

# PRINCIPLE OF MATHEMATICAL INDUCTION

# 4.1 Overview

Mathematical induction is one of the techniques which can be used to prove variety of mathematical statements which are formulated in terms of n, where n is a positive integer.

# 4.1.1 The principle of mathematical induction

Let P(n) be a given statement involving the natural number *n* such that

- (i) The statement is true for n = 1, i.e., P(1) is true (or true for any fixed natural number) and
- (ii) If the statement is true for n = k (where k is a particular but arbitrary natural number), then the statement is also true for n = k + 1, i.e, truth of P(k) implies the truth of P(k + 1). Then P(n) is true for all natural numbers n.

# 4.2 Solved Examples

# **Short Answer Type**

Prove statements in Examples 1 to 5, by using the Principle of Mathematical Induction for all  $n \in \mathbf{N}$ , that :

**Example 1** 
$$1 + 3 + 5 + ... + (2n - 1) = n^2$$

Solution Let the given statement P(n) be defined as  $P(n) : 1 + 3 + 5 + ... + (2n - 1) = n^2$ , for  $n \in \mathbb{N}$ . Note that P(1) is true, since

$$P(1): 1 = 1^2$$

Assume that P(k) is true for some  $k \in \mathbb{N}$ , i.e.,

$$P(k): 1 + 3 + 5 + \dots + (2k - 1) = k^{2}$$

Now, to prove that P(k + 1) is true, we have

$$1 + 3 + 5 + \dots + (2k - 1) + (2k + 1)$$
  
= k<sup>2</sup> + (2k + 1)  
= k<sup>2</sup> + 2k + 1 = (k + 1)<sup>2</sup> (Why?)

Thus, P(k + 1) is true, whenever P(k) is true.

Hence, by the Principle of Mathematical Induction, P(n) is true for all  $n \in \mathbf{N}$ .

Example 2 
$$\sum_{t=1}^{n-1} t(t+1) = \frac{n(n-1)(n+1)}{3}$$
, for all natural numbers  $n \ge 2$ .

**Solution** Let the given statement P(n), be given as

P(n): 
$$\sum_{t=1}^{n-1} t(t+1) = \frac{n(n-1)(n+1)}{3}$$
, for all natural numbers  $n \ge 2$ .

We observe that

P(2): 
$$\sum_{t=1}^{2-1} t(t+1) = \sum_{t=1}^{1} t(t+1) = 1.2 = \frac{1.2.3}{3}$$
  
=  $\frac{2.(2-1)(2+1)}{3}$ 

Thus, P(n) in true for n = 2.

Assume that P(n) is true for  $n = k \in \mathbb{N}$ .

i.e., 
$$P(k) : \sum_{t=1}^{k-1} t(t+1) = \frac{k(k-1)(k+1)}{3}$$

To prove that P(k + 1) is true, we have

$$\sum_{t=1}^{(k+1-1)} t(t+1) = \sum_{t=1}^{k} t(t+1)$$
$$= \sum_{t=1}^{k-1} t(t+1) + k(k+1) = \frac{k(k-1)(k+1)}{3} + k(k+1)$$
$$= k(k+1) \left[\frac{k-1+3}{3}\right] = \frac{k(k+1)(k+2)}{3}$$
$$= \frac{(k+1)((k+1)-1)((k+1)+1)}{3}$$

Thus, P(k + 1) is true, whenever P(k) is true.

Hence, by the Principle of Mathematical Induction, P(n) is true for all natural numbers  $n \ge 2$ .

Example 3 
$$\left(1-\frac{1}{2^2}\right) \cdot \left(1-\frac{1}{3^2}\right) \cdots \left(1-\frac{1}{n^2}\right) = \frac{n+1}{2n}$$
, for all natural numbers,  $n \ge 2$ .

**Solution** Let the given statement be P(n), i.e.,

$$P(n):\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdots\left(1-\frac{1}{n^2}\right) = \frac{n+1}{2n}, \text{ for all natural numbers, } n \ge 2$$

We, observe that P(2) is true, since

$$\left(1-\frac{1}{2^2}\right) = 1-\frac{1}{4} = \frac{4-1}{4} = \frac{3}{4} = \frac{2+1}{2\times 2}$$

Assume that P(n) is true for some  $k \in \mathbb{N}$ , i.e.,

$$\mathbf{P}(k): \left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{k^2}\right) = \frac{k+1}{2k}$$

Now, to prove that P(k + 1) is true, we have

$$\left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{k^2}\right) \cdot \left(1 - \frac{1}{(k+1)^2}\right)$$
$$= \frac{k+1}{2k} \left(1 - \frac{1}{(k+1)^2}\right) = \frac{k^2 + 2k}{2k(k+1)} = \frac{(k+1) + 1}{2(k+1)}$$

Thus, P(k + 1) is true, whenever P(k) is true.

Hence, by the Principle of Mathematical Induction, P(n) is true for all natural numbers,  $n \ge 2$ .

**Example 4**  $2^{2n} - 1$  is divisible by 3.

**Solution** Let the statement P(n) given as

P(n):  $2^{2n} - 1$  is divisible by 3, for every natural number *n*.

We observe that P(1) is true, since

$$2^2 - 1 = 4 - 1 = 3.1$$
 is divisible by 3.

Assume that P(n) is true for some natural number k, i.e., P(k):  $2^{2k} - 1$  is divisible by 3, i.e.,  $2^{2k} - 1 = 3q$ , where  $q \in \mathbb{N}$ Now, to prove that P(k + 1) is true, we have

$$P(k + 1) : 2^{2(k+1)} - 1 = 2^{2k+2} - 1 = 2^{2k} \cdot 2^2 - 1$$
$$= 2^{2k} \cdot 4 - 1 = 3 \cdot 2^{2k} + (2^{2k} - 1)$$

$$= 3.2^{2k} + 3q$$
  
= 3 (2<sup>2k</sup> + q) = 3m, where  $m \in \mathbb{N}$ 

Thus P(k + 1) is true, whenever P(k) is true.

Hence, by the Principle of Mathematical Induction P(n) is true for all natural numbers n.

**Example 5**  $2n + 1 < 2^n$ , for all natual numbers  $n \ge 3$ .

Solution Let P(n) be the given statement, i.e.,  $P(n) : (2n + 1) < 2^n$  for all natural numbers,  $n \ge 3$ . We observe that P(3) is true, since

$$2.3 + 1 = 7 < 8 = 2^{3}$$

Assume that P(n) is true for some natural number k, i.e.,  $2k + 1 < 2^k$ 

To prove P(k + 1) is true, we have to show that  $2(k + 1) + 1 < 2^{k+1}$ . Now, we have

2(k+1) + 1 = 2 k + 3

$$= 2k + 1 + 2 < 2^{k} + 2 < 2^{k} \cdot 2 = 2^{k+1}$$

Thus P(k + 1) is true, whenever P(k) is true.

Hence, by the Principle of Mathematical Induction P(n) is true for all natural numbers,  $n \ge 3$ .

# Long Answer Type

**Example 6** Define the sequence  $a_1, a_2, a_3...$  as follows :

 $a_1 = 2, a_n = 5 a_{n-1}$ , for all natural numbers  $n \ge 2$ .

- (i) Write the first four terms of the sequence.
- (ii) Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula  $a_n = 2.5^{n-1}$  for all natural numbers.

# **Solution**

- (i) We have  $a_1 = 2$ 
  - $a_{2} = 5a_{2-1} = 5a_{1} = 5.2 = 10$   $a_{3} = 5a_{3-1} = 5a_{2} = 5.10 = 50$  $a_{4} = 5a_{4-1} = 5a_{3} = 5.50 = 250$
- (ii) Let P(n) be the statement, i.e.,

P(n):  $a_n = 2.5^{n-1}$  for all natural numbers. We observe that P(1) is true Assume that P(n) is true for some natural number k, i.e., P(k):  $a_k = 2.5^{k-1}$ . Now to prove that P(k + 1) is true, we have

$$P(k + 1) : a_{k+1} = 5.a_k = 5 . (2.5^{k-1})$$
$$= 2.5^k = 2.5^{(k+1)-1}$$

Thus P(k + 1) is true whenever P (k) is true.

Hence, by the Principle of Mathematical Induction, P(n) is true for all natural numbers.

**Example 7** The distributive law from algebra says that for all real numbers c,  $a_1$  and  $a_2$ , we have  $c(a_1 + a_2) = ca_1 + ca_2$ .

Use this law and mathematical induction to prove that, for all natural numbers,  $n \ge 2$ , if  $c, a_1, a_2, \dots, a_n$  are any real numbers, then

$$c (a_1 + a_2 + \dots + a_n) = ca_1 + ca_2 + \dots + ca_n$$

**Solution** Let P(n) be the given statement, i.e.,

P(n):  $c (a_1 + a_2 + ... + a_n) = ca_1 + ca_2 + ... ca_n$  for all natural numbers  $n \ge 2$ , for  $c, a_1, a_2, ..., a_n \in \mathbb{R}$ .

We observe that P(2) is true since

$$c(a_1 + a_2) = ca_1 + ca_2$$
 (by distributive law)

Assume that P(n) is true for some natural number k, where k > 2, i.e.,

$$\mathbf{P}(k) : c \ (a_1 + a_2 + \dots + a_k) = ca_1 + ca_2 + \dots + ca_k$$

Now to prove P(k + 1) is true, we have

$$P(k + 1) : c (a_1 + a_2 + ... + a_k + a_{k+1})$$
  
= c ((a\_1 + a\_2 + ... + a\_k) + a\_{k+1})  
= c (a\_1 + a\_2 + ... + a\_k) + ca\_{k+1} (by distributive law)  
= ca\_1 + ca\_2 + ... + ca\_k + ca\_{k+1}

Thus P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of Mathematical Induction, P(n) is true for all natural numbers  $n \ge 2$ .

**Example 8** Prove by induction that for all natural number *n*  $\sin \alpha + \sin (\alpha + \beta) + \sin (\alpha + 2\beta) + ... + \sin (\alpha + (n - 1) \beta)$ 

$$=\frac{\sin\left(\alpha+\frac{n-1}{2}\beta\right)\sin\left(\frac{n\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)}$$

**Solution** Consider P (*n*) :  $\sin \alpha + \sin (\alpha + \beta) + \sin (\alpha + 2\beta) + ... + \sin (\alpha + (n-1)\beta)$ 

$$=\frac{\sin\left(\alpha+\frac{n-1}{2}\beta\right)\sin\left(\frac{n\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)}, \text{ for all natural number } n.$$

We observe that P (1) is true, since

P(1): 
$$\sin \alpha = \frac{\sin(\alpha+0)\sin\frac{\beta}{2}}{\sin\frac{\beta}{2}}$$

Assume that P(*n*) is true for some natural numbers *k*, i.e., P (*k*) :  $\sin \alpha + \sin (\alpha + \beta) + \sin (\alpha + 2\beta) + ... + \sin (\alpha + (k - 1)\beta)$ 

$$=\frac{\sin\left(\alpha+\frac{k-1}{2}\beta\right)\sin\left(\frac{k\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)}$$

Now, to prove that P (k + 1) is true, we have P (k + 1) :  $\sin \alpha + \sin (\alpha + \beta) + \sin (\alpha + 2\beta) + ... + \sin (\alpha + (k - 1)\beta) + \sin (\alpha + k\beta)$ 

$$= \frac{\sin\left(\alpha + \frac{k-1}{2}\beta\right)\sin\left(\frac{k\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)} + \sin\left(\alpha + k\beta\right)}$$
$$= \frac{\sin\left(\alpha + \frac{k-1}{2}\beta\right)\sin\frac{k\beta}{2} + \sin\left(\alpha + k\beta\right)\sin\frac{\beta}{2}}{\sin\frac{\beta}{2}}$$
$$= \frac{\cos\left(\alpha - \frac{\beta}{2}\right) - \cos\left(\alpha + k\beta - \frac{\beta}{2}\right) + \cos\left(\alpha + k\beta - \frac{\beta}{2}\right) - \cos\left(\alpha + k\beta + \frac{\beta}{2}\right)}{2\sin\frac{\beta}{2}}$$

$$= \frac{\cos\left(\alpha - \frac{\beta}{2}\right) - \cos\left(\alpha + k\beta + \frac{\beta}{2}\right)}{2\sin\frac{\beta}{2}}$$
$$= \frac{\sin\left(\alpha + \frac{k\beta}{2}\right)\sin\left(\frac{k\beta + \beta}{2}\right)}{\sin\frac{\beta}{2}}$$
$$= \frac{\sin\left(\alpha + \frac{k\beta}{2}\right)\sin(k+1)\left(\frac{\beta}{2}\right)}{\sin\frac{\beta}{2}}$$

Thus P (k + 1) is true whenever P (k) is true.

Hence, by the Principle of Mathematical Induction P(n) is true for all natural number n.

**Example 9** Prove by the Principle of Mathematical Induction that

 $1 \times 1! + 2 \times 2! + 3 \times 3! + ... + n \times n! = (n + 1)! - 1$  for all natural numbers n.

**Solution** Let P(n) be the given statement, that is,

 $P(n): 1 \times 1! + 2 \times 2! + 3 \times 3! + ... + n \times n! = (n + 1)! - 1$  for all natural numbers *n*. Note that P (1) is true, since

$$P(1): 1 \times 1! = 1 = 2 - 1 = 2! - 1.$$

Assume that P(n) is true for some natural number k, i.e., P(k):  $1 \times 1! + 2 \times 2! + 3 \times 3! + ... + k \times k! = (k + 1)! - 1$ To prove P (k + 1) is true, we have P (k + 1):  $1 \times 1! + 2 \times 2! + 3 \times 3! + ... + k \times k! + (k + 1) \times (k + 1)!$   $= (k + 1)! - 1 + (k + 1)! \times (k + 1)$  = (k + 1 + 1) (k + 1)! - 1= (k + 2) (k + 1)! - 1 = ((k + 2)! - 1)

Thus P (k + 1) is true, whenever P (k) is true. Therefore, by the Principle of Mathematical Induction, P (n) is true for all natural number n.

**Example 10** Show by the Principle of Mathematical Induction that the sum  $S_n$  of the *n* term of the series  $1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2$  ... is given by

$$S_n = \begin{cases} \frac{n(n+1)^2}{2}, & \text{if } n \text{ is even} \\ \frac{n^2(n+1)}{2}, & \text{if } n \text{ is odd} \end{cases}$$

Solution Here P(n) : S<sub>n</sub> = 
$$\begin{cases} \frac{n(n+1)^2}{2}, \text{ when } n \text{ is even} \\ \frac{n^2(n+1)}{2}, \text{ when } n \text{ is odd} \end{cases}$$

Also, note that any term  $T_n$  of the series is given by

$$\mathbf{T}_{n} = \begin{cases} n^{2} \text{ if } n \text{ is odd} \\ 2n^{2} \text{ if } n \text{ is even} \end{cases}$$

We observe that P(1) is true since

P(1): S<sub>1</sub> = 1<sup>2</sup> = 1 = 
$$\frac{1.2}{2} = \frac{1^2 \cdot (1+1)}{2}$$

Assume that P(k) is true for some natural number k, i.e.

Case 1 When k is odd, then k + 1 is even. We have P (k + 1) :  $S_{k+1} = 1^2 + 2 \times 2^2 + ... + k^2 + 2 \times (k + 1)^2$  $= \frac{k^2(k+1)}{2} + 2 \times (k + 1)^2$   $= \frac{(k+1)}{2} [k^2 + 4(k + 1)] \text{ (as } k \text{ is odd, } 1^2 + 2 \times 2^2 + ... + k^2 = k^2 \frac{(k+1)}{2})$   $= \frac{k+1}{2} [k^2 + 4k + 4]$   $= \frac{k+1}{2} (k+2)^2 = (k + 1) \frac{[(k+1)+1]^2}{2}$ 

So P(k + 1) is true, whenever P(k) is true in the case when k is odd. Case 2 When k is even, then k + 1 is odd.

Now, 
$$P(k+1): 1^2 + 2 \times 2^2 + ... + 2 \cdot k^2 + (k+1)^2$$
  
=  $\frac{k(k+1)^2}{2} + (k+1)^2$  (as k is even,  $1^2 + 2 \times 2^2 + ... + 2k^2 = k \frac{(k+1)^2}{2}$ )  
=  $\frac{(k+1)^2(k+2)}{2} = \frac{(k+1)^2((k+1)+1)}{2}$ 

Therefore, P (k + 1) is true, whenever P (k) is true for the case when k is even. Thus P (k + 1) is true whenever P (k) is true for any natural numbers k. Hence, P (n) true for all natural numbers.

# **Objective Type Questions**

Choose the correct answer in Examples 11 and 12 (M.C.Q.)

**Example 11** Let P(n) : " $2^n < (1 \times 2 \times 3 \times ... \times n)$ ". Then the smallest positive integer for which P (*n*) is true is

(A) 1 (B) 2 (C) 3 (D) 4

Solution Answer is D, since

P (1): 2 < 1 is false P (2):  $2^2 < 1 \times 2$  is false

P (3) :  $2^{3} < 1 \times 2 \times 3$  is false

But  $P(4): 2^4 < 1 \times 2 \times 3 \times 4$  is true

**Example 12** A student was asked to prove a statement P (*n*) by induction. He proved that P (k + 1) is true whenever P (k) is true for all  $k > 5 \in \mathbb{N}$  and also that P (5) is true. On the basis of this he could conclude that P (n) is true

(A) for all  $n \in \mathbb{N}$ (B) for all n > 5(C) for all  $n \ge 5$ (D) for all n < 5

**Solution** Answer is (C), since P(5) is true and P(k + 1) is true, whenever P(k) is true. Fill in the blanks in Example 13 and 14.

**Example 13** If P (*n*) : "2.4<sup>2n+1</sup> + 3<sup>3n+1</sup> is divisible by  $\lambda$  for all  $n \in \mathbb{N}$ " is true, then the value of  $\lambda$  is \_\_\_\_\_

Solution Now, for n = 1,  $2.4^{2+1} + 3^{3+1} = 2.4^3 + 3^4 = 2.64 + 81 = 128 + 81 = 209$ , for  $n = 2, 2.4^5 + 3^7 = 8.256 + 2187 = 2048 + 2187 = 4235$ 

Note that the H.C.F. of 209 and 4235 is 11. So  $2.4^{2n+1} + 3^{3n+1}$  is divisible by 11. Hence,  $\lambda$  is 11

**Example 14** If P(n): "49<sup>*n*</sup> + 16<sup>*n*</sup> + *k* is divisible by 64 for  $n \in \mathbb{N}$ " is true, then the least negative integral value of *k* is \_\_\_\_\_.

**Solution** For n = 1, P(1): 65 + k is divisible by 64.

Thus *k*, should be -1 since, 65 - 1 = 64 is divisible by 64.

**Example 15** State whether the following proof (by mathematical induction) is true or false for the statement.

P(n): 
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

**Proof** By the Principle of Mathematical induction, P(n) is true for n = 1,

$$1^2 = 1 = \frac{1(1+1)(2\cdot 1+1)}{6}$$
. Again for some  $k \ge 1$ ,  $k^2 = \frac{k(k+1)(2k+1)}{6}$ . Now we

prove that

$$(k+1)^2 = \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$$

# Solution False

Since in the inductive step both the inductive hypothesis and what is to be proved are wrong.

4.3 EXERCISE

## **Short Answer Type**

- 1. Give an example of a statement P(n) which is true for all  $n \ge 4$  but P(1), P(2) and P(3) are not true. Justify your answer.
- 2. Give an example of a statement P(*n*) which is true for all *n*. Justify your answer. Prove each of the statements in Exercises 3 - 16 by the Principle of Mathematical Induction :
- 3.  $4^n 1$  is divisible by 3, for each natural number *n*.
- **4.**  $2^{3n}-1$  is divisible by 7, for all natural numbers *n*.
- 5.  $n^3 7n + 3$  is divisible by 3, for all natural numbers *n*.
- 6.  $3^{2n}-1$  is divisible by 8, for all natural numbers *n*.

- 7. For any natural number n,  $7^n 2^n$  is divisible by 5.
- 8. For any natural number n,  $x^n y^n$  is divisible by x y, where x and y are any integers with  $x \neq y$ .
- 9.  $n^3 n$  is divisible by 6, for each natural number  $n \ge 2$ .
- **10.**  $n(n^2 + 5)$  is divisible by 6, for each natural number *n*.
- 11.  $n^2 < 2^n$  for all natural numbers  $n \ge 5$ .
- 12. 2n < (n+2)! for all natural number *n*.

13. 
$$\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$$
, for all natural numbers  $n \ge 2$ .

- **14.**  $2 + 4 + 6 + ... + 2n = n^2 + n$  for all natural numbers *n*.
- **15.**  $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} 1$  for all natural numbers *n*.
- **16.** 1 + 5 + 9 + ... + (4n 3) = n(2n 1) for all natural numbers *n*.

# Long Answer Type

Use the Principle of Mathematical Induction in the following Exercises.

- 17. A sequence  $a_1, a_2, a_3 \dots$  is defined by letting  $a_1 = 3$  and  $a_k = 7a_{k-1}$  for all natural numbers  $k \ge 2$ . Show that  $a_n = 3.7^{n-1}$  for all natural numbers.
- 18. A sequence  $b_0$ ,  $b_1$ ,  $b_2$  ... is defined by letting  $b_0 = 5$  and  $b_k = 4 + b_{k-1}$  for all natural numbers k. Show that  $b_n = 5 + 4n$  for all natural number n using mathematical induction.
- **19.** A sequence  $d_1, d_2, d_3 \dots$  is defined by letting  $d_1 = 2$  and  $d_k = \frac{a_{k-1}}{k}$  for all natural numbers,  $k \ge 2$ . Show that  $d_n = \frac{2}{n!}$  for all  $n \in \mathbb{N}$ .
- 20. Prove that for all  $n \in \mathbb{N}$  $\cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + 2\beta) + ... + \cos (\alpha + (n-1)\beta)$

$$=\frac{\cos\left(\alpha + \left(\frac{n-1}{2}\right)\beta\right)\sin\left(\frac{n\beta}{2}\right)}{\sin\frac{\beta}{2}}$$

21. Prove that,  $\cos \theta \cos 2\theta \cos 2^2\theta \dots \cos 2^{n-1}\theta = \frac{\sin 2^n \theta}{2^n \sin \theta}$ , for all  $n \in \mathbb{N}$ .

22. Prove that, 
$$\sin \theta + \sin 2\theta + \sin 3\theta + ... + \sin n\theta = \frac{\frac{\sin n\theta}{2}\sin\frac{(n+1)}{2}\theta}{\frac{\sin \theta}{2}}$$
, for all  $n \in \mathbb{N}$ .

- **23.** Show that  $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$  is a natural number for all  $n \in \mathbb{N}$ .
- 24. Prove that  $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{13}{24}$ , for all natural numbers n > 1.
- **25.** Prove that number of subsets of a set containing *n* distinct elements is  $2^n$ , for all  $n \in \mathbb{N}$ .

# **Objective Type Questions**

Choose the correct answers in Exercises 26 to 30 (M.C.Q.).

- **26.** If  $10^n + 3.4^{n+2} + k$  is divisible by 9 for all  $n \in \mathbb{N}$ , then the least positive integral value of k is
- (A) 5 (B) 3 (C) 7 (D) 1 27. For all  $n \in \mathbb{N}$ ,  $3.5^{2n+1} + 2^{3n+1}$  is divisible by (A) 19 (B) 17 (C) 23 (D) 25

**28.** If  $x^n - 1$  is divisible by x - k, then the least positive integral value of k is (A) 1 (B) 2 (C) 3 (D) 4

Fill in the blanks in the following :

**29.** If  $P(n) : 2n < n!, n \in \mathbb{N}$ , then P(n) is true for all  $n \ge$ \_\_\_\_\_.

State whether the following statement is true or false. Justify.

**30.** Let P(n) be a statement and let  $P(k) \Rightarrow P(k + 1)$ , for some natural number k, then P(n) is true for all  $n \in \mathbb{N}$ .