the vertex
and focus.
Directrix is $y-6=0$
For any point of $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on the parabola
Distance of P from directrix $=$ Distance of P from focus

$$
\begin{array}{ll}
\Rightarrow & |y-6|=\sqrt{(x-0)^{2}+(y-2)^{2}} \\
\Rightarrow & y^{2}-12 y+36=x^{2}+y^{2}-4 y+4 \\
\Rightarrow & x^{2}=32-8 y
\end{array}
$$

(iii) Given that, focus at $(-1,-2)$ and directrix $x-2 y+3=0$

So, the equation of parabola is

$$
\begin{aligned}
& \sqrt{(x+1)^{2}+(y+2)^{2}}=\left|\frac{x-2 y+3}{\sqrt{1+4}}\right| \\
\Rightarrow & x^{2}+2 x+1+y^{2}+4 y+4=\frac{1}{5}\left[x^{2}+4 y^{2}+9+6 x-4 x y-12 y\right] \\
\Rightarrow \quad & 4 x^{2}+4 x y+y^{2}+4 x+32 y+16=0
\end{aligned}
$$

Q29. Find the equation of the set of all points the sum of whose distances from the points $(3,0)$ and $(9,0)$ is 12.

Sol: Let the coordinates of the variable point be (x, y).
Then according to the question,

$$
\sqrt{(x-3)^{2}+y^{2}}+\sqrt{(x-9)^{2}+y^{2}}=12 \Rightarrow \sqrt{(x-3)^{2}+y^{2}}=12-\sqrt{(x-9)^{2}+y^{2}}
$$

Squaring both sides, we get

$$
\begin{aligned}
& x^{2}-6 x+9+y^{2}=144+\left(x^{2}-18 x+81+y^{2}\right)-24 \sqrt{(x-9)^{2}+y^{2}} \\
& x-18=-2 \sqrt{(x-9)^{2}+y^{2}}
\end{aligned}
$$

Again squaring both sides, we get

$$
\begin{array}{ll}
& x^{2}-36 x+324=4\left(x^{2}-18 x+81+y^{2}\right) \\
\Rightarrow \quad & 3 x^{2}+4 y^{2}-36 x=0, \text { which is an ellipse. }
\end{array}
$$

Q30. Find the equation of the set of all points whose distance from $(0,4)$ are $2 / 3$ of their distance from the line $y=9$.
Sol: Let the point be $\mathrm{P}(\mathrm{x}, \mathrm{y})$.
According to the question
Distance of P from $(0,4)=\frac{2}{3} \times($ Distance from the line $y=9)$

$$
\begin{aligned}
& \Rightarrow \quad \sqrt{x^{2}+(y-4)^{2}}=\frac{2}{3}\left|\frac{y-9}{\sqrt{1}}\right| \\
& \Rightarrow \quad x^{2}+y^{2}-8 y+16=\frac{4}{9}\left(y^{2}-18 y+81\right) \\
& \Rightarrow \quad 9 x^{2}+9 y^{2}-72 y+144=4 y^{2}-72 y+324 \\
& \Rightarrow \quad 9 x^{2}+5 y^{2}=180, \text { which is an ellipse. }
\end{aligned}
$$

Q31. Show that the set of all points such that the difference of their distances from (4,0) and $(-4,0)$ is always equal to 2 represent a hyperbola.

Sol. Let the points be $P(x, y)$.
According to the question
Distance of P from (4, 0) - Distance of P from $(-4,0)=2$

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow \quad \sqrt{(x+4)^{2}+y^{2}}-\sqrt{(x-4)^{2}+y^{2}}=2 \\
& \Rightarrow \quad \sqrt{(x+4)^{2}+y^{2}}=2+\sqrt{(x-4)^{2}+y^{2}}
\end{aligned}
$$

Squaring both sides, we get

$$
\begin{aligned}
& x^{2}+8 x+16+y^{2}=4+x^{2}-8 x+16+y^{2}+4 \sqrt{(x-4)^{2}+y^{2}} \\
\Rightarrow \quad & (4 x-1)=\sqrt{(x-4)^{2}+y^{2}}
\end{aligned}
$$

Again squaring both sides we get

$$
16 x^{2}-8 x+1=x^{2}+16-8 x+y^{2}
$$

$\Rightarrow \quad 15 x^{2}-y^{2}=15$ which is a parabola.
32. Find the equation of the hyperbola with
(a) Vertices $(\pm 5,0)$, foci $(\pm 7,0)$
(b) Vertices $(0, \pm 7), e=\frac{7}{3}$
(c) Foci $(0, \pm \sqrt{10})$, passing through $(2,3)$

Sol. (a) Given that, vertices $=(\pm 5,0)$, foci $=(\pm 7,0)$

$$
\begin{aligned}
& \therefore \quad a=5 \text { and } a e=7 \\
& \Rightarrow \quad e=\frac{7}{5} \\
& \text { Now } b^{2}=a^{2}\left(e^{2}-1\right)=25\left(\frac{49}{25}-1\right)=49-25=24
\end{aligned}
$$

So, the equation of hyperbola is

$$
\frac{x^{2}}{25}-\frac{y^{2}}{24}=1
$$

(b) Vertices $=(0, \pm 7), e=\frac{4}{3}$

$$
\begin{aligned}
& \therefore \quad b=7, e=\frac{4}{3} \\
& \text { Now, } a^{2}=b^{2}\left(e^{2}-1\right)=49\left(\frac{16}{9}-1\right)=\frac{343}{9}
\end{aligned}
$$

So, the equation of hyperbola is:

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1 \\
\Rightarrow & \frac{x^{2}}{343 / 9}-\frac{y^{2}}{49}=-1 \quad \Rightarrow \quad 9 x^{2}-7 y^{2}+343=0
\end{aligned}
$$

(c) Given that, foci $=(0, \pm \sqrt{10})$
$\therefore \quad b e=\sqrt{10}$
Also $a^{2}=b^{2}\left(e^{2}-1\right)$
$\Rightarrow a^{2}=b^{2} e^{2}-b^{2}=10-b^{2}$
$\therefore \quad$ Equation of the hyperbola is

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1 \quad \text { or } \quad \frac{x^{2}}{10-b^{2}}-\frac{y^{2}}{b^{2}}=-1
$$

Since, hyperbola passes through the point $(2,3)$.
$\therefore \quad \frac{4}{10-b^{2}}-\frac{9}{b^{2}}=-1$
$\Rightarrow 4 b^{2}-9\left(10-b^{2}\right)=-b^{2}\left(10-b^{2}\right)$
$\Rightarrow b^{4}-23 b^{2}+90=0 \Rightarrow\left(b^{2}-18\right)\left(b^{2}-5\right)=0$
$\Rightarrow b^{2}=5\left(b^{2}=18\right.$ not possible as $\left.a^{2}+b^{2}=10\right)$
$\therefore \quad a^{2}=10-5=5$
So, the equation of hyperbola is $\frac{x^{2}}{5}-\frac{y^{2}}{5}=-1$ or $y^{2}-x^{2}=5$

True/False Type Questions

Q33. The line $x+3 y=0$ is a diameter of the circle $x^{2}+y^{2}+6 x+2 y=0$.
Sol: False
Given equation of the circle is $x^{2}+y^{2}+6 x+2 y=0$
Centre $=(-3,-1)$
Clearly, it does not lie on the line $x+3 y=0$ as $-3+3(-1)=-6$.
So, this line is not diameter of the circle.
Q34. The shortest distance from the point $(2,-7)$ to the circle $x+y^{2}-14 j c-10 y-151=0$ is
equal to 5 .
Sol: False
Given circle is $x^{2}+y^{2}-14 x-10 y-151=0$
$\therefore \quad$ Centre $\equiv C(7,5)$
And \quad Radius $=\sqrt{49+25+151}=\sqrt{225}=15$
Now distance between the point $P(2,-7)$ and centre

$$
=\sqrt{(2-7)^{2}+(-7-5)^{2}}=\sqrt{25+144}=\sqrt{169}=13
$$

$\therefore \quad$ Shortest distance of point P from the circle $=|13-15|=2$

Q35. If the line $\mathrm{l} x+\mathrm{my}=1$ is a tangent to the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$, then the point $(1, \mathrm{~m})$ lies on a circle.

Sol. True

Given circle is $x^{2}+y^{2}=a^{2}$
\therefore Radius $=a$ and centre $\equiv(0,0)$
Now given that line $l x+m y-1=0$ is tangent to the circle
\therefore Distance of $(0,0)$ from the line $l x+m y-1=0$ is equal to radius ' a '.
$\Rightarrow \quad \frac{|0+0-1|}{\sqrt{l^{2}+m}}=a \Rightarrow l^{2}+m^{2}=\frac{1}{a^{2}}$
Thus, locus of (l, m) is $x^{2}+y^{2}=\frac{1}{a^{2}}$, which is circle.

Q36. The point $(1,2)$ lies inside the circle $x^{2}+y^{2}-2 x+6 y+1=0$.
Sol: False
Given circle is $x^{2}+y^{2}-2 x+6 y+1=0$.
or $\quad(x-1)^{2}+(y+3)^{2}=3^{2}$
Centre is $C(1,-3)$ and radius is 3 .
Distance of point $P(1,2)$ from centre is 5 .
Thus, $C P>$ radius
So, point P lies outside the circle.

Q37. The line $\mid x+m y+n=0$ will touch the parabola^2 $=4 a x$ if $\mathrm{In}=\mathrm{am}^{2}$.
Sol: True
Give line $l x+m y+n=0$ and parabola $y^{2}=4 a x$
Solving line and parabola for their point of intersection, we get

$$
\frac{l}{4 a} y^{2}+m y+n=0
$$

Since line touches the parabola, above equation must have equal roots.
$\therefore \quad$ Discriminant, $D=0$
$\therefore \quad m^{2}-4\left(\frac{l}{4 a}\right) n=0 \Rightarrow a m^{2}=n l$
38. If P is a point on the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$ whose foci are S and S, then $P S+P S=8$.

Sol. False

We have equation of the ellipse is $\frac{x}{16}+\frac{y^{2}}{25}=1$
From the definition of the ellipse, we know that sum of the distances of any point P on the ellipse from the two foci is equal to the length of the major axis.
Here major axis $=2 b=2 \times 5=10$
S and S^{\prime} are foci, then $S P+S^{\prime} P=10$
39. The line $2 x+3 y=12$ touches the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=2$ at the point $(3,2)$.

Sol. True
Given line is $2 x+3 y=12$ and the ellipse is $4 x^{2}+9 y^{2}=72$.
Solving line and ellipse, we get

$$
\begin{array}{ll}
& (12-3 y)^{2}+9 y^{2}=72 \\
\Rightarrow & (4-y)^{2}+y^{2}=8 \Rightarrow 2 y^{2}-8 y+8=0 \Rightarrow y^{2}-4 y+4=0 \\
\Rightarrow & (y-2)^{2}=0 \Rightarrow y=2 \\
\Rightarrow & 2 x=12-3(2) \\
\Rightarrow & x=3
\end{array} \quad \text { (from the equation of line) }
$$

So, point of contact is $(3,2)$.
40. The locus of the point of intersection of lines $\sqrt{3} x-y-4 \sqrt{3} k=0$ and $\sqrt{3} k x+k y-4 \sqrt{3}=0$ for different value of k is a hyperbola whose eccentricity is 2 .
Sol. True
Given equation of lines are:

$$
\begin{array}{ll}
& \sqrt{3} x-y-4 \sqrt{3} k=0 \\
\text { and } & \sqrt{3} k x+k y-4 \sqrt{3}=0 \tag{ii}
\end{array}
$$

From Eq. (i), $k=\frac{\sqrt{3} x-y}{4 \sqrt{3}}$
From Eq. (ii), $k=\frac{4 \sqrt{3}}{\sqrt{3} x+y}$
Equating the values of k, we get

$$
\begin{array}{ll}
& \frac{\sqrt{3} x-y}{4 \sqrt{3}}=\frac{4 \sqrt{3}}{\sqrt{3} x+y} \\
\Rightarrow & 3 x^{2}-y^{2}=48 \\
\Rightarrow \quad & \frac{x^{2}}{16}-\frac{y^{2}}{48}=1, \text { which is equation of hyperbola } \\
\therefore & a^{2}=16 \text { and } b^{2}=48 \\
\Rightarrow \quad & e^{2}=1+\frac{48}{16}=1+3=4 \\
\Rightarrow \quad & e=2
\end{array}
$$

Fill in the Blanks Type Questions

Q41. The equation of the circle having centre at $(3,-4)$ and touching the line $5 x+12 y-12=0$ is \qquad _.

Sol. The perpendicular distance from centre $(3,-4)$ to the given line is,

$$
r=\frac{|5(3)+12(-4)-12|}{\sqrt{25+144}}=\frac{45}{13}, \text { which is radius of the circle }
$$

So, the required equation of the circle is $(x-3)^{2}+(y+4)^{2}=\left(\frac{45}{13}\right)^{2}$.

Q42. The equation of the circle circumscribing the triangle whose sides are the lines $y=x+$
$2,3 y=4 x, 2 y=3 x$ is \qquad —.
Given equation of line are:

$$
\begin{align*}
& y=x+2 \tag{i}\\
& 3 y=4 x \tag{ii}\\
& 2 y=3 x \tag{iii}
\end{align*}
$$

Solving these lines, we get points of intersection $A(6,8), B(4,6)$ and $C(0,0)$.
Let the equation of circle circumscribing the given triangle be

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

Since the points $A(6,9), B(4,6)$ and $C(0,0)$ lie on this circle, we have

$$
\begin{array}{ll}
& 36+64+12 g+16 f+c=0 \\
\Rightarrow \quad & 12 g+16 f+c=-100 \tag{iv}
\end{array}
$$

Also, $16+36+8 g+12 f+c=0$
$\Rightarrow \quad 8 g+12 f+c=--52$
And $\quad c=0$
Putting $c=0$ in Eqs. (iv) and (v), we get

$$
\begin{array}{ll}
& 3 g+4 f=-25 \\
\text { and } & 2 g+3 f=-13
\end{array}
$$

On solving these, we get $g=-23$ and $f=11$.
So, the equation of circle is:

$$
\Rightarrow \quad x^{2}+y^{2}-46 x+22 y+0=0, ~ x^{2}+y^{2}-46 x+22 y=0
$$

Q43. An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm , the length of the string and distance between the pins are \qquad _.
Sol. Let equation of the ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
According to the question, $a=3$ and $b=2$
Now, $b^{2}=a^{2}\left(1-e^{2}\right)$
$\therefore \quad e^{2}=1-\frac{b^{2}}{a^{2}}=1-\frac{4}{9}=\frac{5}{9}$
$\therefore \quad e=\frac{\sqrt{5}}{3}$
From the definition of the ellipse.for any point P on the ellipse, we have

$$
S P+S^{\prime} P=2 a, \quad \text { where } S \text { and } S^{\prime} \text { are foci. }
$$

\therefore Length of the endless string $=S P+S^{\prime} P+S S^{\prime}$

$$
=2 a+2 a e=2(3)+2(3) \times \frac{\sqrt{5}}{3}=6+2 \sqrt{5}
$$

\qquad _.

Sol. Given that, foci of the ellipse are $(0, \pm b e) \equiv(0, \pm 1)$
$\therefore \quad b e=1$
Length of minor axis, $2 a=1 \quad \Rightarrow \quad a=\frac{1}{2}$
Now $a^{2}=b^{2}\left(1-e^{2}\right)$
$\Rightarrow \quad \frac{1}{4}=b^{2}-b^{2} e^{2}=b^{2}-1 \Rightarrow b^{2}=\frac{5}{4}$
So, the equation of ellipse is $\frac{x^{2}}{1 / 4}+\frac{y^{2}}{5 / 4}=1$ or $4 x^{2}+\frac{4 y^{2}}{5}=1$

Q45. The equation of the parabola having focus at $(-1,-2)$ and the directrix $x-2 y+3=0$ is \qquad .
Sol: Given that, focus at $\mathrm{S}(-1,-2)$ and directrix is $\mathrm{x}-2 \mathrm{y}+3=0$
Let any point on the parabola be $P(x, y)$.
\therefore Length of perpendicular from S on the directrix $=S P$

$$
\begin{array}{ll}
\Rightarrow & \frac{(x-2 y+3)^{2}}{5}=(x+1)^{2}+(y+2)^{2} \\
\Rightarrow & 5\left[x^{2}+2 x+1+y^{2}+4 y+4\right]=x^{2}+4 y^{2}+9-4 x y-12 y+6 x \\
\Rightarrow & 4 x^{2}+y^{2}+4 x+32 y+16=0
\end{array}
$$

Q46. The equation of the hyperbola with vertices at $(0, \pm 6)$ and eccentricity $5 / 3$ \qquad and its foci are \qquad .

Sol. Let the equation of the hyperbola be $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$.
Vertices are $(0, \pm b) \equiv(0, \pm 6)$

$$
\begin{aligned}
& \therefore \quad b=6 \\
& \text { Also, } e=\frac{5}{3} \\
& \text { Now, } a^{2}=b^{2}\left(e^{2}-1\right) \\
& \Rightarrow \quad a^{2}=36\left(\frac{25}{9}-1\right)=64
\end{aligned}
$$

So, the equation of hyperbola is:

$$
\frac{x^{2}}{64}-\frac{y^{2}}{36}=-1
$$

So, foci $=(0, \pm b e) \equiv\left(0, \pm \frac{5}{3} \times 6\right)=(0, \pm 10)$

Objective Type Questions

Q47. The area of the circle centred at $(1,2)$ and passing through $(4,6)$ is
(a) 5π
(b) 10π
(c) 25π
(d) none of these

Sol. (c) Centre of the circle is $C(1,2)$.
Also, circle passes through the point $P(4,6)$.

$$
\text { Radius }=C P=\sqrt{(4-1)^{2}+(6-2)^{2}}=\sqrt{9+16}=5
$$

$\therefore \quad$ Area of the circle $=\pi r^{2}=25 \pi$ sq. units.

Q48. Equation of a circle which passes through $(3,6)$ and touches the axes is
(a) $x^{2}+y^{2}+6 x+6 y+3=0$
(b) $x^{2}+y^{2}-6 x-6 y-9=0$
(c) $x^{2}+y^{2}-6 x-6 y+9=0$
(d) none of these

Sol. (c) Given that the circle touches both axes.
Therefore, equation of the circle is: $(x-a)^{2}+(y-a)^{2}=a^{2}$
Circle passes through the point $(3,6)$.

$$
\begin{array}{ll}
\therefore & (3-a)^{2}+(6-a)^{2}=a^{2} \\
\Rightarrow & a^{2}-18 a+45=0 \Rightarrow(a-3)(a-15)=0 \\
\therefore & a=3, a=15
\end{array}
$$

For $a=3$, the equation of circle is:

$$
\begin{array}{ll}
& (x-3)^{2}+(y-3)^{2}=9 \\
\Rightarrow \quad & x^{2}+y^{2}-6 x-6 y+9=0
\end{array}
$$

Q49. Equation of the circle with centre on the j-axis and passing through the origin and the point $(2,3)$ is
(a) $x^{2}+y^{2}+13 y=0$
(b) $3 x^{2}+3 y^{2}+13 x+3=0$
(c) $6 x^{2}+6 y^{2}-13 x=0$
(d) $x^{2}+y^{2}+13 x+3=0$

Sol. (None) Centre of the circle lies on the y-axis.
So, let the centre be $C(0, k)$.
Circle passes through $O(0,0)$ and $A(2,3)$.

$$
\begin{array}{ll}
\therefore & O C^{2}=A C^{2} \\
\Rightarrow & k^{2}=(2-0)^{2}+(3-k)^{2} \quad \Rightarrow k=13 / 6 \\
\therefore & \text { Centre } \equiv(0,13 / 6) \text { and radius }=13 / 6
\end{array}
$$

So, equation of the required circle is:

$$
\begin{aligned}
& (x-0)^{2}+(y-13 / 6)^{2}=(13 / 6)^{2} \\
\Rightarrow \quad & 3 x^{2}+3 y^{2}-13 y=0
\end{aligned}
$$

Q50. The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length $3 a$ is
(a) $x^{2}+y^{2}=9 a^{2}$
(b) $x^{2}+y^{2}=16 a^{2}$
(c) $x^{2}+y^{2}=4 a^{2}$
(d) $x^{2}+y^{2}=a^{2}$

Sol. (c) Given that, length of the median $=3 a$
Now, Radius of circle $=\frac{2}{3} \times$ Length of median $=\frac{2}{3} \times 3 a=2 a$
So, the equation of the circle is $x^{2}+y^{2}=4 a^{2}$.

Q51. If the focus of a parabola is $(0,-3)$ and its directrix is $y=3$, then its equation is
(a) $x^{2}=-12 y$
(b) $x^{2}=12 y$
(c) $y^{2}=-12 x$
(d) $y^{2}=12 x$

Sol. (a)

Given that, focus of parabola is at $S(0,-3)$ and equation of directrix is $y=3$.
For any point $P(x, y)$ on the parabola, we have

$$
\begin{aligned}
& S P=P M \\
\Rightarrow \quad & \sqrt{(x-0)^{2}+(y+3)^{2}}=|y-3| \Rightarrow x^{2}+y^{2}+6 y+9=y^{2}-6 y+9 \\
\Rightarrow \quad & x^{2}=-12 y
\end{aligned}
$$

Q52. If the parabola $y^{2}=4 a x$ passes through the point $(3,2)$, then the length of its latus rectum is
(a) $\frac{2}{3}$
(b) $\frac{4}{3}$
(c) $\frac{1}{3}$
(d) 4

Sol. (b) Parabola $y^{2}=4 a x$, passes through the point $(3,2)$.
$\therefore \quad 4=4 a(3)$
$\therefore \quad$ Length of latus rectum $=4 a=\frac{4}{3}$

Q53. If the vertex of the parabola is the point $(-3,0)$ and the directrix is the line $x+5=0$, then its equation is
(a) $y^{2}=8(x+3)$
(b) $x^{2}=8(y+3)$
(c) $y^{2}=-8(x+3)$
(d) $y^{2}=8(x+5)$

Sol. (a) Given that vertex $\equiv(-3,0)$ and directrix, $x+5=0$

So, focus $\equiv S(-1,0)$
For any point of parabola $P(x, y)$, we have

$$
\begin{aligned}
& S P=P M \\
\Rightarrow & \sqrt{(x+1)^{2}+y^{2}}=|x+5| \Rightarrow x^{2}+2 x+1+y^{2}=x^{2}+10 x+25 \\
\Rightarrow & y^{2}=8 x+24 \Rightarrow y^{2}=8(x+3)
\end{aligned}
$$

Q54. The equation of the ellipse whose focus is $(1,-1)$, the directrix the line $x-y-3=0$ and eccentricity $1 / 2$ is
(a) $7 x^{2}+2 x y+7 y^{2}-10 x+10 y+7=0$
(b) $7 x^{2}+2 x y+7 y^{2}+7=0$
(c) $7 x^{2}+2 x y+7 y^{2}+10 x-10 y-7=0$
(d) none of these

Sol. (a) Given that, focus of the ellipse is $S(1,-1)$ and the equation of directrix is $x-y-3=0$
Also, $e=\frac{1}{2}$
From definition of ellipse, for any point $P(x, y)$ on the ellipse, we have $S P=e P M$, where M is foot of the perpendicular from point P to the directrix.

$$
\begin{array}{ll}
\therefore & \sqrt{(x-1)^{2}+(y+1)^{2}}=\frac{1}{2} \frac{|x-y-3|}{\sqrt{2}} \\
\Rightarrow & 8 x^{2}-16 x+16+8 y^{2}+16 y=x^{2}+y^{2}+9-2 x y+6 y-6 x \\
\Rightarrow & 7 x^{2}+7 y^{2}+2 x y-10 x+10 y+7=0
\end{array}
$$

Q55. The length of the latus rectum of the ellipse $3 x^{2}+y^{2}=12$ is
(a) 4
(b) 3
(c) 8
(d) $4 / \sqrt{ } 3$

Sol. (d) Given ellipse is:

$$
\begin{array}{ll}
& 3 x^{2}+y^{2}=12 \\
\Rightarrow & \frac{x^{2}}{4}+\frac{y^{2}}{12}=1 \\
\therefore & a^{2}=4 \Rightarrow a=2 \\
\text { and } & b^{2}=12 \Rightarrow b=2 \sqrt{3}
\end{array}
$$

Since $b>a$, length of latus rectum $=\frac{2 a^{2}}{b}=\frac{2 \times 4}{2 \sqrt{3}}=\frac{4}{\sqrt{3}}$
56. If e is the eccentricity of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (where, $a<b$), then
(a) $b^{2}=a^{2}\left(1-e^{2}\right)$
(b) $a^{2}=b^{2}\left(1-e^{2}\right)$
(c) $a^{2}=b^{2}\left(e^{2}-1\right)$
(d) $b^{2}=a^{2}\left(e^{2}-1\right)$

Sol. (b) Given that, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a<b$
We know that, $a^{2}=b^{2}\left(1-e^{2}\right)$
57. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is
(a) $\frac{4}{3}$
(b) $\frac{4}{\sqrt{3}}$
(c) $\frac{2}{\sqrt{3}}$
(d) none of these

Sol. (c) Let the equation of the hyperbola be $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Length of latus rectum $=8$

$$
\begin{equation*}
\therefore \quad \frac{2 b^{2}}{a}=8 \quad \Rightarrow \quad b^{2}=4 a \tag{i}
\end{equation*}
$$

Conjugate axis $=$ half of the distance between the foci

$$
\begin{array}{ll}
\therefore & 2 b=a e \\
\text { Now, } & b^{2}=a^{2}\left(e^{2}-1\right) \tag{iii}
\end{array}
$$

From Eqs. (i) and (iii), we get

$$
\begin{aligned}
& \frac{a^{2} e^{2}}{4}=a^{2}\left(e^{2}-1\right) \\
\Rightarrow \quad & e^{2}=4 e^{2}-4 \Rightarrow e^{2}=\frac{4}{3} \Rightarrow e=\frac{2}{\sqrt{3}}
\end{aligned}
$$

