DCAM classes Dynamic Classes for Academic Mastery

Chapter 12. Limits and Derivatives

Question-1

Find the indicated limit: $\lim_{x \to 1} \frac{x^2 + 2x + 5}{x^2 + 1}$

Solution:

$$\lim_{x \to 1} \frac{x^2 + 2x + 5}{x^2 + 1} = \frac{1 + 2 + 5}{1 + 1}$$
 by direct substitution
= $\frac{8}{2}$ =

Question-2

Find the indicated limit: $\lim_{x \to 2} \frac{x-2}{\sqrt{2-x}}$

Solution:

$$\lim_{x \to 2} \frac{x-2}{\sqrt{2-x}} = \lim_{x \to 2} \frac{-(2-x)}{\sqrt{2-x}} = \lim_{x \to 2} -(\sqrt{2-x}) = 0$$

Question-3

Find the indicated limit: $\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$

$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{h(2x+h)}{h} = \lim_{h \to 0} (2x+h) = 2x$$

Find the indicated limit: $\lim_{x \to 1} \frac{x^m - 1}{x - 1}$

Solution:

$$\lim_{x \to 1} \frac{x^{m} - 1}{x - 1} = \lim_{x \to 1} \frac{x^{m} - 1^{m}}{x - 1} = m(1)^{m - 1} = m$$

Question-5

Find the indicated limit: $\lim_{x \to 4} \frac{\sqrt{2x+1} - 3}{\sqrt{x-1} - \sqrt{2}}$

$$\lim_{x \to 4} \frac{\sqrt{2x+1} - 3}{\sqrt{x-1} - \sqrt{2}} = \lim_{x \to 4} \frac{\sqrt{2x+1} - 3}{\sqrt{x-1} - \sqrt{2}} \times \frac{\sqrt{x-2} + \sqrt{2}}{\sqrt{x-2} + \sqrt{2}} \times \frac{\sqrt{2x+1} + 3}{\sqrt{2x+1} + 3}$$

$$= \lim_{x \to 4} \frac{(2x+1-9)}{(x-2-2)} \quad \frac{\sqrt{x-2} + \sqrt{2}}{\sqrt{2x+1} + 3}$$

$$= \lim_{x \to 4} \frac{2x - 8}{x - 4} \frac{\sqrt{x - 2} + \sqrt{2}}{\sqrt{2x + 1} + 3}$$

$$= \lim_{x \to 4} 2 \left\{ \frac{\sqrt{x - 2} + \sqrt{2}}{\sqrt{2x + 1} + 3} \right\}$$

$$= 2 \frac{2\sqrt{2}}{6}$$

$$= \frac{2\sqrt{2}}{3}$$

Find the indicated limit:
$$\lim_{x\to 0} \frac{\sqrt{x^2+p^2}-p}{\sqrt{x^2+q^2}-q}$$

Solution:

$$\lim_{x \to 0} \frac{\sqrt{x^2 + p^2} - p}{\sqrt{x^2 + q^2} - q}$$

$$= \lim_{x \to 0} \frac{\sqrt{x^2 + p^2} - p}{\sqrt{x^2 + q^2} - q} \times \frac{\sqrt{x^2 + q^2} + q}{\sqrt{x^2 + q^2} + q} \times \frac{\sqrt{x^2 + p^2} + p}{\sqrt{x^2 + p^2} + p}$$

$$= \lim_{x \to 0} \frac{x^2 + p^2 - p^2}{x^2 + q^2 - q^2} \times \frac{\sqrt{x^2 + p^2} + q}{\sqrt{x^2 + q^2} + p}$$

$$= \lim_{x \to 0} \frac{2q}{2p} = \frac{q}{p}$$

Question-7

Find the indicated limit: $\lim_{x \to a} \frac{m\sqrt{x} - m\sqrt{a}}{x - a}$

$$\lim_{x \to a} \frac{\sqrt[m]{x} - \sqrt[m]{a}}{x - a} = \lim_{x \to a} \frac{\sqrt[n]{m} - a^{\frac{1}{m}}}{x - a} = \frac{1}{m} a^{\frac{1}{m} - 1} \text{ (na}^{n-1} \text{ formula)}$$

Find the indicated limit: $\lim_{\kappa \to 1} \frac{\sqrt[3]{\kappa} - 1}{\sqrt{\kappa} - 1}$

Solution:

$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1} = \lim_{x \to 1} \frac{\sqrt[1]{3} - 1}{\sqrt[1]{2} - 1}$$

$$= \lim_{x \to 1} \frac{\frac{1}{3} - 1}{x - 1} \times \frac{x - 1}{\frac{1}{2} - 1} = \lim_{x \to 1} \frac{\frac{1}{3} - \frac{1}{3}}{x - 1} \times \frac{x - 1}{\frac{1}{2} - \frac{1}{2}}$$

$$= \frac{1}{3} \frac{(1)^{\frac{1}{3} - 1}}{(1)^{\frac{1}{2} - 1}} \times \frac{1}{\frac{1}{2} (1)^{\frac{1}{2} - 1}} = \frac{1/3}{1/2} = \frac{2}{3}$$

Question-9

Find the indicated limit: $\lim_{x\to 0} \frac{\sqrt{1+x+x^2}-1}{x}$

$$\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x} = \lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x} \times \frac{\sqrt{1 + x + x^2} + 1}{\sqrt{1 + x + x^2} + 1} = \lim_{x \to 0} \frac{\frac{1 + x + x^2 - 1}{x}}{x}$$

$$= \lim_{x \to 0} \frac{x(x + 1)}{x(\sqrt{1 + x + x^2} + 1)}$$

$$= \frac{1}{\sqrt{1 + 1}} = \frac{1}{2}$$

Find the indicated limit: $\lim_{x \to 0} \frac{\sin^2(\frac{x}{3})}{x^2}$

Solution:

$$\lim_{x \to 0} \frac{\sin^2\left(\frac{x}{3}\right)}{x^2} = \lim_{x \to 0} \left(\frac{\sin x/3}{x/3}\right)^2 \frac{(x/3)^2}{x^2} = 1 \times \frac{1}{9} = \frac{1}{9}$$

Question-11

Find the indicated limit: $\lim_{x\to 0} \frac{\sin(a+x)-\sin(a-x)}{x}$

Solution:

$$\lim_{x\to 0} \frac{\sin(a+x)-\sin(a-x)}{x} = \lim_{x\to 0} \frac{2\cos a\sin x}{x} = \lim_{x\to 0} 2\cos a\left(\frac{\sin x}{x}\right) = 2\cos a$$

Question-12

Find the indicated limit: $\lim_{x\to 0} \frac{\log(1+\alpha x)}{x}$

Solution:

$$\lim_{x \to 0} \frac{\log(1 + \alpha x)}{x} = \lim_{x \to 0} \frac{\alpha x - \frac{(\alpha x)^2}{2} + \frac{(\alpha x)^3}{3}}{x} \dots = \lim_{x \to 0} \alpha - \frac{\alpha^2}{2} x + \frac{\alpha^3}{3} x^2 \dots$$

Question-13

Find the indicated limit: $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+5}$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+5} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \left(1 + \frac{1}{n} \right)^5 = e. (1)^5 = e$$

Evaluate the left and right limits of $f(x) = \frac{x^3 - 27}{x - 3}$ at x = 3. Does the limit of $f(x) = x \rightarrow 3$ exist? Justify your answer.

Solution:

$$\lim_{x \to 3} \left(\frac{x^3 - 27}{x - 3} \right)$$

Let
$$x = 3 + h$$

Then
$$\lim_{h \to 0} \left(\frac{(3+h)^3 - 27}{(3+h) - 3} \right) = \left(\frac{9h^2 + 27h + h^3}{h} \right) = \lim_{h \to 0} 27 + 9h + h^2 = 27$$

$$h \to 3 \frac{x^3 - 27}{x - 3}$$

Let
$$x = 3 - h$$

Then
$$\lim_{h \to 0} \frac{(3-h)^3 - 27}{(3-h-3)} = \lim_{h \to 0} \frac{-27h^2 + 9h^2 - h^3}{-h} = 27$$

Also,
$$\lim_{x \to 3} \frac{x^3 - 27}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x^2 + 3x + 9)}{x - 3} = 9 + 9 + 9 = 27$$

Question-15

Find the positive integer n such that $\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108$.

$$\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108$$

$$n 3^{n-1} = 108$$

Put n = 4, then
$$4.3^3 = 4 \times 27 = 108$$

Evaluate $\lim_{x\to 0} \frac{e^x - e^{\sin x}}{x - \sin x}$ [Hint: Take e^x or $e^{\sin x}$ as common factor in numerator]

Solution:

$$\lim_{x \to 0} \frac{e^{x} - e^{\sin x}}{x - \sin x} = \lim_{x \to 0} \frac{e^{x} \left(1 - \frac{e^{\sin x}}{e^{x}}\right)}{(x - \sin x)}$$

$$= \frac{e^{x} (1 - e^{\sin x - x})}{(x - \sin x)} = \frac{e^{x} (1 - e^{-(x - \sin x)})}{(x - \sin x)}$$

$$= e^{x} \left[\frac{1 - (1 - (x - \sin x) + x - \sin x)^{2} + \dots}{(x - \sin x)}\right]$$

$$= e^{x} \left[\frac{(x - \sin x) - (x - \sin x)^{2} + \dots}{(x - \sin x)}\right]$$

$$= \lim_{x \to 0} e^{x} \left[1 - (x - \sin x) + \dots\right] = e^{0} = 1$$

Question-17

If
$$f(x) = \frac{ax^2 + b}{x^2 - 1}$$
, $\lim_{x \to 0} f(x) = 1$ and $\lim_{x \to \infty} f(x) = 1$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{ax^2 + b}{x^2 - 1} = b/-1 = -b = 1$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{a + \frac{b}{x^2}}{1 - \frac{1}{x^2}} = a = 1$$

$$f(x) = \frac{x^2 - 1}{x^2 - 1} = 1$$

$$f(2) = 1$$
 and $f(-2) = 1$

Evaluate $\lim_{x\to 0} \frac{|x|}{x}$ and $\lim_{x\to 0} \frac{|x|}{x}$. What can you say about $\lim_{x\to 0} \frac{|x|}{x}$?

Solution:

Let
$$f(x) = \frac{x}{|x|}$$
 where $|x| = x$ $x \ge 0$

$$= -x \qquad x < 0$$
Then, $\underset{x \to 0}{\overset{Lt}{\rightarrow}} f(x) = \underset{x \to 0}{\overset{Lt}{\rightarrow}} \underset{|x|}{\overset{x}{\rightarrow}} = \underset{x \to 0}{\overset{Lt}{\rightarrow}} \underset{|x|}{\overset{x}{\rightarrow}} = 1$

$$\underset{x \to 0}{\overset{Lt}{\rightarrow}} f(x) = \underset{x \to 0}{\overset{Lt}{\rightarrow}} \underset{|x|}{\overset{x}{\rightarrow}} = \underset{x \to 0}{\overset{Lt}{\rightarrow}} \underset{-x}{\overset{x}{\rightarrow}} = -1$$

$$\therefore \underset{x \to 0}{\text{Lt}} f(x) \neq \underset{x \to 0}{\text{Lt}} f(x)$$

 $\therefore_{\times} \stackrel{\text{Lt}}{\rightarrow} \stackrel{\times}{\bowtie}$ does not exist.

Question-19

Compute $\lim_{x\to 0} \frac{a^x-b^x}{x}$, a,b>0. Hence evaluate $\lim_{x\to 0} \frac{5^x-6^x}{x}$.

Solution:

$$\begin{array}{ll} \lim\limits_{x \to 0} \ \frac{a^{x} - b^{x}}{x} = \lim\limits_{x \to 0} \ \frac{(a^{x} - 1) - (b^{x} - 1)}{x} = \lim\limits_{x \to 0} \ \left(\frac{a^{x} - 1}{x}\right) - x \stackrel{lim}{\to} 0 \left(\frac{b^{x} - 1}{x}\right) = log \ a - log \ b = log \\ \left(\frac{a}{b}\right) \\ \therefore \lim\limits_{x \to 0} \frac{5^{x} - 6^{x}}{x} = log \left(\frac{5}{6}\right) \end{array}$$

Question-20

Without using the series expansion of $\log(1 + x)$, prove that $\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$

Solution:

$$\lim_{x \to 0} \frac{\log(1+x)}{x}$$

Let y = log(1 + x) Then as $x \rightarrow 0$, $y \rightarrow 0$

$$\lim_{y \to 0} \frac{y}{e^{y} - 1} = \lim_{y \to 0} \frac{y}{1 + y + \frac{y^{2}}{2} + \dots - 1} = \lim_{y \to 0} \frac{y}{y \left(1 + \frac{y}{2} + \frac{y^{2}}{3} + \dots \right)} = \frac{1}{1} = 1$$

Differentiate the following with respect to x:

- (i) $x^{7} + e^{x}$
- (ii) $log_7x + 200$
- (iii) 3 sinx + 4 cos x e^x
- (iv) $e^x + 3 \tan x + \log x^6$
- (v) $\sin 5 + \log_{10} x + 2 \sec x$
- (vi) $x^{-3/2}$ + 8e + 7tanx
- $(vii) \left(x + \frac{1}{x}\right)^3$
- (viii) $\frac{(x-3)(2x^2-4)}{x}$

(i)
$$y = x^7 + e^x$$

 $\frac{dy}{dx} = 7x^6 + e^x$

(ii) y =
$$log_7x + 200$$

= $log_ex \cdot log_{10}e + 200$
 $\frac{dy}{dx} = log_{10}e(\frac{1}{x})$

(iii) y = 3 sin x + 4 cos x -
$$e^x$$

 $\frac{dy}{dx}$ = 3 cos x - 4 sin x - e^x

(iv)
$$y = e^x + 3 \tan x + 6 \log x$$

 $\frac{dy}{dx} = e^x + 3 \sec^2 x + \frac{6}{x}$

(v) y =
$$\sin 5 + \log_{10}x + 2 \sec x$$

= $\sin 5 + \log_{e}x \log_{10}e + 2 \sec x$
 $\frac{dy}{dx} = 0 + \frac{\log_{10}e}{x} + 2 \sec x \tan x$

(vi)
$$y = x^{-3/2} + 8e + 7tanx$$

 $\frac{dy}{dx} = -\frac{3}{2}x^{-5/2} + 7sec^2 x$

(vii)
$$y = \left(x + \frac{1}{x}\right)^3 = x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} = x^3 + 3x + 3x^{-1} + x^{-3}$$

 $\frac{dy}{dx} = 3x^2 + 3 - 3x^{-2} - 3x^{-4}$

(viii)
$$\frac{(x-3)(2x^2-4)}{x} = \frac{2x^3-6x^2-4x+12}{x}$$

 $y = 2x^2-6x-4+\frac{12}{x}$
 $\frac{dy}{dx} = 4x-6-\frac{12}{x^2}$

Differentiate the following function using quotient rule.

$$\frac{1}{ax^2 + bx + c}$$

Let
$$y = \frac{1}{ax^2 + bx + c}$$

$$\frac{dy}{dx} = \frac{(ax^2 + bx + c).0 - 1(2ax + b)}{(ax^2 + bx + c)^2} = -\frac{(2ax + b)}{(ax^2 + bx + c)^2}$$

Differentiate the following function using quotient rule.

$$\frac{\tan x + 1}{\tan x - 1}$$

Solution:

Let y =
$$\frac{\tan x + 1}{\tan x - 1}$$

 $\frac{dy}{dx} = \frac{(\tan x - 1)(\sec^2 x) - (\tan x + 1)\sec^2 x}{(\tan x - 1)^2} = \frac{-2\sec^2 x}{(\tan x - 1)^2}$

Question-24

Differentiate the following function using quotient rule.

$$\frac{\sin x + x \cos x}{x \sin x - \cos x}$$

Let
$$y = \frac{\sin x + x \cos x}{x \sin x - \cos x}$$

$$\frac{\text{dy}}{\text{dx}} = \frac{(\times \sin \times - \cos \times)(\cos \times - \times \sin \times + \cos \times) - (\sin \times + \times \cos \times)(\times \cos \times + \sin \times + \sin \times)}{(\times \sin \times - \cos \times)^2}$$

$$= \frac{x \sin x \cos x - \cos^2 x - x^2 \sin^2 x + x \sin x \cos x + x \sin \cos x - \cos^2 x}{-x \sin x \cos x - x^2 \cos^2 x - \sin^2 x + x \sin x \cos x - \sin^2 x - x \sin x \cos x}$$

$$= \frac{-x \sin x \cos x - x^2 \cos^2 x - \sin^2 x + x \sin x \cos x - \sin^2 x - x \sin x \cos x}{(x \sin x - \cos x)^2}$$

$$= \frac{-2\cos^{2}x - 2\sin^{2}x - x^{2}\sin^{2}x + x^{2}\cos^{2}x}{(x\sin x - \cos x)^{2}}$$

$$= \frac{-(2 + x^{2})}{(x\sin x - \cos x)^{2}}$$

Differentiate the following function using quotient rule.

Solution:

Let
$$y = \frac{\log x^2}{e^x} = \frac{2\log x}{e^x}$$

$$\frac{dy}{dx} = \frac{e^x \frac{2}{x} - 2\log x e^x}{(e^x)^2} = \frac{2e^x \left(\frac{1}{x} - \log x\right)}{(e^x)^2} = \frac{2\left(\frac{1}{x} - \log x\right)}{e^x} = e^{-x} \left(\frac{2}{x} - 2\log x\right)$$

Question-26

Differentiate the following function with respect to x. log(sinx)

$$y = log(sinx)$$

$$\frac{du}{dx} = \cos x$$
$$y = \log u$$

$$\begin{array}{l} \frac{dy}{du} \; = \; \frac{1}{u} = \frac{1}{\sin x} \\ \\ \frac{dy}{dx} \; = \; \frac{dy}{du} \times \; \frac{du}{dx} \; = \; \frac{1}{u} . cos \; \chi = \; \frac{1}{\sin x} cos \; \chi = cot \; \chi \end{array}$$

Differentiate the following function with respect to x. e^{sinx}

Solution:

Put $u = \sin x$

$$\frac{du}{dx} = COSX$$

$$y = e^{u}$$

$$\frac{dy}{du} = e^{U} = e^{\sin x}$$

$$\therefore \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = e^{\sin x} \cdot \cos x$$

Question-28

Differentiate the following function with respect to x.

$$\sqrt{1 + \cot x}$$

$$y = \sqrt{1 + \cot x}$$

Put
$$u = 1 + \cot x$$

$$\frac{du}{dx} = -\csc^2 x$$

$$y = u^{1/2}$$

$$\frac{dy}{du} = \frac{1}{2}u^{-\frac{1}{2}} = \frac{1}{2}(1 + \cot x)^{-\frac{1}{2}}$$

$$\therefore \ \frac{dy}{dx} \ \equiv \ \frac{dy}{du} \cdot \frac{du}{dx} \ \equiv \ \frac{1}{2} (1 + \cot x)^{1/2} (-\cos ec^2 x)$$

Differentiate the following function with respect to x. tan(logx)

Solution:

$$y = tan(logx)$$

$$\frac{du}{dx} = \frac{1}{x}$$

$$\frac{dy}{du} = \sec^2 u$$

$$\therefore \ \tfrac{dy}{dx} \ = \ \tfrac{dy}{du} \ . \ \ \tfrac{du}{dx} \ = \ sec^2 \ u. \ \ \tfrac{1}{x} \ = \ \tfrac{sec^2(logx)}{x}$$

Question-30

Differentiate the following function with respect to x.

$$y = \frac{e^{b \times}}{\cos(a + b)}$$

$$\frac{dy}{dx} = \frac{\cos(ax+b) \cdot \frac{d}{dx}(e^{bx}) - e^{bx} \cdot \frac{d}{dx}(\cos(ax+b))}{\cos^2(ax+b)}$$

$$= \frac{\cos(ax+b).e^{bx}.b+e^{bx}.\sin(ax+b)a}{\cos^2(ax+b)}$$

$$= \frac{e^{b\times(b\cos(ax+b)+a\sin(ax+b)}}{\cos^2(ax+b)}$$

Differentiate the following function with respect to x. log sec $\left(\frac{n}{4} + \frac{x}{2}\right)$

y = log sec
$$\left(\frac{\pi}{4} + \frac{x}{2}\right)$$

Put u = $\frac{\pi}{4} + \frac{x}{2}$
 $\frac{du}{dx} = \frac{1}{2}$
y = log sec u

$$y = log v$$

$$\frac{dv}{du}$$
 = sec u tan u

$$\therefore \frac{dy}{dx} = \frac{dy}{dy} \cdot \frac{dy}{dy} \cdot \frac{du}{dx}$$

$$= \frac{1}{v} \cdot \sec\left(\frac{\pi}{4} + \frac{x}{2}\right) \tan\left(\frac{\pi}{4} + \frac{x}{2}\right) \cdot \frac{1}{2}$$

$$= \frac{1}{\sec\left(\frac{\pi}{4} + \frac{x}{2}\right)} \sec\left(\frac{\pi}{4} + \frac{x}{2}\right) \cdot \tan\left(\frac{\pi}{4} + \frac{x}{2}\right) \cdot \frac{1}{2}$$

$$= \frac{1}{2} \tan\left(\frac{\pi}{4} + \frac{x}{2}\right)$$

Differentiate the following function with respect to x. $log sin(e^x + 4x + 5)$

Solution:

$$y = \log \sin(e^{x} + 4x + 5)$$

$$\frac{dy}{dx} = \frac{1}{\sin(e^{x} + 4x + 5)} \cos(e^{x} + 4x + 5)(e^{x} + 4)$$

$$= (e^{x} + 4) \frac{\cos(e^{x} + 4x + 5)}{\sin(e^{x} + 4x + 5)}$$

$$= (e^{x} + 4)\cot(e^{x} + 4x + 5)$$

Question-33

Differentiate the following function with respect to x. $sin(x^{3/2})$

$$y = \sin(x^{3/2})$$

Put
$$u = x^{3/2}$$

$$\frac{du}{dx} = \frac{3}{2} \times \frac{1}{2}$$

$$\frac{dy}{du} = \cos u$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \cos u \cdot \frac{3}{2} x^{1/2} = \cos x^{3/2} \left(\frac{3}{2} x^{1/2}\right)$$

Differentiate the following function with respect to x. $cos(\sqrt{x})$

$$\frac{dy}{du} = -\sin u$$

$$\frac{du}{dx} = \frac{1}{2\sqrt{x}}$$

$$\therefore \ \frac{dy}{dx} \ = \ \frac{dy}{du} \ , \ \frac{du}{dx} = - \ sin \ u \ , \ \frac{1}{2\sqrt{x}} = \ \frac{- \sin \sqrt{x}}{2\sqrt{x}}$$

Differentiate the following function with respect to x. $e^{\sin(\log x)}$

Solution:

$$v = e^{\sin(\log x)}$$

Put u = logx

$$\frac{du}{dx} = \frac{1}{x}$$

Put v = sin u

$$\frac{dv}{du} = \cos u = \cos(\log x)$$

Put
$$y = e^{v}$$

$$\frac{dy}{dv} = e^{V}$$

Hence
$$\frac{dy}{dx} = \frac{dy}{dv} \cdot \frac{dv}{du} \cdot \frac{du}{dx} = e^{V} \cdot \cos(\log x) \cdot \frac{1}{x} = e^{\sin(\log x)} \cos^{(\log s)} \cdot \frac{1}{x}$$

Question-36

Find the indicated limit: $\lim_{x \to 1} \frac{x^2 + 2x + 5}{x^2 + 1}$

$$\lim_{x \to 1} \frac{x^2 + 2x + 5}{x^2 + 1} = \frac{1 + 2 + 5}{1 + 1}$$
 by direct substitution
$$= \frac{8}{2} = 4$$

Find the indicated limit: $\lim_{x \to 2} \frac{x-2}{\sqrt{2-x}}$

Solution:

$$\lim_{x \to 2} \frac{x-2}{\sqrt{2-x}} = \lim_{x \to 2} \frac{-(2-x)}{\sqrt{2-x}} = \lim_{x \to 2} -(\sqrt{2-x}) = 0$$

Question-38

Find the indicated limit: $\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$

Solution:

$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{h(2x+h)}{h} = \lim_{h \to 0} (2x+h) = 2x$$

Question-39

Find the indicated limit: $\lim_{x \to 1} \frac{x^m - 1}{x - 1}$

Solution:

$$\lim_{x \to 1} \frac{x^{m} - 1}{x - 1} = \lim_{x \to 1} \frac{x^{m} - 1^{m}}{x - 1} = m(1)^{m - 1} = m$$

Question-40

Find the indicated limit: $\lim_{x \to 4} \frac{\sqrt{2x+1} - 3}{\sqrt{x-1} - \sqrt{2}}$

$$\lim_{x \to 4} \frac{\sqrt{2x+1} - 3}{\sqrt{x-1} - \sqrt{2}} = \lim_{x \to 4} \frac{\sqrt{2x+1} - 3}{\sqrt{x-1} - \sqrt{2}} \times \frac{\sqrt{x-2} + \sqrt{2}}{\sqrt{x-2} + \sqrt{2}} \times \frac{\sqrt{2x+1} + 3}{\sqrt{2x+1} + 3} = \lim_{x \to 4} \frac{(2x+1-9)}{(x-2-2)} \frac{\sqrt{x-2} + \sqrt{2}}{\sqrt{2x+1} + 3}$$

$$= \lim_{x \to 4} \frac{2x-8}{x-4} \frac{\sqrt{x-2} + \sqrt{2}}{\sqrt{2x+1} + 3}$$

$$= \lim_{x \to 4} 2 \left\{ \frac{\sqrt{x-2} + \sqrt{2}}{\sqrt{2x+1} + 3} \right\}$$

$$= 2 \frac{2\sqrt{2}}{6}$$

$$= \frac{2\sqrt{2}}{6}$$

Find the indicated limit: $\lim_{x\to 0} \frac{\sqrt{x^2+p^2}-p}{\sqrt{x^2+q^2}-q}$

Solution:

$$\lim_{x \to 0} \frac{\sqrt{x^2 + p^2} - p}{\sqrt{x^2 + q^2} - q}$$

$$= \lim_{x \to 0} \frac{\sqrt{x^2 + p^2} - p}{\sqrt{x^2 + q^2} - q} \times \frac{\sqrt{x^2 + q^2} + q}{\sqrt{x^2 + q^2} + q} \times \frac{\sqrt{x^2 + p^2} + p}{\sqrt{x^2 + p^2} + p}$$

$$= \lim_{x \to 0} \frac{x^2 + p^2 - p^2}{x^2 + q^2 - q^2} \times \frac{\sqrt{x^2 + p^2} + q}{\sqrt{x^2 + q^2} + p}$$

$$= \lim_{x \to 0} \frac{2q}{2p} = \frac{q}{p}$$

Question-42

Find the indicated limit: $\lim_{x \to a} \frac{m\sqrt{x} - m\sqrt{a}}{x - a}$

$$\lim_{x \to a} \frac{\sqrt[m]_{x - n} \sqrt[n]_{a}}{x - a} = \lim_{x \to a} \frac{\sqrt[n]_{x - a} \sqrt[n]_{m}}{x - a} = \frac{1}{m} a^{1/m - 1} \quad (na^{n - 1} \text{ formula})$$

Find the indicated limit: $\lim_{\kappa \to 1} \frac{\sqrt[3]{\kappa} - 1}{\sqrt{\kappa} - 1}$

Solution:

$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1} = \lim_{x \to 1} \frac{\frac{1}{3} - 1}{\frac{1}{x} - 1}$$

$$= \lim_{x \to 1} \frac{\frac{1}{3} - 1}{\frac{1}{x - 1}} \times \frac{\frac{x - 1}{1}}{\frac{1}{x - 2}} = \lim_{x \to 1} \frac{\frac{1}{3} - \frac{1}{3}}{\frac{x - 1}{x - 1}} \times \frac{\frac{x - 1}{1}}{\frac{1}{2} - \frac{1}{2}}$$

$$= \frac{1}{3} \frac{1}{3} \frac{1}{3} - 1 \times \frac{1}{\frac{1}{2} - \frac{1}{2}} = \frac{1}{3}$$

Question-44

Find the indicated limit: $\lim_{x\to 0} \frac{\sqrt{1+x+x^2}-1}{x}$

$$\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x} = \lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x} \times \frac{\sqrt{1 + x + x^2} + 1}{\sqrt{1 + x + x^2} + 1} = \lim_{x \to 0} \frac{1 + x + x^2 - 1}{x \sqrt{1 + x + x^2} + 1}$$

$$= \lim_{x \to 0} \frac{x(x + 1)}{x(\sqrt{1 + x + x^2} + 1)}$$

$$= \frac{1}{\sqrt{1 + 1}} = \frac{1}{2}$$

Find the indicated limit: $\lim_{x \to 0} \frac{\sin^2(\frac{x}{3})}{x^2}$

Solution:

$$\lim_{x \to 0} \frac{\sin^2(\frac{x}{3})}{x^2} = \lim_{x \to 0} \left(\frac{\sin x/3}{x/3}\right)^2 \frac{(x/3)^2}{x^2} = 1 \times \frac{1}{9} = \frac{1}{9}$$

Question-46

Find the indicated limit: $\lim_{x\to 0} \frac{\sin(a+x)-\sin(a-x)}{x}$

Solution:

$$\lim_{x \to 0} \frac{\sin(a+x) - \sin(a-x)}{x} = \lim_{x \to 0} \frac{2\cos a \sin x}{x} = \lim_{x \to 0} 2\cos a \left(\frac{\sin x}{x}\right) = 2\cos a$$

Question-47

Find the indicated limit: $\lim_{x\to 0} \frac{\log(1+\alpha x)}{x}$

Solution:

$$\lim_{x \to 0} \frac{\log(1+\alpha x)}{x} = \lim_{x \to 0} \frac{\alpha x - \frac{(\alpha x)^2}{2} + \frac{(\alpha x)^3}{3}}{x} \dots = \lim_{x \to 0} \alpha - \frac{\alpha^2}{2} x + \frac{\alpha^3}{3} x^2 \dots$$

Question-48

Find the indicated limit: $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+5}$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+5} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n} \left(1 + \frac{1}{n} \right)^{5} = e. (1)^{5} = e$$

Evaluate the left and right limits of $f(x) = \frac{x^3 - 27}{x - 3}$ at x = 3. Does the limit of $f(x) = x \rightarrow 3$ exist? Justify your answer.

Solution:

$$\lim_{x \to 3} \left(\frac{x^3 - 27}{x - 3} \right)$$

Let
$$x = 3 + h$$

Then
$$\lim_{h \to 0} \left(\frac{(3+h)^3 - 27}{(3+h) - 3} \right) = \left(\frac{9h^2 + 27h + h^3}{h} \right) = \lim_{h \to 0} 27 + 9h + h^2 = 27$$

$$\lim_{h \to 3} \frac{x^3 - 27}{x - 3}$$

Let
$$x = 3 - h$$

Then
$$\lim_{h\to 0} \frac{(3-h)^3-27}{(3-h-3)} = \lim_{h\to 0} \frac{-27h^2+9h^2-h^3}{-h} = 27$$

Also,
$$\lim_{x \to 3} \frac{x^3 - 27}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x^2 + 3x + 9)}{x - 3} = 9 + 9 + 9 = 27$$

Question-50

Find the positive integer n such that $\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108$.

$$\lim_{x \to 3} \frac{x^{n} - 3^{n}}{x - 3} = 108$$

$$n 3^{n-1} = 108$$

Put n = 4, then
$$4.3^3 = 4 \times 27 = 108$$

Evaluate $\lim_{x\to 0} \frac{e^x - e^{\sin x}}{x - \sin x}$ [Hint: Take e^x or $e^{\sin x}$ as common factor in numerator]

Solution:

$$\lim_{x \to 0} \frac{e^{x} - e^{\sin x}}{x - \sin x} = \lim_{x \to 0} \frac{e^{x} \left(1 - \frac{e^{\sin x}}{e^{x}}\right)}{(x - \sin x)}$$

$$= \frac{e^{x} (1 - e^{\sin x - x})}{(x - \sin x)} = \frac{e^{x} (1 - e^{-(x - \sin x)})}{(x - \sin x)}$$

$$= e^{x} \left[\frac{1 - (1 - (x - \sin x) + x - \sin x)^{2} + \dots}{(x - \sin x)}\right]$$

$$= e^{x} \left[\frac{(x - \sin x) - (x - \sin x)^{2} + \dots}{(x - \sin x)}\right]$$

$$= \lim_{x \to 0} e^{x} \left[1 - (x - \sin x) + \dots\right] = e^{0} = 1$$

Question-52

If
$$f(x) = \frac{ax^2 + b}{x^2 - 1}$$
, $\lim_{x \to 0} f(x) = 1$ and $\lim_{x \to \infty} f(x) = 1$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{ax^2 + b}{x^2 - 1} = b/-1 = -b = 1$$

$$..$$
 b = -1

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{a + \frac{b}{x^2}}{1 - \frac{1}{x^2}} = a = 1$$

$$f(x) = \frac{x^2 - 1}{x^2 - 1} = 1$$

$$f(2) = 1$$
 and $f(-2) = 1$

Evaluate $\lim_{x \to 0} \frac{|x|}{x}$ and $\lim_{x \to 0} \frac{|x|}{x}$. What can you say about $\lim_{x \to 0} \frac{|x|}{x}$?

Solution:

Let
$$f(x) = \frac{x}{|x|}$$
 where $|x| = x$ $x \ge 0$
= -x $x < 0$

Then,

$$\underset{x \to 0}{\overset{Lt}{\rightarrow}} f(x) = \underset{x \to 0}{\overset{Lt}{\nearrow}} \underset{|||}{\overset{\times}{\nearrow}} = \underset{x \to 0}{\overset{Lt}{\nearrow}} \underset{|||}{\overset{\times}{\nearrow}} = 1$$

$$\underset{x \to 0}{\overset{Lt}{\rightarrow}} f(x) = \underset{x \to 0}{\overset{Lt}{\nearrow}} \underset{|||}{\overset{\times}{\nearrow}} = \underset{x \to 0}{\overset{Lt}{\nearrow}} \underset{-x}{\overset{\times}{\nearrow}} = -1$$

$$\therefore \underset{x \to 0}{\overset{Lt}{\rightarrow}} f(x) \neq \underset{x \to 0}{\overset{Lt}{\nearrow}} f(x)$$

 $\therefore_{\times \to 0}^{\text{Lt}} \stackrel{\times}{\bowtie}$ does not exist.

Question-54

Compute $\lim_{x\to 0} \frac{a^x-b^x}{x}$, a,b>0. Hence evaluate $\lim_{x\to 0} \frac{5^x-6^x}{x}$.

Solution:

$$\lim_{x \to 0} \frac{a^{x} - b^{x}}{x} = \lim_{x \to 0} \frac{(a^{x} - 1) - (b^{x} - 1)}{x} = \lim_{x \to 0} \left(\frac{a^{x} - 1}{x}\right) - x \xrightarrow{b} 0 \left(\frac{b^{x} - 1}{x}\right) = \log a - \log b = \log \left(\frac{a}{b}\right)$$

$$\therefore \lim_{x \to 0} \frac{5^{x} - 6^{x}}{x} = \log\left(\frac{5}{6}\right)$$

Question-55

Without using the series expansion of $\log(1 + x)$, prove that $\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$

$$\lim_{x \to 0} \frac{\log(1+x)}{x}$$

Let
$$y = log(1 + x)$$
 Then as $x \rightarrow 0$, $y \rightarrow 0$

$$\lim_{y \to 0} \frac{y}{e^{y} - 1} = \lim_{y \to 0} \frac{y}{1 + y + \frac{y^{2}}{2} + \dots - 1} = \lim_{y \to 0} \frac{y}{y \left(1 + \frac{y}{2} + \frac{y^{2}}{3} + \dots + \infty\right)} = \frac{1}{1} = 1$$

Differentiate the following with respect to x:

(i)
$$x^{7} + e^{x}$$

(iv)
$$e^x + 3 \tan x + \log x^6$$

(v)
$$\sin 5 + \log_{10} x + 2 \sec x$$

$$(vii) \left(x + \frac{1}{x}\right)^3$$

(VIII)
$$\frac{(x-3)(2x^2-4)}{x}$$

(i)
$$y = x^7 + e^x$$

$$\frac{dy}{dx} = 7x^6 + e^X$$

(ii)
$$y = log_7x + 200 = log_ex \cdot log_{10}e + 200$$

$$\frac{dy}{dx} = log_{10}e(\frac{1}{x})$$

(iii)
$$y = 3 \sin x + 4 \cos x - e^x$$

$$\frac{dy}{dx} = 3\cos x - 4\sin x - e^{x}$$

(iv)
$$y = e^x + 3 \tan x + 6 \log x$$

 $\frac{dy}{dx} = e^x + 3 \sec^2 x + \frac{6}{x}$

(v)
$$y = \sin 5 + \log_{10} x + 2 \sec x$$

$$= \sin 5 + \log_{e} x \log_{10} e + 2 \sec x$$

$$\frac{dy}{dx} = 0 + \frac{\log_{10} e}{x} + 2 \sec x \tan x$$

(vi)
$$y = x^{-3/2} + 8e + 7tanx$$

$$\frac{dy}{dx} = -\frac{3}{2}x^{-\frac{5}{2}} + 7sec^{2}x$$

(vii)
$$y = \left(x + \frac{1}{x}\right)^3 = x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} = x^3 + 3x + 3x^{-1} + x^{-3}$$

 $\frac{dy}{dx} = 3x^2 + 3 - 3x^{-2} - 3x^{-4}$

(VIII)
$$\frac{(x-3)(2x^2-4)}{x} = \frac{2x^3-6x^2-4x+12}{x}$$

$$y = 2x^2 - 6x - 4 + \frac{12}{x}$$

$$\frac{dy}{dx} = 4x - 6 - \frac{12}{x^2}$$

Differentiate the following functions with respect to x.

(iv)
$$(x^4 - 6x^3 + 7x^2 + 4x + 2)(x^3 - 1)$$

$$(ix)(3x^2+1)^2$$

$$(x) (4x^2 - 1) (2x + 3)$$

(xi)
$$(3 \sec x - 4 \csc x) (2 \sin x + 5 \cos x)$$

(i)
$$y = e^x \cos x$$

$$\frac{dy}{dx} = -e^{x} \sin x + \cos x e^{x}$$

(ii)
$$y = x^{1/n} \log(\sqrt{x}) = \frac{1}{2} x^{1/n} \log x$$

$$\frac{dy}{dx} = \frac{1}{2} \left[x^{1/n} \frac{1}{x} + \log x \left(\frac{1}{n} x^{1/n-1} \right) \right] = \frac{1}{2} \left[x^{1/n-1} + \frac{1}{n} \log x . x^{\frac{1}{n}-1} \right]$$

(iii) $y = 6 \sin x \log_{10} x + e = 6 \sin x \log_{e} x \cdot \log_{10} e + e$

$$\frac{dy}{dx} = 6 \log_{10} e \left(\sin x \frac{1}{x} + \log x \cos x \right)$$

(iv)
$$y = (x^4 - 6x^3 + 7x^2 + 4x + 2)(x^3 - 1)$$

$$\frac{dy}{dx} = (x^4 - 6x^3 + 7x^2 + 4x + 2)(3x^2) + (x^3 - 1)(4x^3 - 18x^2 + 14x + 4)$$

$$(v) y = (a - b six (1 - 2 cos x))$$

$$\frac{dy}{dx} = (a - b \sin x) (2 \sin x) + (1 - 2 \cos x) (-b \cos x)$$

$$\frac{dy}{dx} = 2a \sin x - 2b \sin^2 x - b \cos x + 2b \cos^2 x$$

$$\frac{dy}{dx}$$
 = -cosec x cosec²x(-cosec x cotx) = -cosec³ x - cot²x cosec x

Question-58

Differentiate the following function using quotient rule.

$$\frac{5}{x^2}$$

Let
$$y = \frac{5}{x^2}$$

$$\frac{dy}{dx} = \frac{(x^2) \cdot \frac{d}{dx}(5) \cdot - 5 \frac{d}{dx}(x^2)}{(x^2)^2} = \frac{x^2 \cdot 0 - 5(2x)}{x^4} = \frac{-10x}{x^4} = \frac{-10}{x^3}$$

Differentiate the following function using quotient rule.

$$\frac{2 \times -3}{4 \times +5}$$

Solution:

Let
$$y = \frac{2x-3}{4x+5}$$

$$\frac{dy}{dx} = \frac{(4x+5)\frac{d}{dx}(2x-3^2) - (2x-3)\frac{d}{dx}(4x+5)}{(4x+5)^2}$$

$$= \frac{(4x+5)(2) - (2x-3)(4)}{(4x+5)^2}$$

$$= \frac{8x+10-8x+12}{(4x+5)^2}$$

Question-60

 $=\frac{22}{(4x+5)^2}$

Differentiate the following function using quotient rule.

$$\frac{x^7 - 4^7}{x - 4}$$

Let
$$y = \frac{x^7 - 4^7}{x - 4}$$

$$\frac{dy}{dx} = \frac{(x - 4)7x^6 - (x^7 - 4^7).1}{(x - 4)^2} = \frac{6x^7 - 28x^6 + 4^7}{(x - 4)^2}$$

Differentiate the following function using quotient rule.

$$\frac{\cos x + \log x}{x^2 + e^x}$$

Solution:

Let
$$y = \frac{\cos x + \log x}{x^2 + e^x}$$

$$\frac{dy}{dx} = \frac{(x^2 + e^{x})(-\sin x + \frac{1}{x}) - (\cos x + \log x)(2x + e^{x})}{(x^2 + e^{x})^2}$$

$$\frac{dy}{dx} = \frac{e^{x} \left(\frac{1}{x} - \sin x - \cos x - \log x\right) - 2x(\cos x + \log x) + x - x^{2} \sin x}{(x^{2} + e^{x})^{2}}$$

Question-62

Differentiate the following function using quotient rule.

$$\frac{\log x - 2x^2}{\log x + 2x^2}$$

Let
$$y = \frac{\log x - 2x^2}{\log x + 2x^2}$$

$$\frac{dy}{dx} = \frac{(\log x + 2x^2)(\frac{1}{x} - 4x) - (\log x - 2x^2)(\frac{1}{x} + 4x)}{(\log x + 2x^2)^2} = \frac{4x(1 - 2\log x)}{(\log x + 2x^2)^2}$$

Differentiate the following function using quotient rule.

log x sin x

Solution:

Let
$$y = \frac{\log x}{\sin x}$$

$$\frac{dy}{dx} = \frac{\sin x \left(\frac{1}{x}\right) - \log x \cos x}{\sin^2 x}$$

Question-64

Differentiate the following function using quotient rule.

$$\frac{1}{ax^2 + bx + c}$$

Solution:

Let
$$y = \frac{1}{ax^2 + bx + c}$$

$$\frac{dy}{dx} = \frac{(ax^2 + bx + c).0 - 1(2ax + b)}{(ax^2 + bx + c)^2} = -\frac{(2ax + b)}{(ax^2 + bx + c)^2}$$

Question-65

Differentiate the following function using quotient rule.

$$\frac{\tan x + 1}{\tan x - 1}$$

Let
$$y = \frac{\tan x + 1}{\tan x - 1}$$

$$\frac{dy}{dx} = \frac{(\tan x - 1)(\sec^2 x) - (\tan x + 1)\sec^2 x}{(\tan x - 1)^2} = \frac{-2\sec^2 x}{(\tan x - 1)^2}$$

Differentiate the following function using quotient rule.

Solution:

Let
$$y = \frac{\sin x + x \cos x}{x \sin x - \cos x}$$

$$\frac{\text{d}y}{\text{d}x} = \frac{(\times \sin x - \cos x)(\cos x - \times \sin x + \cos x) - (\sin x + x \cos x)(\times \cos x + \sin x + \sin x)}{(\times \sin x - \cos x)^2}$$

$$= \frac{x \sin x \cos x - \cos^2 x - x^2 \sin^2 x + x \sin x \cos x + x \sin \cos x - \cos^2 x}{-x \sin x \cos x - x^2 \cos^2 x - \sin^2 x + x \sin x \cos x - \sin^2 x - x \sin x \cos x)}{(x \sin x - \cos x)^2}$$

$$= \frac{-2\cos^2 x - 2\sin^2 x - x^2\sin^2 x + x^2\cos^2 x}{(x\sin x - \cos x)^2}$$
$$= \frac{-(2 + x^2)}{(x\sin x - \cos x)^2}$$

Question-67

Differentiate the following function using quotient rule.

Let
$$y = \frac{\log x^2}{e^x} = \frac{2\log x}{e^x}$$

$$\frac{dy}{dx} = \frac{e^{x} \frac{2}{x} - 2\log x \cdot e^{x}}{(e^{x})^{2}} = \frac{2e^{x} \left(\frac{1}{x} - \log x\right)}{(e^{x})^{2}} = \frac{2\left(\frac{1}{x} - \log x\right)}{e^{x}} = e^{-x} \left(\frac{2}{x} - 2\log x\right)$$

Differentiate the following function with respect to x.

Solution:

$$y = log(sinx)$$

$$\frac{du}{dx} = COSX$$

$$\begin{array}{l} \frac{dy}{du} \; = \; \frac{1}{u} = \frac{1}{\sin x} \\ \frac{dy}{dx} \; = \; \frac{dy}{du} \times \; \frac{du}{dx} \; = \; \frac{1}{u} . COS \; X = \; \frac{1}{\sin x} COS \; X = COT \; X \end{array}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \frac{1}{u}.COS X = \frac{1}{sin \times}COS X = COT X$$

Question-69

Differentiate the following function with respect to x. esinx

Solution:

Put u = sinx

$$\frac{du}{dx} = COSX$$

$$y = e^{u}$$

$$\frac{dy}{du} = e^{U} = e^{\sin X}$$

$$\therefore \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = e^{\sin X} \cdot \cos X$$

Differentiate the following function with respect to x. VI + COT X

Solution:

$$y = \sqrt{1 + \cot x}$$
Put $u = 1 + \cot x$

$$\frac{du}{dx} = -\csc^2 x$$

$$y = u^{1/2}$$

$$\frac{dy}{du} = \frac{1}{2}u^{-\frac{1}{2}} = \frac{1}{2}(1 + \cot x)^{-\frac{1}{2}}$$

$$\therefore \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{2}(1 + \cot x)^{\frac{1}{2}}(-\cos ec^2 x)$$

Question-71

Differentiate the following function with respect to x. tan(logx)

$$\frac{du}{dx} = \frac{1}{x}$$

y = tan u

$$\frac{dy}{du} = \sec^2 u$$

$$\therefore \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \sec^2 u \cdot \frac{1}{x} = \frac{\sec^2(\log x)}{x}$$

Differentiate the following function with respect to x.

Solution:

$$y = \frac{e^{bx}}{\cos(a+b)}$$

$$\frac{dy}{dx} = \frac{\cos(ax + b) \cdot \frac{d}{dx}(e^{bx}) - e^{bx} \cdot \frac{d}{dx}(\cos(ax + b))}{\cos^2(ax + b)}$$

$$= \frac{\cos(ax+b).e^{b\times}.b+e^{b\times}.\sin(ax+b)a}{\cos^2(ax+b)}$$

$$= \frac{e^{b\times(b\cos(ax+b)+a\sin(ax+b)}}{\cos^2(ax+b)}$$

Question-73

Differentiate the following function with respect to x.

$$\log \sec \left(\frac{n}{4} + \frac{x}{2}\right)$$

$$y = \log \sec \left(\frac{\pi}{4} + \frac{x}{2}\right)$$

Put
$$u = \frac{\pi}{4} + \frac{\times}{2}$$

$$\frac{du}{dx} = \frac{1}{2}$$

$$\frac{dv}{du}$$
 = sec u tan u

$$\frac{dy}{dv} = \frac{1}{v}$$

Question-74

Differentiate the following function with respect to x. $log sin(e^x + 4x + 5)$

Solution:

$$y = \log \sin(e^{x} + 4x + 5)$$

$$\frac{dy}{dx} = \frac{1}{\sin(e^{x} + 4x + 5)} \cos(e^{x} + 4x + 5)(e^{x} + 4)$$

$$= (e^{x} + 4) \frac{\cos(e^{x} + 4x + 5)}{\sin(e^{x} + 4x + 5)}$$

$$= (e^{x} + 4)\cot(e^{x} + 4x + 5)$$

Question-75

Differentiate the following function with respect to x. $sin(x^{3/2})$

Solution:

$$y = \sin(x^{3/2})$$

Put
$$u = x^{3/2}$$

$$\frac{du}{dx} = \frac{3}{2} \times \frac{1}{2}$$

$$\frac{dy}{du} = \cos u$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \cos u \cdot \frac{3}{2} x^{1/2} = \cos x^{3/2} \left(\frac{3}{2} x^{1/2} \right)$$

Question-76

Differentiate the following function with respect to x. $cos(\sqrt{x})$

Solution:

$$\frac{dy}{du} = -\sin u$$

$$\frac{du}{dx} = \frac{1}{2\sqrt{x}}$$

$$\therefore \ \frac{dy}{dx} \ = \ \frac{dy}{du} \ , \ \frac{du}{dx} = - \ sin \ u \ , \ \frac{1}{2\sqrt{x}} = \ \frac{-\sin \sqrt{x}}{2\sqrt{x}}$$

Question-77

Differentiate the following function with respect to x. $e^{\sin(\log x)}$

Solution:

$$y = e^{\sin(\log x)}$$

Put u = logx

$$\frac{du}{dx} = \frac{1}{x}$$

Put v = sin u

$$\frac{dv}{du} = \cos u = \cos(\log x)$$

Put
$$y = e^{v}$$

$$\frac{dy}{dv} = e^{V}$$

Hence
$$\frac{dy}{dx} = \frac{dy}{dv} \cdot \frac{dv}{du} \cdot \frac{du}{dx} = e^{V} \cdot cos(logx) \cdot \frac{1}{x} = e^{sin(logx)} \cdot cos^{(logs)} \cdot \frac{1}{x}$$

CBSE Class 11 Mathematics Important Questions Chapter 13 Limits and Derivatives

1 Marks Questions

1. Evaluate
$$\lim_{x\to 3} \left[\frac{x^2-9}{x-3} \right]$$

Ans.
$$\lim_{x\to 3} \frac{x^2-9}{x-3} = \frac{0}{0}$$
 form

$$\lim_{x \to 3} \frac{(x+3)(x-3)}{(x-3)} = 3+3=6$$

2. Evaluate
$$\lim_{x\to 0} \frac{\sin 3x}{5x}$$

Ans.
$$\lim_{x\to 0} \frac{\sin 3x}{5x}$$

$$= \lim_{3x\to 0} \frac{\sin 3x}{3x} \times \frac{3}{5}$$

$$=1\times\frac{3}{5}=\frac{3}{5}\left[\because\lim_{x\to0}\frac{\sin x}{x}=1\right]$$

3. Find derivative of 2^x

Ans. Let
$$v = 2^x$$

$$\frac{dy}{dx} = \frac{d}{dx} 2 = 2^{x} 10g2$$

4. Find derivative of $\sqrt{\sin 2x}$

Ans.
$$\frac{d}{dx}\sqrt{\sin 2x} = \frac{1}{2\sqrt{\sin 2x}}\frac{d}{dx}\sin 2x$$

$$= \frac{1}{2\sqrt{\sin 2x}} \times 2\cos 2x$$

$$= \frac{\cos 2x}{\sqrt{\cos 2x}}$$

5. Evaluate
$$\lim_{x\to 0} \frac{\sin^2 4x}{x^2}$$

Ans.

$$\lim_{x \to 0} \frac{\sin^2 4x}{x^2 4^2} \times 4^2 = \lim_{4x \to 0} \left(\frac{\sin 4x}{4x} \right)^2 \times 16$$
$$= 1 \times 16 = 16$$

6. What is the value of
$$\lim_{x \to a} \left(\frac{x^2 - a^n}{x - a} \right)$$

Ans.
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = 1$$

7. Differentiate
$$\frac{2^x}{x}$$

Ans.
$$\frac{d}{dx} \frac{2^x}{x} = \frac{x \frac{d}{dx} 2^x - 2^x \frac{d}{dx} x}{x^2}$$

$$=\frac{x\times 2^{x}10g2-2^{x}\times 1}{x^{2}}$$

$$=2x\frac{\left[x+10g2-1\right]}{x^2}$$

8. If
$$y = e^{\sin x}$$
 find $\frac{dy}{dx}$

Ans.
$$y = e^{\sin x}$$

$$\frac{dy}{dx} = \frac{d}{dx}e^{\sin x}$$

$$= e^{\sin x} \times \cos x = \cos x e^{\sin x}$$

9. Evaluate
$$\lim_{x\to 1} \frac{x^{15}-1}{x^{10}-1}$$

Ans.
$$\lim_{x\to 1} \frac{x^{15}-1}{x^{10}-1}$$

$$=\frac{\lim_{x\to 1}\frac{x^{15}-1^{15}}{x-1}}{\lim_{x\to 1}\frac{x^{10}-1^{10}}{x-1}}=\frac{15\times 1^{14}}{10\times 1^9}$$

$$=\frac{15}{10}=\frac{3}{2}$$

10. Differentiate $x \sin x$ with respect to x

Ans.
$$\frac{d}{dx}x\sin x = x\cos x + \sin x 1$$

$$= x \cos x + \sin x$$

11. Evaluate
$$\lim_{x \to 1} \frac{x^2 + 1}{x + 100}$$

Ans.
$$\lim_{x \to 1} \frac{x^2 + 1}{x + 100} = \frac{2}{101}$$

12. Evaluate $\lim_{x\to 0} \left[\cos ecx - \cot x\right]$

Ans.
$$\lim_{x\to 0} \left[\cos ec - \cot x\right]$$

$$=\lim_{x\to 0} \left[\frac{1}{\sin x} - \frac{\cos x}{\sin x} \right]$$

$$= \lim_{x \to 0} \frac{1 - \cos x}{\sin x} = \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}}$$

$$= \lim_{x \to 0} \tan \frac{x}{2} = 0$$

13. Find
$$f^{1}(x)$$
 at $x = 100$

$$if f(x) = 99x$$

Ans.
$$f(x) = 99x$$

$$f^{1}(x) = 99$$
 at x=100
 $f^{1}(x) = 99$

14. Evaluate
$$\lim_{x\to -2} \frac{\tan \pi x}{x+2}$$

Ans.
$$\lim_{x \to -2} \frac{\tan \pi x}{x+2}$$
 $\frac{1}{0}$ form

$$let \ x + 2 = y$$

$$x = y - 2$$

$$\lim_{y\to 0} \frac{\tan \pi (y-2)}{y}$$

$$\lim_{y \to 0} \frac{-\tan \pi (2-y)}{y} = \lim_{y \to 0} \frac{\tan \left[2\pi - 2y\right]}{y}$$

$$= \lim_{2y \to 0} \frac{+\tan 2y}{2y} \times 2$$

$$=1\times2=2$$

15. Find derivative of $\sin^n x$

Ans.
$$\frac{d}{dx}\sin^n x$$

$$= n \sin^{n-1} x \frac{d}{dx} \sin x$$

$$= n \sin^{n-1} x \cos x$$

16. Find derivative of $1 + x + x^2 + x^3 + \cdots + x^{50}$ at x = 1

Ans.
$$f(x) = 1 + x + x^2 + x^3 + - - - + x^{50}$$

$$f^{1}(x) = 1 + 2x + 3x^{2} + - - - + 50x^{49}$$

at
$$x = 1$$

$$f^{1}(1) = 1 + 2 + 3 + - - - + 50 = \frac{50(50+1)}{2}$$

$$= 25 \times 51 = 1275$$

17. The value of $\lim_{h\to 0} \frac{e^{2h}-1}{h}$

Ans.
$$\lim_{2h\to 0} \frac{e^{2h}-1}{2h} \times 2$$

$$=1\times2=2$$

18. Evaluate $\lim_{x\to 0} \frac{(1+x)^6-1}{(1+x)^2-1}$

Ans.
$$\lim_{x\to 0} \left[\frac{(1+x)^6 - 1}{(1+x)^2 - 1} \right]$$

$$let 1 + x = y$$

$$x \to 0, y \to 1$$

$$\lim_{y \to 1} \frac{y^6 - 1}{y^2 - 1} = \lim_{y \to 1} \frac{\frac{y^6 - 1^6}{y - 1}}{\frac{y^2 - 1^2}{y - 1}}$$

$$=\frac{6\times1^5}{2\times1}=\frac{6}{2}=3$$

19. $\lim_{x \to a} \frac{x^7 + a^7}{x + a} = 7$ find the value of 'a

Ans.
$$\lim_{x \to a} \frac{x^7 + a^7}{x + a} = 7$$

$$=\frac{a^7+a^7}{a+a}=7$$

$$=\frac{2a^7}{2a}=7$$

$$= a^6 = 7$$

$$= a = \sqrt[6]{7}$$

20. Differentiate $x^{-3}(5+3x)$

Ans.
$$\frac{d}{dx}x^{-3}(5+3x)$$

$$= \frac{d}{dx} \Big[5x^{-3} + 3x^{-2} \Big]$$

$$=5\times-3x^{-4}+3\times-2x^{-3}$$

$$=\frac{-15}{x^4}-\frac{6}{x^3}$$

CBSE Class 12 Mathematics Important Questions Chapter 13 Limits and Derivatives

4 Marks Questions

1. Prove that
$$\lim_{x\to 0} \left(\frac{e^x - 1}{x} \right) = 1$$

Ans. We have

$$\lim_{x\to 0} \frac{e^x - 1}{x}$$

$$\lim_{x \to 0} \left\{ \frac{\left[1 + x + \frac{x^2}{2^1} + \frac{x^3}{3^1} + \dots \right] - 1}{x} \right\} \left[\because e^x = 1 + x + \frac{x^2}{2^1} + \dots \right]$$

$$\lim_{x \to 0} \left\{ \frac{x + \frac{x^2}{2^1} + \frac{x^3}{3^1} + \dots}{x} \right\}$$

$$\lim_{x \to 0} x \left\{ \frac{1 + \frac{x}{2^1} + \frac{x^2}{3^1} + ---}{x} \right\}$$

$$=1+0=1$$

2. Evaluate
$$\lim_{x \to 1} \frac{(2x-3)(\sqrt{x}-1)}{(2x^2+x-3)}$$

Ans.
$$\lim_{x \to 1} \frac{(2x-3)(\sqrt{x}-1)}{(2x^2+x-3)}$$

$$= \lim_{x \to 1} \frac{(2x-3)(\sqrt{x}-1)}{(2x+3)(x-1)}$$

$$\lim_{x \to 1} \frac{(2x-3)\left(\sqrt{x}-1\right)}{(2x+3)(x-1)} \times \frac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}$$

$$\lim_{x \to 1} \frac{(2x-3)(x-1)}{(2x+3)(x-1)(\sqrt{x}+1)}$$

$$\lim_{x \to 1} \frac{(2x-3)}{(2x+3)(\sqrt{x}+1)} = \frac{2 \times 1 - 3}{(2 \times 1 + 3)(\sqrt{1} + 1)}$$

$$=\frac{-1}{10}$$

3. Evaluate
$$\lim_{x\to 0} \frac{x \tan 4x}{1-\cos 4x}$$

Ans.
$$\lim_{x \to 0} \frac{x \tan 4x}{1 - \cos 4x}$$

$$= \lim_{x \to 0} \frac{x \sin 4x}{\cos 4x \left[2 \sin^2 2x\right]}$$

$$= \lim_{x \to 0} \frac{2x \sin 2x \cos 2x}{\cos 4x \left(2 \sin^2 2x\right)}$$

$$= \lim_{x \to 0} \left(\frac{\cos 2x}{\cos 4x} \cdot \frac{2x}{\sin 2x} \times \frac{1}{2} \right)$$

$$= \frac{1}{2} \frac{\lim_{2x \to 0} \cos 2x}{\lim_{4x \to 0} \cos 4x} \times \lim_{2x \to 0} \left(\frac{2x}{\sin 2x} \right) = \frac{1}{2} \times 1 = \frac{1}{2}$$

4. It
$$y = \frac{(1 - \tan x)}{(1 + \tan x)}$$
. Show that $\frac{dy}{dx} = \frac{-2}{(1 + \sin 2x)}$

Ans.
$$y = \frac{(1 - \tan x)}{(1 + \tan x)}$$

$$\frac{dy}{dx} = \frac{\left(1 + \tan x\right) \frac{d}{dx} \left(1 - \tan x\right) - \left(1 - \tan x\right) \frac{d}{dx} \left(1 + \tan x\right)}{\left(1 + \tan x\right)^2}$$

$$= \frac{(1 + \tan x)(-\sec^2 x) - (1 - \tan x)\sec^2 x}{(1 + \tan x)^2}$$

$$=\frac{-\sec^2 x - \tan x \sec^2 x - \sec^2 + \tan x \sec^2 x}{\left(1 + \tan x\right)^2}$$

$$= \frac{-2\sec^{2} x}{(1+\tan x)^{2}} = \frac{-2}{\cos^{2} x \left[1 + \frac{sicx}{\cos x}\right]^{2}}$$

$$= \frac{-2}{\cos^2 x \left[\frac{\cos x + \sin x}{\cos^2 x} \right]^2}$$

$$= \frac{-2}{\cos^2 x + \sin^2 x + 2\sin x \cos x} = \frac{-2}{1 + \sin^2 x}$$

$$\therefore \frac{dy}{dx} = \frac{-2}{1 + \sin 2x}$$
 Hence proved

5. Differentiate $e^{\sqrt{\cot x}}$

Ans. Let
$$y = e^{\sqrt{\cot x}}$$

$$\frac{dy}{dx} = \frac{d}{dx}e^{\sqrt{\cot x}} = e^{\sqrt{\cot x}} \frac{d}{dx} \sqrt{\cot x}$$

$$= e^{\sqrt{\cot x}} \times \frac{1}{2\sqrt{\cot x}} \cdot \frac{d}{dx} \cot x$$

$$= \frac{e^{\sqrt{\cot x}}}{2\sqrt{\cot x}} - \cos ec^2 x$$

$$= \frac{-\cos cec^2 e^{\sqrt{\cot x}}}{2\sqrt{\cot x}}$$

6. Let
$$f(x)$$
 $\begin{cases} a+bx, x < 1 \\ 4, x = 1 \\ b-ax, x > 1 \end{cases}$ and if $\lim_{x \to 1} f(x) = f(1)$ What are the possible value of a

and b?

Ans. Given f(1) = 4

$$\lim_{x \to 1} f(x) = f(1) = 4$$

$$\lim_{x \to 1} f(x) exist$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} f(x) = 4 - - - - (1)$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} (a + bx) \quad \begin{bmatrix} \because forx < 1 \\ f(x) = a + bx \end{bmatrix}$$

$$= a + b$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1} (b - ax) \begin{bmatrix} \because forx > 1 \\ f(x) = b - ax \end{bmatrix}$$

$$=b-a$$

$$a + b = b - a = 4$$

$$a+b=4$$

$$b-a=4$$

$$\therefore a = 0$$
 and $b = 4$

7. If
$$y = \frac{1}{\sqrt{a^2 - x^2}}$$
, find $\frac{dy}{dx}$

Ans.
$$y = \frac{1}{\sqrt{a^2 - x^2}}$$

$$put \left(a^2 - x^2\right) = t$$

$$y = \frac{1}{\sqrt{t}}$$
 and $t = a^2 - x^2$

$$\frac{dy}{dt} = \frac{d}{dt}t^{\frac{-1}{2}}$$

$$=\frac{-1}{2}t^{\frac{-1}{2}-1}$$

$$=\frac{-1}{2}t\frac{-3}{2}$$

$$\frac{dt}{dx} = -2x$$

SO.

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

$$= \frac{-1}{2} t^{\frac{-3}{2}} \times (-2x) = x \ t^{\frac{-3}{2}}$$

$$=x(a^2-x^2)^{\frac{-3}{2}}$$

8. Differentiate
$$\sqrt{\frac{1-\tan x}{1+\tan x}}$$

Ans. let
$$y = \sqrt{\frac{1 - \tan x}{1 + \tan x}}$$

$$put \frac{1-\tan x}{1+\tan x} = t$$

$$y = \sqrt{t}$$
 and $t = \frac{1 - \tan x}{1 + \tan x}$

$$\frac{dy}{dt} = \frac{d}{dt}t^{\frac{1}{2}}$$

$$=\frac{1}{2}t^{\frac{1}{2}-1}=\frac{1}{2}t^{-\frac{1}{2}}$$

$$= \frac{1}{2\sqrt{t}} = \frac{1}{2\sqrt{\frac{1 - \tan x}{1 + \tan x}}} = \frac{1}{2}\sqrt{\frac{1 + \tan x}{1 - \tan x}}$$

$$\frac{dt}{dx} = \frac{\left(1 + \tan x\right) \frac{d}{dx} \left(1 - \tan x\right) - \left(1 - \tan x\right) \frac{d}{dx} \left(1 + \tan x\right)}{\left(1 + \tan x\right)^2}$$

$$= \frac{(1+\tan x)(0-\sec^2 x)-(1-\tan x)(0+\sec^2 x)}{(1+\tan x)^2}$$

$$= \frac{\sec^2 x \left[-1 - \tan x - 1 + \tan x \right]}{\left(1 + \tan x \right)^2}$$

$$=\frac{-2\sec^2 x}{\left(1+\tan x\right)^2}$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dx}} = \frac{1}{2} \sqrt{\frac{1 + \tan x}{1 - \tan x}}$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

$$= \frac{-2 \sec^2 x}{(1 + \tan x)^2} \times \frac{1}{2} \sqrt{\frac{1 + \tan x}{1 - \tan x}}$$

$$= \frac{-\sec^2 x}{(1+\tan x)^{\frac{3}{2}}(1-\tan x)^{\frac{1}{2}}}$$

9. Differentiate (i)
$$\left(\frac{\sin x + \cos x}{\sin x - \cos x}\right)$$
 (ii) $\left(\frac{\sin x - 1}{\sec x + 1}\right)$

Ans. (i)
$$\frac{d}{dx} \left(\frac{\sin x + \cos x}{\sin x - \cos x} \right)$$

$$=\frac{(\sin x - \cos x) \cdot \frac{d}{dx}(\sin x + \cos x) - (\sin x + \cos x) \cdot \frac{d}{dx}(\sin x - \cos x)}{(\sin x - \cos x)^2}$$

$$=\frac{(\sin x - \cos x)(\cos x - \sin x) - (\sin x + \cos x)(\cos x + \sin x)}{(\sin x - \cos x)^2}$$

$$=\frac{-\left[\left(\sin x - \cos x\right)^2 + \left(\sin x + \cos x\right)^2\right]}{\left(\sin x - \cos x\right)^2}$$

$$= \frac{-2(\sin^2 x + \cos^2 x)}{(\sin^2 x + \cos^2 x - 2\sin x \cos x)}$$

$$=\frac{-2}{(1-\sin 2x)}$$

(ii)
$$\frac{d}{dx} \left[\frac{\sec x - 1}{\sec x + 1} \right]$$

$$=\frac{\left(\sec x+1\right).\frac{d}{dx}\left(\sec x-1\right)-\left(\sec x-1\right).\frac{d}{dx}\left(\sec x+1\right)}{\left(\sec x+1\right)^{2}}$$

$$= \frac{\left(\sec x + 1\right)\sec x \tan x - \left(\sec x - 1\right)\sec x \tan x}{\left(\sec x + 1\right)^2}$$

$$= \frac{2 \sec x \tan x}{\left(\sec x + 1\right)^2}$$

10. Evaluate
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{\left(x - \frac{\pi}{4}\right)}$$

Ans. put
$$\left(x - \frac{\pi}{4}\right) = y$$
, so that when $x \to \frac{\pi}{4}$ then $y \to 0$

$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{\left(x - \frac{\pi}{4}\right)}$$

$$= \lim_{y \to 0} \frac{\left[\sin\left(\frac{\pi}{4} + y\right) - \cos\left(\frac{\pi}{4} + y\right) \right]}{y} \left[\text{puthing } \left(x - \frac{\pi}{4} = y\right) \right]$$

$$= \lim_{y \to 0} \frac{\left[\left(\sin \frac{\pi}{4} \cos y + \cos \frac{\pi}{4} \sin y - \sin \frac{\pi}{4} \sin y \right) \right]}{y}$$

$$= \frac{2}{\sqrt{2}} \times \lim_{y \to 0} \left(\frac{\sin y}{y} \right) = \left(\sqrt{2} \times 1 = \sqrt{2} \cdot \right)$$

11. Evaluate
$$\lim_{x\to 0} \frac{(1+x)^6-1}{(1+x)^5-1}$$

Ans. put (1+x) = y, so that when $x \to 0$ then $y \to 1$

$$\lim_{x \to 0} \frac{(1+x)^{6} - 1}{(1+x)^{5} - 1}$$

$$= \lim_{y \to 1} \left[\frac{y^6 - 1}{y^5 - 1} \right] = \frac{\lim_{y \to 1} \left(\frac{y^6 - 1}{y - 1} \right)}{\lim_{y \to 1} \left(\frac{y^5 - 1}{y - 1} \right)}$$

$$=\frac{\lim_{y\to 1}\left(\frac{y^{6}-1}{y-1}\right)}{\lim_{y\to 1}\left(\frac{y^{5}-1^{5}}{y-1}\right)}=\frac{6\times 1^{(6-1)}}{5\times 1^{(5-1)}}$$

$$= \frac{6 \times 1^5}{5 \times 1^4} = \frac{6}{5} \left[\because \lim_{x \to a} \left(\frac{x^n - a^n}{x - a} \right) = na^{n-1} \right]$$

12. Evaluate
$$\lim_{x\to a} \frac{\sqrt{a+2x} - \sqrt{3x}}{\sqrt{3a+x} - 2\sqrt{x}}$$

Ans.
$$\lim_{x \to a} \frac{\left(\sqrt{a+2x} - \sqrt{3x}\right)}{\left(\sqrt{3a+x} - 2\sqrt{x}\right)}$$

$$= \lim_{x \to a} \frac{\left(\sqrt{a+2x} - \sqrt{3x}\right)}{\left(\sqrt{3a+x} - 2\sqrt{x}\right)} \times \frac{\left(\sqrt{3a+x} + 2\sqrt{x}\right)}{\left(\sqrt{3a+x} + 2\sqrt{x}\right)} \times \frac{\left(\sqrt{a+2x} + \sqrt{3x}\right)}{\left(\sqrt{a+2x} + \sqrt{3x}\right)}$$

$$= \lim_{x \to a} \frac{\left[\left(a + 2x \right) - 3x \right] \times \left(\sqrt{3a + x} + 2\sqrt{x} \right)}{\left[\left(3a + x \right) - 4x \right] \times \left(\sqrt{a + 2x} + \sqrt{3x} \right)}$$

$$= \lim_{x \to a} \frac{\left(\overrightarrow{a} \cdot x\right) \times \left(\sqrt{3a} + x + 2\sqrt{x}\right)}{3\left(\overrightarrow{a} \cdot x\right) \times \left(\sqrt{a + 2x} + \sqrt{3x}\right)}$$

$$= \lim_{x \to a} \frac{\left(\sqrt{3a + x} + 2\sqrt{x}\right)}{3\left[\sqrt{a + 2x} + \sqrt{3x}\right]}$$

$$=\frac{\left(\sqrt{4a}+2\sqrt{a}\right)}{3\left(\sqrt{3a}+\sqrt{3a}\right)}=\frac{4\sqrt{a}}{6\sqrt{3}\sqrt{a}}=\frac{\sqrt{2}}{3\sqrt{3}}$$

13. Find the derivative of $f(x) = 1 + x + x^2 + \cdots + x^{50}$ at x = 1

Ans.
$$f(x) = 1 + x + x^2 + - - - + x^{50}$$

$$f1(x) = \frac{d}{dx} (1 + x + x^2 + - - - + x^{50})$$

$$= 0+1+2x+3x^2+--+50x^{49}$$

At
$$x=1$$

$$f^{1}(1) = 1 + 2 + 3 + - -50$$

$$= \frac{50^{25}(50+1)}{2} = 25 \times 51 \begin{bmatrix} 1+2+3--+n \\ = \frac{n(n+1)}{2} \end{bmatrix}$$

$$=1305$$

14. Find the derivative of $\sin^2 x$ with respect to x using product rule

Ans. let

$$y = \sin^2 x$$

$$y = \sin x \times \sin x$$

$$\frac{dy}{dx} = \frac{d}{dx} \cdot \sin x \times \sin x$$

$$= \sin x \frac{d}{dx} \sin x + \sin x \frac{d}{dx} \sin x$$

$$= \sin x \cdot \cos x + \sin x \cdot \cos x$$

$$= 2 \sin x \cdot \cos x = \sin 2x$$

15. Find the derivative of $\frac{x^5 - \cos x}{\sin x}$ with respect to x

Ans. let

$$y = \frac{x^5 - \cos x}{\sin x}$$

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{x5 - \cos x}{\sin x} \right)$$

$$= \frac{\sin x \frac{d}{dx} \left(x^5 - \cos x\right) - \left(x^5 - \cos x\right) \frac{d}{dx} \sin x}{\sin^2 x}$$

$$= \frac{\sin x \left[5x^4 + \sin x \right] - \left(x^5 - \cos x \right) \cos x}{\sin^2 x}$$

$$= \frac{5x^4 \sin x + \sin^2 x - x^5 \cos x + \cos^2 x}{\sin^2 x}$$

$$=\frac{5x^4\sin x - x^5\cos x + 1}{\sin^2 x}$$

16. Find $\lim_{x\to 0} f(x)$.

when
$$f(x) = \begin{cases} \frac{|x|}{x}; x \neq 0 \\ 0; x = 0 \end{cases}$$

Ans.
$$f(x) = \begin{cases} \frac{|x|}{x}; x \neq 0 \\ 0; x = 0 \end{cases}$$

We know that $|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$

$$\therefore f(x) = \begin{cases} \frac{x}{x} = 1.x > 0 \\ \frac{-x}{x} = -1.x < 0 \\ 0.x = 0 \end{cases}$$

L. H. L.
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0} -1 = -1$$

R. H. L.
$$\lim_{x\to 0^+} d(x) = \lim_{x\to 0} 1 = 1$$

L. H. L. \neq R. H. L $\lim_{x\to 0} f(x)$ does not exist

17. Find the derivative of the function $f(x) = 2x^2 + 3x - 5$ at x = -1. Also show that f'(0) + 3f'(-1) = 0

Ans.
$$f(x) = 2x^2 + 3x - 5$$

$$f^{1}(x) = \frac{d}{dx}(2x^{2} + 3x - 5)$$

$$=4x+3$$

At
$$x = -1$$

$$f^{1}(-1)4 \times -1+3 = -4+3 = -1$$

$$f^{1}(0) = 4 \times 0 + 3 = 3$$

$$f^{1}(0)+3f^{1}(-1)=3+3\times-1$$

$$=3-3=0$$
 Hence proved

18. Evaluate
$$\lim_{x\to 0} \frac{ax + x\cos x}{b\sin x}$$

Ans.
$$\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}$$

$$= \lim_{x \to 0} \frac{x[a + \cos x]}{xb \frac{\sin x}{x}}$$

$$\frac{\lim_{x\to 0} (a + \cos x)}{\lim_{x\to 0} b \frac{\sin x}{x}}$$

$$\frac{a+1}{b \times 1} = \frac{a+1}{b} \begin{bmatrix} \because \lim_{x \to 0} \cos x = 1 \\ \lim_{x \to 0} \frac{sicx}{x} = 1 \end{bmatrix}$$

19. Find derivative of tan x by first principle

Ans.
$$let f(x) = tan x$$

$$f(x+h) = \tan(x+h)$$

$$f^{1}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\tan (x + h - \tan x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{\sin(x+h)}{\cos(x+h)} - \frac{\sin x}{\cos x}}{h}$$

$$= \lim_{h \to 0} \frac{\sin \left(x+h\right) \cos x - \cos \left(x+h\right) \sin x}{\cos \left(x+h\right) \cos x h}$$

$$= \lim_{h \to 0} \frac{\sin \left[x + h - x\right]}{\cos \left(x + h\right)\cos x \, h}$$

$$= \frac{\lim_{h \to 0} \frac{\sinh}{h}}{\lim_{h \to 0} \cos(x+h)\cos x} = \frac{1}{\cos(x+0)\cos x}$$

$$= \frac{1}{\cos^2 x} = \sec^2 x$$

20. Evaluate
$$\lim_{x \to 1} \frac{x + x^2 + x^3 + - - - + x^n - n}{(x - 1)}$$

Ans.
$$\lim_{x \to 1} \frac{x + x^2 + x^3 + \dots + x^n - 1}{(x - 1)}$$

$$= \lim_{x \to 1} \frac{(x-1) + (x^2 - 1) + (x^3 - 1 + \dots + (x^n - 1))}{(x-1)}$$

$$= \lim_{x \to 1} \frac{\left(x-1\right)\left[1+\left(x+1\right)+\left(x^2+x+1\right)+---+x^{n-1}+x^{n-2}+---+1\right]}{\left(x-1\right)}$$

$$=1+2+3+--+n=\frac{n(n+1)}{2}$$

21. Evaluate
$$\underset{x\to 4}{Lt} \frac{|4-x|}{x-4}$$
 (if it exist)

Ans.
$$\lim_{x \to 4} \frac{|4-x|}{x-4}$$

L.H.L.
$$\lim_{x \to 4^{-}} \frac{-(4-x)}{x-4} = \lim_{x \to 4} \frac{-(4-x)}{-(4-x)} = 1$$

R.H.L.
$$\lim_{x \to 4^+} \frac{4-x}{x-4} = \lim_{x \to 4} \frac{-(x-4)}{(x-4)} = -1$$

$$L.H.L. \neq R.H.L.$$

$$\lim_{x \to 4} \frac{|4-x|}{x-4}$$
 does not exist

22. For what integers m and n does both

$$\underset{x\to 4}{Lt} f(x)$$
 and $\underset{x\to 1}{Lt} f(x)$ exist it

$$f(x) = \begin{cases} mx^{2} + n; x < 0 \\ nx + m; 0 \le x \le 1 \\ nx^{3} + m; x > 1 \end{cases}$$

Ans. for
$$x = 0$$

$$L.H.L. \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} mx^{2} + n$$
$$= n$$

R.H.L.
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} nx + m$$
$$= m$$

$$\lim_{x\to 0} f(x)$$
 exist

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$$

$$n = m$$

For all real number $m = n \lim_{x \to 0} f(x)$ exist

For
$$x=1$$

$$L.H.L. \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} nx + m$$

$$= n + m$$

$$R.H.L. \quad \lim_{x \to 1} f(x) = \lim_{x \to 1} nx^3 + m$$

$$= n + m$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1^+} f(x)$$

$$m+n=m+n$$

 \therefore all integral values of $m + n \lim_{x \to 1} f(x)$ exist

23. If
$$y = \sqrt{x + \frac{1}{\sqrt{x}}}$$
 prove that $2x \frac{dy}{dx + y} + y = 2\sqrt{x}$

Ans.
$$y = \sqrt{x} + \frac{1}{\sqrt{x}} = x^{\frac{1}{2}} + x^{\frac{-1}{2}}$$

Differentiating w. r. t. x we gill

$$\frac{dy}{dx} = \frac{1}{2}x^{\frac{-1}{2}} + \left(\frac{-1}{2}\right)x^{\frac{-3}{2}}$$

$$=\frac{1}{2\sqrt{x}}-\frac{1}{2x^{\frac{3}{2}}}$$

$$2x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}$$

$$2x\frac{dy}{dx} + y = \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) + \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$$

$$2x\frac{dy}{dx} + y = 2\sqrt{x}$$
 Hence proved

24. Evaluate
$$\lim_{x \to \frac{\pi}{2}} \frac{1 + \cos 2x}{(\pi - 2x)^2}$$

Ans.
$$\lim_{x \to \frac{\pi}{2}} \frac{1 + \cos 2x}{(\pi - 2x)^2}$$

let
$$\pi - 2x = y$$

$$2x = \pi - y$$

$$x \to \frac{\pi}{2}, y \to 0$$

$$\lim_{y \to 0} \frac{1 + \cos(\pi - y)}{y^2} = \lim_{y \to 0} \frac{1 - \cos y}{y^2} \frac{1}{2}$$

$$= \lim_{y \to 0} \frac{2\sin^2 \frac{y}{2}}{4 \times \frac{y^2}{4}}$$

$$= \lim_{y \to 0} \frac{1}{2} \times \frac{\sin^2 \frac{y}{2}}{\left(\frac{y}{2}\right)^2} =$$

$$= \frac{1}{2} \lim_{\frac{y}{2} \to 0} \left[\frac{\sin \frac{y}{2}}{\frac{y}{2}} \right]^2$$

$$=\frac{1}{2}\times 1$$

25. Differentiate the function
$$y = \frac{(x+2)(3x-1)}{(2x+5)}$$
 with respect to x

Ans.
$$y = \frac{(x+2)(3x-1)}{(2x+5)}$$

$$\frac{dy}{dx} = \frac{d}{dx} \frac{(x+2)(3x-1)}{(2x+5)}$$

$$=\frac{(2x+5)\frac{d}{dx}(x+2)(3x-1)-(x+2)(3x-1)\frac{d}{dx}(2x+5)}{\left(2x+5\right)^2}$$

$$=\frac{(2x+5)\bigg[(x+2)\frac{d}{dx}(3x-1)+(3x-1)\frac{d}{dx}(x+2)\bigg]-(x+2)(3x-1)\big[2+0\big]}{\big(2x+5\big)^2}$$

$$= \frac{(2x+5)\left[(x+2)\times 3 + (3x-1)\times 1\right] - 2\left[3x^2 + 6x - x - 2\right]}{(2x+5)^2}$$

$$=\frac{(2x+5)[3x+6+3x-1]-6x^2-12x+2x+4}{(2x+5)^2}$$

$$=\frac{12x^2+30x+10x+25-6x^2-10x+4}{\left(2x+5\right)^2}$$

$$=\frac{6x^2+30x+29}{(2x+5)^2}$$

26. Find
$$\lim_{x\to 5} |x| - 5$$

Ans.
$$LHS.\lim_{x\to 5^-} f(x)$$

$$x = 5 - h$$

$$x \rightarrow 5, h \rightarrow 0$$

$$\lim_{h\to 0} f(5-h)$$

$$\lim_{h\to 0} |5-h|-5$$

$$= 0$$

$$R.H.S.\lim_{x\to 5^+} f(x)$$

$$put x = 5 + h$$

$$x \rightarrow 5$$
, $h \rightarrow 0$

$$\lim_{h\to 0} f(5+h) = \lim_{h\to 0} |5+h| -5$$

$$= 0$$

$$R.H.S. = R.H.S.$$

$$\lim_{x \to 5^-} f(x) = \lim_{x \to 5^+} f(x)$$

$$\therefore \lim_{x \to 5} f(x) e xist$$

$$\lim_{x\to 5} f(x) = 0$$

27. Find
$$\lim_{x \to 0} f(x)$$
 and $\lim_{x \to 1} f(x)$ where $f(x) = \begin{cases} 2x + 3; x \le 0 \\ 3(x+1); (x > 0) \end{cases}$

Ans. given
$$f(x) = \begin{cases} 2x+3, x \le 0 \\ 3(x+1), x > 0 \end{cases}$$

for
$$x = 0$$

$$L.H.S.\lim_{x\to 0^-} f(x) = \lim_{x\to 0} 2x + 3 = 3$$

$$R.H.S. \lim_{x\to 0^+} f(x) = \lim_{x\to 0} 3(x+1) = 3$$

$$L.H.S. = R.H.S.$$

$$\lim_{x\to 0} f(x)$$
 exist

$$\therefore \lim_{x \to 0} f(x) = 3$$

for
$$x=1$$

L.H.S.

$$\therefore \lim_{x \to 1^-} f(x) = \lim_{x \to 1} 3(x+1)$$

$$=3(1+1)=6$$

R.H.S.

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1} 3(x+1)$$

$$=3(1+1)=6$$

$$L.H.S. = R.H.S.$$

$$\lim_{x \to 1} f(x)$$
 exist

$$\lim_{x \to 1} f(x) = 6$$

28. Find derivative of $\sec x$ by first principle

Ans.
$$let f(x) = sec x$$

$$f(x+h) = \sec(x+h)$$

$$f^{1}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sec(x+h) - \sec x}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{\cos(s+h)} - \frac{1}{\cos x}}{h}$$

$$= \lim_{h \to 0} \frac{\cos x - \cos (x+h)}{\cos (x+h)\cos xh}$$

$$= \lim_{h \to 0} \frac{-2\sin\left[\frac{2x+h}{2}\right]\sin\left[\frac{-h}{2}\right]}{\cos\left(x+h\right)\cos xh}$$

$$= \lim_{h \to 0} \frac{2\sin\left[\frac{2x+h}{2}\right]\sin\frac{h}{2}}{\cos(x+h)\cos xh}$$

$$\left[\sin\left(-\theta = -\sin\theta\right)\right]$$

$$=\lim_{h\to 0}\frac{2\sin\frac{h}{2}}{2\frac{h}{2}}\times\frac{\lim_{h\to 0}\sin\frac{\left(2x+h\right)}{2}}{\lim_{h\to 0}\cos\left(x+h\right)\cos x}$$

$$=1 \times \frac{\sin\left(\frac{2x+0}{2}\right)}{\cos(x+0)\cos x} = \frac{\sin x}{\cos x \cos x}$$

 $= \tan x \sec x$

29. Find derivative of
$$f(x) = \frac{4x + 5\sin x}{3x + 7\cos x}$$

Ans.
$$f(x) = \frac{4x + 5\sin x}{3x + 7\cos x}$$

$$f^{1}(x) = \frac{(3x + 7\cos x)\frac{d}{dx}(4x + 5\sin x) - (4x + 5\sin x) \times \frac{d}{dx}(3x + 7\cos x)}{(3x + 7\cos x)^{2}}$$

$$= \frac{(3x+7\cos x)(4+5\cos x)-(4x+5\sin x)(3-7\sin x)}{(3x+7\cos x)^2}$$

$$= \frac{12x + 15x\cos x + 28\cos x + 35\cos^2 x - 12x + 28\sin x + 15\sin x + 35\sin^2 x}{(3x + 7\cos x)^2}$$

$$= \frac{15x\cos x + 35\left[\sin^2 x + \cos^2 x\right] + 28 + \cos x + 43\sin x}{\left(3x + 7\cos x\right)^2}$$

$$= \frac{15x\cos x + 35 + 28\cos x + 45\sin x}{(3x + 7\cos x)^2}$$

30. Find derivative of $\frac{x^n - a^n}{x - a}$

Ans.
$$\frac{d}{dx} \frac{x^{n} - a^{n}}{x - a}$$

$$= \frac{(x - a)\frac{d}{dx}(x^{n} - a^{n}) - (x^{n} - a^{n})\frac{d}{dx}(x - a)}{(x - a)^{2}}$$

$$= \frac{(x - a)\left[nx^{n-1} - 0\right] - (x^{n} - a^{n})\left[1 - 0\right]}{(x - a)^{2}}$$

$$= \frac{nx^{n-1}(x - a) - x^{n} + a^{n}}{(x - a)^{2}}$$

$$= \frac{nx^{n} - nax^{n-1} - x^{n} + a^{n}}{(x - a)^{2}} = \frac{x^{n}(n - 1) - nax^{n-1} + a^{n}}{(x - a)^{2}}$$

CBSE Class 12 Mathematics Important Questions Chapter 13 Limits and Derivatives

6 Marks Questions

1. Differentiate tan x from first principle.

Ans.
$$f(x) = \tan x$$

$$f(x+h) = \tan(x+h)$$

$$f^{1}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\tan(x+h) - \tan x}{h}$$

$$= \lim_{h \to 0} \frac{\frac{\sin(x+h)}{\cos(x+h)} - \frac{\sin x}{\cos x}}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x+h)\cos x - \cos(x+h)\sin x}{h\cos(x+h)\cos x}$$

$$= \lim_{h \to 0} \frac{\sin(x+h-x)}{h\cos(x+h)\cos x} \left[\because \sin(A-B) = \sin A\cos B - \cos A\sin B \right]$$

$$= \lim_{h \to 0} \frac{\sinh}{h\cos(x+h)\cos x}$$

$$= \frac{\lim_{h \to 0} \frac{\sinh}{h}}{\lim_{h \to 0} \cos(x+h)\cos x} = \frac{1}{\cos x \cdot \cos x} \left[\because \lim_{h \to 0} \frac{\sinh}{h} = 1 \right]$$

$$= \frac{1}{\cos^2 x} = \sec^2 x$$

2. Differentiate $(x+4)^6$ From first principle.

Ans. let
$$f(x) = (x+4)^6$$

$$f(x+h) = (x+h+4)^6$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h+4)^6 - (x+4)^6}{h}$$

$$= \lim_{(x+h+4)\to(x+4)} \frac{(x+h+4)^6 - (x+4)^6}{(x+h+4) - (x-4)}$$

$$=6(x+4)^{(6-1)} \left[\because \lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1} \right]$$

$$=6(x+4)^5$$

3. Find derivative of cosec $\,x\,$ by first principle

Ans. proof let $f(x) = \csc x$

By def,
$$f(x) = \underset{h \to 0}{Lt} \frac{f(x+h) - f(h)}{h}$$

$$= \underset{h \to 0}{Lt} \frac{\operatorname{cosec}(x+h) - \operatorname{cosec} x}{h}$$

$$= \underset{h \to 0}{Lt} \frac{\frac{1}{\sin\left(x+h\right)} - \frac{1}{\sin x}} = \underset{h \to 0}{Lt} \frac{\sin x - \sin\left(x+h\right)}{h\sin\left(x+h\right)\sin x}$$

$$= \underset{h \to 0}{Lt} \frac{2\cos\frac{x+x+h}{2}\sin\frac{x-x+h}{2}}{h\sin(x+h)\sin x}$$

$$= \underset{h \to 0}{Lt} \frac{2\cos\left(x + \frac{h}{2}\right)\sin\left(-\frac{h}{2}\right)}{h\sin\left(x + h\right)\sin x}$$

$$=\frac{\underset{\frac{h}{2}\to 0}{Lt}\cos\left(x+\frac{h}{2}\right)}{\cos x.\underset{h\to 0}{L+}\sin\left(x+h\right)},\underset{\frac{h}{2}\to 0}{Lt}\frac{\sin\frac{h}{2}}{\frac{h}{2}}$$

$$= -\frac{\cos x}{\sin x \cdot \sin x} \cdot 1 = -\cos ecx \cot x$$

4. Find the derivatives of the following fuchsias:

(i)
$$\left(x-\frac{1}{x}\right)^3$$
 (ii) $\frac{(3x+1)\left(2\sqrt{x-1}\right)}{\sqrt{x}}$

Ans. (i) let
$$f(x) = \left(x - \frac{1}{x}\right)^3 = x^3 - \frac{1}{x^3} - 3x + \frac{1}{x}\left(x - \frac{1}{x}\right)$$

$$= x^3 - x^{-3} - 3x + 3x^{-1}.d.$$
 ff wr.t4, we get

$$f(x) = 3 \times x^2 - (-3)x^{-4} - 3 \times 1 + 3 \times (-1)x^{-2}$$

$$=3x^2+\frac{3}{x^4}-3-\frac{3}{x^2}.$$

(ii) let
$$f(x) = \frac{(3x+1)(2\sqrt{x}-1)}{\sqrt{x}} = \frac{6x^{\frac{3}{2}} - 3x + 2\sqrt{x} - 1}{\sqrt{x}}$$

$$=6x-3x^{\frac{1}{2}}+2-x^{-\frac{1}{2}}, d: ff \text{ w.r.t. } x.\text{weget}$$

$$f(x) = 6 \times 1 - 3 \times \frac{1}{2} \times x^{-\frac{1}{2}} + 0 - \left(-\frac{1}{2}\right) x^{-\frac{3}{2}}$$

$$=6-\frac{3}{2\sqrt{x}}+\frac{1}{2.x^{\frac{3}{2}}}$$

5. If
$$f(x) = \begin{cases} |x| + a; x < 0 \\ 0; x = 0 \\ |x| - a; x > 0 \end{cases}$$
 for what Values of 'a' does $\lim_{x \to 0} f(x)$ exist

Ans.given
$$f(x) = \begin{cases} |x| + a; x < 0 \\ 0; x = 0 \\ |x| - a; x > 0 \end{cases}$$

a=0

L.H.L.
$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} |x| + a$$

$$=\lim_{x\to 0} -x + a = a$$

R.H.L.
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0} |x| - a$$

$$\lim_{x\to 0} f(x)$$
 exist

$$\therefore \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$$

$$a = -a$$

$$2a = 0$$

$$a = 0$$

At
$$a = 0 \lim_{x \to 0} f(x)$$
 exist

6. Find the derivative of $\sin (x+1)$ with respect to x from first principle.

Ans. let
$$f(x) = \sin(x+1)$$

$$f(x+h) = \sin(x+h+1)$$

$$f^{1}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x+h+1) - \sin(x+1)}{h}$$

$$= \lim_{h \to 0} \frac{2\cos\left[\frac{x+h+1+x+1}{2}\right]\sin\left[\frac{x+h+1-x-1}{2}\right]}{h}$$

$$= \lim_{h \to 0} \frac{2\cos\left[x+1+\frac{h}{2}\right]\sin\frac{h}{2}}{h}$$

$$= \lim_{h \to 0} \Im \cos \left(x + 1 + \frac{h}{2} \right) \times \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\Im \frac{h}{2}}$$

$$=\cos(x+1)\times 1 = \cos(x+1)$$

7. Find the derivative of $\sin x + \cos x$ from first principle

Ans. let
$$f(x) = \sin x + \cos x$$

$$f(x+h) = \sin(x+h) + \cos(x+h)$$

$$f^{1}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\left[\sin\left(x+h\right)\cos\left(x+h\right)\right] - \left[\sin x + \cos x\right]}{h}$$

$$= \lim_{h \to 0} \frac{\left[\sin\left(x+h\right) - \sin x\right] + \left[\cos\left(x+h\right) - \cos x\right]}{h}$$

$$=\lim_{h\to 0}\frac{2\cos\left[\frac{x+h+x}{2}\right]\sin\frac{\left(x+h-x\right)}{2}-2\sin\frac{\left(x+h+x\right)}{2}\times\sin\left[\frac{x+h-x}{2}\right]}{h}$$

$$=\lim_{h\to 0}\frac{2\cos\left(x+\frac{h}{2}\right)\sin\frac{h}{2}}{h}+\lim_{h\to 0}\frac{-2\sin\left(x+\frac{h}{2}\right)\sin\frac{h}{2}}{h}$$

$$=\lim_{h\to 0}\, 2\, \cos \left(x+\frac{h}{2}\right) \frac{\sin \frac{h}{2}}{2\, \frac{h}{2}} + \lim_{h\to 0} -2\, \sin \left(x+\frac{h}{2}\right) \frac{\sin \frac{h}{2}}{2\, \frac{h}{2}}$$

$$= \cos(x+0) \times 1 - \sin(0+x) \times 1$$

$$= \cos x - \sin x$$

8. Find derivative of

$$(i)\frac{x\sin x}{1+\cos x}(ii)(ax+b)(x+d)^2$$

Ans. (i)
$$\frac{d}{dx} \frac{x \sin x}{1 + \cos x}$$

$$=\frac{\left(1+\cos x\right)\frac{d}{dx}\left(x\sin x\right)-x\sin x\frac{d}{dx}\left(1+\cos x\right)}{\left(1+\cos x\right)^{2}}$$

$$=\frac{(1+\cos x)\bigg[\,x\frac{d}{dx}(\sin x)+\sin x\frac{d}{dx}(x)\,\bigg]-x\sin x\big[0-\sin x\big]}{\big(1+\cos x\big)^2}$$

$$=\frac{(1+\cos x)[x\cos x+\sin x\times 1]+x\sin^2 x}{(1+\cos x)^2}$$

$$=\frac{x\cos x + x\cos^2 x + \sin x + \sin x\cos x + x\sin^2 x}{\left(1 + \cos x\right)^2}$$

$$=\frac{x(\cos^2 x + \sin^2 x) + x\cos x + \sin x + \sin x\cos x}{(1 + \cos x)^2}$$

$$= \frac{x + x \cos x + \sin x + \sin x \cos x}{(1 + \cos x)^2}$$

(ii)
$$\frac{d}{dx}(ax+b)(cx+d)^2$$

$$= (ax+b)\frac{d}{dx}(cx+d)^2 + (cx+d)^2\frac{d}{dx}(ax+b)$$

$$=(ax+b)2(cx+d)\frac{d}{dx}(cx+d)+(cx+d)^2\times a$$

$$= 2(ax+b)(cx+d)\times c + a(cx+d)^{2}$$

$$=(cx+d)[2c(ax+b)+a(cx+d)]$$

$$= (cx+d)[2acx+2bc+acx+ad]$$
$$= (cx+d)[3acx+2abc+ad]$$

9. Evaluate
$$\lim_{h\to 0} \frac{(a+h)^2 \sin(a+h) - a^2 \sin a}{h}$$

Ans.
$$\lim_{h \to 0} \frac{(a+h)^2 \sin(a+x) - a^2 \sin a}{h}$$

$$=\lim_{h\to 0}\frac{\left(a^2+2ah+h^2\right)\sin\left(a+h\right)-a^2\sin\,a}{h}$$

$$=\lim_{h\to 0}\frac{a^2\sin\left(a+h\right)+2ah\sin\left(a+h\right)+h^2\sin\left(a+h\right)-a^2\sin a}{h}$$

$$= \lim_{h \to 0} \frac{a^2 \left[\sin \left(a + h \right) - \sin a \right] + 2ah \sin \left(a + h \right) + h^2 \sin \left(a + h \right)}{h}$$

$$=\lim_{h\to 0}\frac{a^22\cos\left[\frac{2a+h}{2}\right]\sin\frac{h}{2}}{2\frac{h}{2}}+\lim_{h\to 0}2a\sin\left(a+h\right)+\lim_{h\to 0}h\sin\left(a+h\right)$$

$$= a^{2} \cos \left[\frac{2a+0}{2}\right] \times 1 + 2a \sin \left[a+0\right] + 0 \times \sin a$$

$$= a^2 \cos a + 2a \sin a$$

10. Differentiate

$$(i)\left(\frac{a}{x^4}\right) - \frac{b}{x^2} + \cos x \ (ii)(x + \cos x)(x - \tan x)$$

Ans. (i)
$$\frac{d}{dx} \left[\frac{a}{x^4} - \frac{b}{x^2} + \cos x \right]$$

$$= \frac{d}{dx}ax^{-4} - \frac{d}{dx}bx^{-2} + \frac{d}{dx}\cos x$$

$$= a(-4x^{-5}) - b(-2x^{-3}) - \sin x$$

$$=\frac{-4a}{x^5}+\frac{2b}{x^3}-\sin x$$

(ii)
$$\frac{d}{dx}(x + \cos x)(x - \tan x)$$

$$= (x + \cos x) \frac{d}{dx} (x - \tan x) + (x - \tan x) \frac{d}{dx} (x + \cos x)$$

$$=(x+\cos x)(1-\sec^2 x)+(x-\tan x)(1-\sin x)$$

$$= x - x \sec^2 x + \cos x - \cos x \sec^2 x + x - x \sin x - tacx + \tan x \sin x in x$$

$$= 2x - x\sec^2 x + \cos x - \cos x - x\sin x - \tan x + \tan x\sin x$$

$$= 2x - x \sec^2 x - x \sin x - \tan x + \tan x \sin x$$

Limits & Derivatives

Evaluate:

1.
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

2.
$$\lim_{x \to \frac{1}{2}} \frac{4x^2 - 1}{2x - 1}$$

1.
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$
 2. $\lim_{x \to \frac{1}{2}} \frac{4x^2 - 1}{2x - 1}$ 3. $\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}$

4.
$$\lim_{x\to 0} \frac{(x+2)^{\frac{1}{3}}-2^{\frac{1}{3}}}{x}$$

5.
$$\lim_{x\to 1} \frac{(1+x)^6-1}{(1+x)^2-1}$$

4.
$$\lim_{x\to 0} \frac{(x+2)^{\frac{1}{3}}-2^{\frac{1}{3}}}{x}$$
 5. $\lim_{x\to 1} \frac{(1+x)^6-1}{(1+x)^2-1}$ 6. $\lim_{x\to a} \frac{(2+x)^{\frac{5}{2}}-(a+2)^{\frac{5}{2}}}{x-a}$

7.
$$\lim_{x \to 1} \frac{x^4 - \sqrt{x}}{\sqrt{x} - 1}$$

7.
$$\lim_{x \to 1} \frac{x^4 - \sqrt{x}}{\sqrt{x} - 1}$$
 8. $\lim_{x \to 2} \frac{x^2 - 4}{\sqrt{3x - 2} - \sqrt{x + 2}}$

9.
$$\lim_{x \to \sqrt{2}} \frac{x^4 - 4}{x^2 + 3\sqrt{2x} - 8}$$

10.
$$\lim_{x \to 1} \frac{x^7 - 2x^5 + 1}{x^3 - 3x^2 + 2}$$

9.
$$\lim_{x \to \sqrt{2}} \frac{x^4 - 4}{x^2 + 3\sqrt{2x} - 8}$$
 10. $\lim_{x \to 1} \frac{x^7 - 2x^5 + 1}{x^3 - 3x^2 + 2}$ 11. $\lim_{x \to 0} \frac{\sqrt{1 + x^3} - \sqrt{1 - x^3}}{x^2}$

12.
$$\lim_{x \to 3} \frac{x^3 + 27}{x^5 + 243}$$

12.
$$\lim_{x \to -3} \frac{x^3 + 27}{x^5 + 243}$$
 13. $\lim_{x \to \frac{1}{2}} \left(\frac{8x - 3}{2x - 1} - \frac{4x^2 + 1}{4x^2 - 1} \right)$

14. Find 'n', if
$$\lim_{x\to 2} \frac{x^n - 2^n}{x - 2} = 80$$
, $n \in \mathbb{N}$ 15. $\lim_{x\to 0} \frac{\sin 3x}{\sin 7x}$

15.
$$\lim_{x \to 0} \frac{\sin 3x}{\sin 7x}$$

16.
$$\lim_{x \to 0} \frac{\sin^2 2x}{\sin^2 4x}$$

17.
$$\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$$

16.
$$\lim_{x\to 0} \frac{\sin^2 2x}{\sin^2 4x}$$
 17. $\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$ 18. $\lim_{x\to 0} \frac{2\sin x - \sin 2x}{x^3}$

$$\lim_{x\to 0} \frac{1-\cos mx}{1-\cos mx}$$

20.
$$\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos 6x}}{\sqrt{2} \left(\frac{\pi}{3} - x\right)}$$

19.
$$\lim_{x\to 0} \frac{1-\cos mx}{1-\cos mx}$$
 20. $\lim_{x\to \frac{\pi}{3}} \frac{\sqrt{1-\cos 6x}}{\sqrt{2}\left(\frac{\pi}{2}-x\right)}$ 21. $\lim_{x\to \frac{\pi}{4}} \frac{\sin x-\cos x}{x-\frac{\pi}{4}}$

22.
$$\lim_{x \to \frac{\pi}{6}} \frac{\sqrt{3} \sin x - \cos x}{x - \frac{\pi}{6}}$$
 23. $\lim_{x \to 0} \frac{\sin 2x + 3x}{2x + \tan 3x}$ 24. $\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}}$

$$\lim_{x \to 0} \frac{\sin 2x + 3x}{2x + \tan 3x}$$

24.
$$\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}}$$

25.
$$\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{\csc x - 2}$$

25.
$$\lim_{x \to \frac{\pi}{2}} \frac{\cot^2 x - 3}{\csc x - 2}$$
 26. $\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x}$

$$\lim_{x \to 0} \frac{\sin x - 2\sin 3x + \sin 5x}{x}$$

28. If
$$\lim_{x \to 1} \frac{x^4 - 1}{x - 1} = \lim_{x \to k} \frac{x^3 - k^3}{x^2 - k^2}$$
, then find the value of k.

Differentiate each of the functions w. r. to x in Exercises 29 to 42.

29.
$$\frac{x^4 + x^3 + x^2 + 1}{x}$$
 30. $\left(x + \frac{1}{x}\right)^3$ 31. $(3x + 5)(1 + \tan x)$

32. (sec
$$x - 1$$
) (sec $x + 1$) 33. $\frac{3x + 4}{5x^2 - 7x + 9}$ 34. $\frac{x^5 - \cos x}{\sin x}$

35.
$$\frac{x^2 \cos \frac{\pi}{4}}{\sin x}$$
 36. $(ax^2 + \cot x) (p + q \cos x)$

37.
$$\frac{a+b\sin x}{c+d\cos x}$$
 38. $(\sin x + \cos x)^2$ 39. $(2x-7)^2(3x+5)^3$

40.
$$x^2 \sin x + \cos 2x$$
 41. $\sin^3 x \cos^3 x$ 42. $\frac{1}{\alpha x^2 + bx + c}$

Differentiate each of the functions with respect to 'x' in Exercises 43 to 46 using first principle.

43.
$$\cos(x^2+1)$$
 44. $\frac{ax+b}{cx+d}$ 45. $\frac{2}{x^3}$

46. x cosx

Evaluate each of the following limits in Exercises 47 to 53.

47.
$$\lim_{y\to 0} \frac{(x+y)\sec(x+y)-x\sec x}{y}$$

48.
$$\lim_{x\to 0} \frac{(\sin(\alpha+\beta)x + \sin(\alpha-\beta)x + \sin 2\alpha x)}{\cos 2\beta x - \cos 2\alpha x} \cdot x$$

49.
$$\lim_{x \to \frac{\pi}{4}} \frac{\tan^3 x - \tan x}{\cos\left(x + \frac{\pi}{4}\right)}$$
 50. $\lim_{x \to \infty} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left(\cos\frac{x}{4} - \sin\frac{x}{4}\right)}$

51. Show that $\lim_{x\to 4} \frac{|x-4|}{|x-4|}$ does not exists

52. Let
$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} & \text{when } x \neq \frac{\pi}{2} \\ 3 & x = \frac{\pi}{2} \end{cases}$$
 and if $\lim_{x \to \frac{\pi}{2}} f(x) = f(\frac{\pi}{2})$.

find the value of k

53. Let
$$f(x) = \begin{cases} x+2 & x \le -1 \\ cx^2 & x > -1 \end{cases}$$
, find 'c' if $\lim_{x \to -1} f(x)$ exists.

Objective Type Questions

Choose the correct answer out of 4 options given against each Exercise 54 to 76 (M.C.Q).

54.
$$\lim_{x\to x} \frac{\sin x}{x-\pi}$$
 is

- (A) 1
- (B) 2
- (C) -1
- (D) -2

55.
$$\lim_{x\to 0} \frac{x^2 \cos x}{1-\cos x}$$
 is

- (A) 2 (B) $\frac{3}{2}$ (C) $\frac{-3}{2}$
 - (D) 1

56.
$$\lim_{x\to 0} \frac{(1+x)^n-1}{x}$$
 is

(A) n

(B) 1

(C) -n (D) 0

57.
$$\lim_{x \to 1} \frac{x^m - 1}{x^n - 1}$$
 is

(A) 1 (B) $\frac{m}{n}$ (C) $-\frac{m}{n}$ (D) $\frac{m^2}{n^2}$

58.
$$\lim_{x\to 0} \frac{1-\cos 4\theta}{1-\cos 6\theta}$$
 is

(A) $\frac{4}{9}$ (B) $\frac{1}{2}$ (C) $\frac{-1}{2}$ (D) -1

59.
$$\lim_{x\to 0} \frac{\csc x - \cot x}{x}$$
 is

(A) $\frac{-1}{2}$ (B) 1

(C) $\frac{1}{2}$ (D) 1

60.
$$\lim_{x\to 0} \frac{\sin x}{\sqrt{x+1} - \sqrt{1-x}}$$
 is

(A) 2 (B) 0

(C) 1 (D) -1

61.
$$\lim_{x \to \frac{\pi}{4}} \frac{\sec^2 x - 2}{\tan x - 1}$$
 is

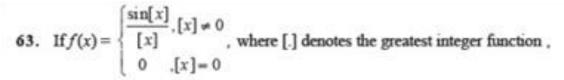
(A) 3 (B) 1

(C) 0 (D) $\sqrt{2}$

62.
$$\lim_{x \to 1} \frac{(\sqrt{x} - 1)(2x - 3)}{2x^2 + x - 3}$$
 is

(A) $\frac{1}{10}$ (B) $\frac{-1}{10}$

(C) 1 (D) None of these



then $\lim_{x\to 0} f(x)$ is equal to

- (A) 1
- (B) 0
- (C) -1 (D) None of these

- 64. $\lim_{x\to 0} \frac{|\sin x|}{x}$ is
 - (A) 1
- (B) −1
- (C) does not exist(D) None of these
- 65. Let $f(x) = \begin{cases} x^2 1, & 0 < x < 2 \\ 2x + 3, & 2 \le x < 3 \end{cases}$ the quadratic equation whose roots are $\lim_{x \to 2^-} f(x)$ and

$$\lim_{x\to 2^+} f(x) is$$

- (A) $x^2 6x + 9 = 0$
- (B) $x^2 7x + 8 = 0$
- (C) $x^2 14x + 49 = 0$
- (D) $x^2 10x + 21 = 0$
- 66. $\lim_{x\to 0} \frac{\tan 2x x}{3x \sin x}$ is
- (A) 2 (B) $\frac{1}{2}$ (C) $\frac{-1}{2}$ (D) $\frac{1}{4}$

- 67. Let f(x) = x [x]; $\in \mathbb{R}$, then $f'(\frac{1}{2})$ is
 - (A) $\frac{3}{2}$ (B) 1 (C) 0
- (D) -1

- 68. If $y = \sqrt{x} + \frac{1}{\sqrt{x}}$, then $\frac{dy}{dx}$ at x = 1 is
- (A) 1 (B) $\frac{1}{2}$ (C) $\frac{1}{\sqrt{2}}$
- (D) 0

```
69. If f(x) = \frac{x-4}{2\sqrt{x}}, then f'(1) is
```

- (A) $\frac{5}{4}$ (B) $\frac{4}{5}$
- (C) 1 (D) 0

70. If
$$y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}$$
, then $\frac{dy}{dx}$ is

- (A) $\frac{-4x}{(x^2-1)^2}$ (B) $\frac{-4x}{x^2-1}$ (C) $\frac{1-x^2}{4x}$ (D) $\frac{4x}{x^2-1}$

71. If
$$y = \frac{\sin x + \cos x}{\sin x - \cos x}$$
, then $\frac{dy}{dx}$ at $x = 0$ is

- (A) -2 (B) 0
- (C) $\frac{1}{2}$ (D) does not exist

72. If
$$y = \frac{\sin(x+9)}{\cos x}$$
 then $\frac{dy}{dx}$ at $x = 0$ is

- (A) cos 9
- (B) sin 9
- (C) 0
- (D) 1

73. If
$$f(x) = 1 + x + \frac{x^2}{2} + ... + \frac{x^{100}}{100}$$
, then $f'(1)$ is equal to

- (A) $\frac{1}{100}$ (B) 100 (C) does not exist
- (D) 0

74. If
$$f(x) = \frac{x^n - a^n}{x - a}$$
 for some constant 'a', then $f'(a)$ is

- (A) 1 (B) 0 (C) does not exist (D) $\frac{1}{2}$

75. If
$$f(x) = x^{100} + x^{99} + ... + x + 1$$
, then $f'(1)$ is equal to

- (A) 5050
- (B) 5049
- (C) 5051
- (D) 50051

76. If
$$f(x) = 1 - x + x^2 - x^3 \dots - x^{00} + x^{100}$$
, then $f'(1)$ is equal to

- (A) 150
- (B) -50 (C) -150
- (D) 50