Unit 4 (Principle Of Mathematical Induction)

Short Answer Type Questions
Q1. Give an example of a statement $P(n)$ which is true for all $n \geq 4$ but $P(I), P(2)$ and $P(3)$ are not true. Justify your answer.

Sol. Consider the statement $\mathrm{P}(\mathrm{n}): 3 \mathrm{n}<\mathrm{n}$!
For $n=1,3 \times 1<1$!, which is not true
For $n=2,3 \times 2<2!$, which is not true
For $n=3,3 \times 3<3$!, which is not true
For $n=4,3 \times 4<4$!, which is true
For $n=5,3 \times 5<5$!, which is true
Q2. Give an example of a statement $\mathrm{P}(\mathrm{n})$ which is true for all Justify your answer.

Sol. Consider the statement:

$$
P(n): 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

For $n=1,1^{3}=\frac{1^{2}(1+1)^{2}}{4}=1$
Thus, $P(1)$ is true.
For $n=2,1^{3}+2^{3}=1+8=9$ and $\frac{2^{2}(2+1)^{2}}{4}=9$
Thus, $P(2)$ is true.
For $n=3,1^{3}+2^{3}+3^{3}=1+8+27=36$ and $\frac{3^{2}(3+1)^{2}}{4}=36$
Thus, $P(3)$ is true.
Hence, the given statement is true for all n.

Instruction for Exercises 3-16: Prove each of the statements in these Exercises by the Principle of Mathematical Induction.

Q3. $4^{\mathrm{n}}-1$ is divisible by 3 , for each natural number

Sol: Let $P(n): 4^{n}-1$ is divisible by 3 for each natural number n.
Now, $P(I)$: $4^{1}-1=3$, which is divisible by 3 Hence, $P(I)$ is true.
Let us assume that $P(n)$ is true for some natural number $n=k$.
$P(k): 4^{k}-1$ is divisible by 3
or $\quad 4^{k}-1=3 m, m \in N$ (i)
Now, we have to prove that $P(k+1)$ is true.
$P(k+1): 4^{k+1}-1$
$=4^{\mathrm{k}}-4-\mathrm{l}$
$=4(3 m+1)-1$ [Using (i)]
$=12 m+3$
$=3(4 m+1)$, which is divisible by 3 Thus, $P(k+1)$ is true whenever $P(k)$ is true.
Hence, by the principle of mathematical induction $P(n)$ is true for all natural numbers n.

Q4. $2^{3 n}-1$ is divisible by 7 , for all natural numbers
Sol: Let $P(n): 2^{3 n}-1$ is divisible by 7
Now, $P(1)$: $2^{3}-1=7$, which is divisible by 7 .
Hence, $P(I)$ is true.
Let us assume that $P(n)$ is true for some natural number $n=k$.
$P(k): 2^{3 k}-1$ is divisible by 7 .
or $\quad 2^{3 k}-1=7 m, m \in N$ (i)
Now, we have to prove that $P(k+1)$ is true.
$P(k+1): 2^{3(k+1)}-1$
$=2^{3 k} \cdot 2^{3}-1$
$=8(7 m+1)-1$
$=56 \mathrm{~m}+7$
$=7(8 m+1)$, which is divisible by 7 .
Thus, $P(k+1)$ is true whenever $P(k)$ is true.

Q5. $\mathrm{n}^{3}-7 \mathrm{n}+3$ is divisible by 3 , for all natural numbers

Sol: Let $P(n): n^{3}-7 n+3$ is divisible by 3 , for all natural numbers n.
Now $P(I):(I)^{3}-7(1)+3=-3$, which is divisible by 3 .
Hence, $P(I)$ is true.
Let us assume that $P(n)$ is true for some natural number $n=k$.
$P(k)=K^{3}-7 k+3$ is divisible by 3
or $K^{3}-7 k+3=3 m, m \in N \quad$ (i)
Now, we have to prove that $P(k+1)$ is true.
$P(k+1):(k+1)^{3}-7(k+1)+3$
$=k^{3}+1+3 k(k+1)-7 k-7+3=k^{3}-7 k+3+3 k(k+1)-6$
$=3 \mathrm{~m}+3[\mathrm{k}(\mathrm{k}+1)-2][$ Using (i)]
$=3[m+(k(k+1)-2)]$, which is divisible by 3 Thus, $P(k+1)$ is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for all natural numbers n.

Q6. $3^{2 n}-1$ is divisible by 8 , for all natural numbers

Sol: Let $\mathrm{P}(\mathrm{n})$: $3^{2 \mathrm{n}}-1$ is divisible by 8 , for all natural numbers n .
Now, $P(I): 3^{2}-1=8$, which is divisible by 8 .
Hence, $P(I)$ is true.
Let us assume that, $\mathrm{P}(\mathrm{n})$ is true for some natural number $\mathrm{n}=\mathrm{k}$.
$P(k): 3^{2 k}-1$ is divisible by 8
or $\quad 3^{2 k}-1=8 m, m \in N$ (i)
Now, we have to prove that $P(k+1)$ is true.
$P(k+1): 3^{2(k+1)}-1$
$=3^{2 k} \cdot 3^{2}-1$
$=9(8 m+1)-1 \quad$ (using (i))
$=72 m+9-1$
$=72 \mathrm{~m}+8$
$=8(9 m+1)$, which is divisible by 8 Thus $P(k+1)$ is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for all natural numbers n.

Q7. For any natural number $n, 7^{n}-2^{n}$ is divisible by 5 .

Sol: Let $P(n): 7^{n}-2^{n}$ is divisible by 5 , for any natural number n.
Now, $P(I)=7^{1}-2^{1}=5$, which is divisible by 5 .
Hence, $P(I)$ is true.
Let us assume that, $P(n)$ is true for some natural number $n=k$.
$\therefore P(k)=7^{k}-2^{k}$ is divisible by 5
or $7^{\mathrm{k}}-2^{\mathrm{k}}=5 \mathrm{~m}, \mathrm{~m} \in \mathrm{~N}$
Now, we have to prove that $P(k+1)$ is true.
$P(k+1): 7^{k+1}-2^{k+1}$
$=7^{\mathrm{k}}-7-2^{\mathrm{k}}-2$
$=(5+2) 7^{\mathrm{k}}-2^{\mathrm{k}}-2$
$=5.7^{\mathrm{k}}+2.7^{\mathrm{k}}-2-2^{\mathrm{k}}$
$=5.7^{\mathrm{k}}+2\left(7^{\mathrm{k}}-2^{\mathrm{k}}\right)$
$=5 \cdot 7^{\mathrm{k}}+2(5 \mathrm{~m}) \quad$ (using (i))
$=5\left(7^{\mathrm{k}}+2 \mathrm{~m}\right)$, which divisible by 5 .
Thus, $P(k+1)$ is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $\mathrm{P}(\mathrm{n})$ is true for all natural numbers n .

Q8. For any natural number $n, x^{n}-y^{n}$ is divisible by $x-y$, where x and y are any integers with x $\neq y$
 Sol: Let $\mathrm{P}(\mathrm{n}): \mathrm{x}^{\mathrm{n}}-\mathrm{y}^{\mathrm{n}}$ is divisible by $\mathrm{x}-\mathrm{y}$, where x and y are any integers with $\mathrm{x} \neq \mathrm{y}$.

Now, $P(I): x^{1}-y^{1}=x-y$, which is divisible by $(x-y)$
Hence, $P(I)$ is true.
Let us assume that, $P(n)$ is true for some natural number $n=k$.
$P(k)$: $x^{k}-y^{k}$ is divisible by $(x-y)$
or $x^{k}-y^{k}=m(x-y), m \in N \ldots$...(i)
Now, we have to prove that $P(k+1)$ is true.
$P(k+1): x^{k+1}-y^{k+1}$
$=x^{k}-x-x^{k}-y+x^{k}-y-y^{k} y$
$=x^{\mathrm{k}}(x-y)+y\left(x^{k}-y^{k}\right)$
$=x^{k}(x-y)+y m(x-y)(u s i n g(i))$
$=(x-y)\left[x^{k}+y m\right]$, which is divisible by $(x-y)$
Hence, $P(k+1)$ is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for any natural number n.

Q9. $n^{3}-n$ is divisible by 6 , for each natural number $n \geq$

Sol: Let $\mathrm{P}(\mathrm{n}): \mathrm{n}^{3}-\mathrm{n}$ is divisible by 6 , for each natural number $\mathrm{n}>2$.
Now, $P(2)$: $(2)^{3}-2=6$, which is divisible by 6 .
Hence, $P(2)$ is true.
Let us assume that, $P(n)$ is true for some natural number $n=k$.
$P(k): k^{3}-k$ is divisible by 6
or $k^{3}-k=6 m, m \in N \quad$ (i)
Now, we have to prove that $P(k+1)$ is true.
$P(k+1):(k+1)^{3}-(k+1)$
$=k^{3}+1+3 k(k+1)-(k+1)$
$=k^{3}+1+3 k^{2}+3 k-k-1=\left(k^{3}-k\right)+3 k(k+1)$
$=6 m+3 k(k+1)$ (using (i))
Above is divisible by $6 .(\because \mathrm{k}(\mathrm{k}+1)$ is even $)$
Hence, $P(k+1)$ is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for any natural number $n, n \geq 2$.

Q10. $n\left(n^{2}+5\right)$ is divisible by 6 , for each natural number
Sol: Let $P(n)$: $n\left(n^{2}+5\right)$ is divisible by 6 , for each natural number.
Now $P(I): 1\left(I^{2}+5\right)=6$, which is divisible by 6 .
Hence, $P(I)$ is true.
Let us assume that $P(n)$ is true for some natural number $n=k$.
$P(k): k\left(k^{2}+5\right)$ is divisible by 6 .
or $K\left(k^{2}+5\right)=6 m, m \in N \quad$ (i)
Now, we have to prove that $P(k+1)$ is true.
$P(K+1):(K+1)\left[(K+1)^{2}+5\right]$
$=(K+1)\left[K^{2}+2 K+6\right]$
$=K^{3}+3 K^{2}+8 K+6$
$=\left(K^{2}+5 K\right)+3 K^{2}+3 K+6=K\left(K^{2}+5\right)+3\left(K^{2}+K+2\right)$
$=(6 m)+3\left(K^{2}+K+2\right) \quad$ (using (i))
Now, $K^{2}+K+2$ is always even if A is odd or even.
So, $3\left(K^{2}+K+2\right)$ is divisible by 6 and hence, $(6 m)+3\left(K^{2}+K+2\right)$ is divisible by 6 .
Hence, $P(k+1)$ is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for any natural number n.

Q11. $\mathrm{n}^{2}<2^{\mathrm{n}}$, for all natural numbers $\mathrm{n} \geq$

Sol: Let $P(n)$: $n^{2}<2^{n}$ for all natural numbers $n \geq 5$.
Now $P(5)$: $5^{2}<2^{5}$ or $25<32$, which is true.
Hence, $P(5)$ is true.

Let us assume that $\mathrm{P}(\mathrm{n})$ is true for some natural number $\mathrm{n}=\mathrm{k}$.
$\therefore \mathrm{P}(\mathrm{k}): \mathrm{k}^{2}<2^{\mathrm{k}}$ (i)
Now, to prove that $P(k+1)$ is true, we have to show that $P(k+1):(k+1)^{2}<2^{k+1}$
Using (i), we get
$(k+1)^{2}=k^{2}+2 k+1<2^{k}+2 k+1$
Now let, $2^{k}+2 k+1<2^{k+1}$
$\therefore 2^{k}+2 k+1<2 \cdot 2^{k}$
$2 k+1<2^{k}$, which is true for all $k>5$ Using (ii) and (iii), we get $(k+1)^{2}<2^{k+1}$ Hence, $P(k+1)$ is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for any natural number $n, n \geq 5$.

Q12. $2 \mathrm{n}<(\mathrm{n}+2)$! for all natural numbers

Sol: Let $P(n): 2 n<(n+2)!$ for all natural numbers n.
$P(1): 2<(1+2)$! or $2<3$! or $2<6$, which is true.
Hence, $P(I)$ is true.
Let us assume that $P(n)$ is true for some natural number $n=k$.
$P(k): 2 k<(k+2)!$ (i)
To prove that $P(k+1)$ is true, we have to show that
$P(k+1): 2(k+1)<(k+1+2)$!
or $2(k+1)<(k+3)$!
Using (i), we get
$2(k+1)=2 k+2<(k+2)!+2$ (ii)
Now let, $(k+2)!+2<(k+3)!$ (iii)
$=>2<(k+3)!-(k+2)!$
$=>2<(k+2)![k+3-1]$
$=>2<(k+2)!(k+2)$, which is true for any natural number.
Using (ii) and (iii), we get $2(k+1)<(k+3)$!
Hence, $P(k+1)$ is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for any natural number n.
13. $\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}$, for all natural numbers $n \geq 2$.

Sol. Let $P(n): \sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}$, for all natural numbers $n \geq 2$.
$P(2): \sqrt{2}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}$, which is true.

Hence, $P(2)$ is true.

Let us assume that $P(n)$ is true for some natural number $n=k$

$$
\begin{equation*}
\therefore \quad P(k): \sqrt{k}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}} \tag{i}
\end{equation*}
$$

To prove that $P(k+1)$ is true, we have to show that

$$
P(k+1): \sqrt{k+1}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}
$$

$$
\text { Now, } \begin{array}{rlr}
\frac{1}{\sqrt{1}} & +\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}} & \\
& >\sqrt{k}+\frac{1}{\sqrt{k+1}} & \\
& >\sqrt{k+1} & \left(\because \frac{1}{\sqrt{k+1}}>0\right)
\end{array}
$$

Hence, $P(k+1)$ is true whenever $P(k)$ is true.

So, by the principle of mathematical induction $P(n)$ is true for any natural number $n, n \geq 2$.

Q14. $2+4+6+\ldots+2 n=n^{2}+n$, for all natural numbers
Sol: Let $P(n): 2+4+6+\ldots+2 n=n^{2}+n$
$P(I): 2=I^{2}+1=2$, which is true
Hence, $P(I)$ is true.
Let us assume that $\mathrm{P}(\mathrm{n})$ is true for some natural number $\mathrm{n}=\mathrm{k}$.
$\therefore P(k): 2+4+6+\ldots+2 k=k^{2}+k$ (i)
Now, we have to prove that $P(k+1)$ is true.
$P(k+l): 2+4+6+8+\ldots+2 k+2(k+1)$
$=k^{2}+k+2(k+1)[$ Using (i)]
$=\mathrm{k}^{2}+\mathrm{k}+2 \mathrm{k}+2$
$=k^{2}+2 k+1+k+1$
$=(k+1)^{2}+k+1$
Hence, $P(k+1)$ is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $\mathrm{P}(\mathrm{n})$ is true for any natural number n .

Q15. $1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$ for all natural numbers
Sol: Let $\mathrm{P}(\mathrm{n}): 1+2+2^{2}+\ldots+2^{\mathrm{n}}=2^{\mathrm{n}+1}-1$, for all natural numbers n
$P(1): 1=2^{0+1}-1=2-1=1$, which is true.
Hence, , $P(1)$ is true.
Let us assume that $\mathrm{P}(\mathrm{n})$ is true for some natural number $\mathrm{n}=\mathrm{k}$.
$P(k): 1+2+2^{2}+\ldots+2^{k}=2^{k+1}-1$

Now, we have to prove that $P(k+1)$ is true.
$P(k+1): 1+2+2^{2}+\ldots+2^{k}+2^{k+1}$
$=2^{k+1}-1+2^{k+1}$ [Using (i)]
$=2.2^{k+1}-1=1$
$=2^{(k+1)+1-1}$
Hence, $P(k+1)$ is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for any natural number n.

Q16. $1+5+9+\ldots+(4 n-3)=n(2 n-1)$, for all natural numbers
Sol: Let $\mathrm{P}(\mathrm{n}): 1+5+9+\ldots+(4 n-3)=n(2 n-1)$, for all natural numbers n.
$P(1): 1=1(2 \times 1-1)=1$, which is true.
Hence, $\mathrm{P}(\mathrm{I})$ is true.
Let us assume that $\mathrm{P}(\mathrm{n})$ is true for some natural number $\mathrm{n}=\mathrm{k}$.
$\therefore P(k): l+5+9+\ldots+(4 k-3)=k(2 k-1)$ (i)
Now, we have to prove that $P(k+1)$ is true.
$P(k+1): 1+5+9+\ldots+(4 k-3)+[4(k+1)-3]$
$=2 k^{2}-k+4 k+4-3$
$=2 k^{2}+3 k+1$
$=(k+1)(2 k+1)$
$=(k+1)[2(k+1)-1]$

Hence, $P(k+1)$ is true whenever $P(k)$ is true.

So, by the principle of mathematical induction $\mathrm{P}(\mathrm{n})$ is true for any natural number n .

Long Answer Type Questions
Q17. A sequence a_{x}, a_{2}, a_{3}, ... is defined by letting $a_{1}=3$ and $a_{k}=7 a_{k}{ }^{-}$, for all natural numbers $k \geq$ Show that $a_{n}=3 \cdot 7^{n-1}$ for all natural numbers.
Sol: We have a sequence $a_{x}, a_{2}, a_{3} \ldots$ defined by letting $a_{1}=3$ and $a_{k}=7 a_{k}{ }^{-1}$, for all natural numbers $\mathrm{k} \geq 2$.
Let $P(n): a_{n}=3 \cdot 7^{n-1}$ for all natural numbers.
For $n=2, a_{2}=3 \cdot 7^{2-1}=3.7^{1}=21$
Also, $a_{1}=3, a_{k}=7 a_{k-1}$
$\Rightarrow \quad a_{2}=7 \cdot a_{1}=7 \times 3=21$
Thus, $P(2)$ is true.
Now, let us assume that $P(n)$ is true for some natural number $n=m$.

$$
\begin{equation*}
\therefore \quad P(m): a_{m}=3 \cdot 7^{m-1} \tag{i}
\end{equation*}
$$

Now, to prove that $P(m+1)$ is true, we have to show that

$$
\begin{aligned}
& P(m+1): a_{m+1}=3 \cdot 7^{m+1-1} \\
& \begin{aligned}
& a_{m+1}=7 \cdot a_{m+1-1}\left(\text { as } a_{k}=7 a_{k-1}\right) \\
& \quad=7 \cdot a_{m} \\
& \quad=7 \cdot 3 \cdot 7^{m-1}=3 \cdot 7^{m-1+1}
\end{aligned}
\end{aligned}
$$

Hence, $P(m+1)$ is true whenever $P(m)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for any natural number n.

Q18. A sequence b_{0}, b_{1}, b_{2}, ... is defined by letting $b_{0}=5$ and $b_{k}=4+b_{k}-1$, for all natural numbers Show that $b_{n}=5+4 n$, for all natural number n using mathematical induction.
Sol. We have a sequence b_{0}, b_{1}, b_{2},... defined by letting $b_{0}=5$ and $b_{k}=4+b_{k}-1_{1,}$, for all natural numbers k.

Sol. We have a sequence $b_{0}, b_{1}, b_{2}, \ldots$ defined by letting $b_{0}=5$ and $b_{k}=4+b_{k-1}$, for all natural numbers k.
Let $P(n): b_{n}=5+4 n$, for all natural numbers
For $n=1, b_{1}=5+4 \times 1=9$
Also $b_{0}=5$
$\therefore \quad b_{1}=4+b_{0}=4+5=9$
Thus, $P(1)$ is true.
Now, let us assume that $P(n)$ is true for some natural number $n=m$.

$$
\begin{equation*}
\therefore \quad P(m): b_{m}=5+4 m \tag{i}
\end{equation*}
$$

Now, to prove that $P(k+1)$ is true, we have to show that

$$
\begin{array}{ll}
P(m+1): b_{m+1}=5+4(m+1) \\
b_{m+1} & =4+b_{m+1-1} \\
& =4+b_{m} \\
& =4+5+4 m=5+4(m+1)
\end{array} \quad \begin{aligned}
& \text { (As } \left.b_{k}=4+b_{k-1}\right)
\end{aligned}
$$

Hence, $P(m+1)$ is true whenever $P(m)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for any natural number n.
19. A sequence $d_{1}, d_{2}, d_{3}, \ldots$ is defined by letting $d_{1}=2$ and $d_{k}=\frac{d_{k-1}}{k}$, for all natural numbers $k \geq 2$. Show that $d_{n}=\frac{2}{n!}$, for all $n \in N$.

Sol. We have a sequence $d_{1}, d_{2}, d_{3}, \ldots$ defined by letting $d_{1}=2$ and $d_{k}=\frac{d_{k-1}}{k}$.
Let $P(n): d_{n}=\frac{2}{n!} \forall n \in N$

$$
P(2): d_{2}=\frac{2}{2!}=\frac{2}{2 \times 1}=1
$$

Also, $d_{1}=2$ and $d_{k}=\frac{d_{k-1}}{k}$

$$
\Rightarrow \quad d_{2}=\frac{d_{1}}{2}=\frac{2}{2}=1
$$

Hence, $P(2)$ is true.
Now, let us assume that $P(n)$ is true for some natural number $n=m$.

$$
\begin{equation*}
\therefore \quad P(m): d_{m}=\frac{2}{m!} \tag{i}
\end{equation*}
$$

Now, to prove that $P(m+1)$ is true, we have to show that

$$
\begin{aligned}
P(m+1): d_{m+1} & =\frac{2}{(m+1)!} \\
d_{m+1} & =\frac{d_{m+1-1}}{m+1}=\frac{d_{m}}{m+1}=\frac{2}{m!(m+1)}=\frac{2}{(m+1)!}
\end{aligned}
$$

Hence, $P(m+1)$ is true whenever $P(m)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for any natural number n.
20. Prove that for all $n \in N$,

$$
\begin{aligned}
& \cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos [\alpha+(n-1) \beta] \\
& =\frac{\cos \left[\alpha+\left(\frac{n-1}{2}\right) \beta\right] \sin \left(\frac{n \beta}{2}\right)}{\sin \frac{\beta}{2}}
\end{aligned}
$$

Sol. Let $P(n): \cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos [\alpha+(n-1) \beta]$

$$
=\frac{\cos \left[\alpha+\left(\frac{n-1}{2}\right) \beta\right] \sin \left(\frac{n \beta}{2}\right)}{\sin \frac{\beta}{2}}
$$

Now, $P(1): \cos \alpha=\frac{\cos \left[\alpha+\left(\frac{1-1}{2}\right) \beta\right] \sin \frac{\beta}{2}}{\sin \frac{\beta}{2}}=\frac{\cos \alpha \sin \frac{\beta}{2}}{\sin \frac{\beta}{2}}=\cos \alpha$
Hence, $P(1)$ is true.
Now, let us assume that $P(n)$ is true for some natural number $n=k$.
$\therefore \quad P(k): \cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos [\alpha+(k-1) \beta]$

$$
\begin{equation*}
=\frac{\cos \left[\alpha+\left(\frac{k-1}{2}\right) \beta\right] \sin \frac{k \beta}{2}}{\sin \frac{\beta}{2}} \tag{i}
\end{equation*}
$$

Now, to prove that $P(k+1)$ is true, we have to show that
$P(k+1): \cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos [\alpha+(k-1) \beta]$ $+\cos [\alpha+(k+1-1) \beta]$

$$
=\frac{\cos \left(\alpha+\frac{k \beta}{2}\right) \sin \frac{(k+1) \beta}{2}}{\sin \frac{\beta}{2}}
$$

$\cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos [\alpha+(k-1) \beta]+\cos (\alpha+k \beta)$

$$
\begin{gathered}
=\frac{\cos \left[\alpha+\left(\frac{k-1}{2}\right)\right] \sin \frac{k \beta}{2}}{\sin \frac{\beta}{2}}+\cos (\alpha+k \beta) \\
=\frac{\cos \left[\alpha+\left(\frac{k-1}{2}\right) \beta\right] \sin \frac{k \beta}{2}+\cos (\alpha+k \beta) \sin \frac{\beta}{2}}{\sin \frac{\beta}{2}} \\
=\frac{\sin \left(\alpha+\frac{k \beta}{2}-\frac{\beta}{2}+\frac{k \beta}{2}\right)-\sin \left(\alpha+\frac{k \beta}{2}-\frac{\beta}{2}-\frac{k \beta}{2}\right)}{+\sin \left(\alpha+k \beta+\frac{\beta}{2}\right)-\sin \left(\alpha+k \beta-\frac{\beta}{2}\right)} \\
=\frac{\sin \left(\alpha+k \beta+\frac{\beta}{2}\right)-\sin \left(\alpha-\frac{\beta}{2}\right)}{2 \sin \frac{\beta}{2}} \\
=\frac{2 \cos \frac{1}{2}\left(\alpha+k \beta+\frac{\beta}{2}+\alpha-\frac{\beta}{2}\right) \sin \frac{1}{2}\left(\alpha+k \beta+\frac{\beta}{2}-\alpha+\frac{\beta}{2}\right)}{2 \sin \frac{\beta}{2}} \\
=\frac{\cos \left(\frac{2 \alpha+k \beta}{2}\right) \sin \left(\frac{k \beta+\beta}{2}\right)}{\sin \frac{\beta}{2}}=\frac{\cos \left(\alpha+\frac{k \beta}{2}\right) \sin (k+1) \frac{\beta}{2}}{\sin \frac{\beta}{2}}
\end{gathered}
$$

Hence, $P(k+1)$ is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for any natural number n.
21. Prove that $\cos \theta \cos 2 \theta \cos 2^{2} \theta \cos 2^{n-1} \theta=\frac{\sin 2^{n} \theta}{2^{n} \sin \theta}, \forall n \in N$.

Sol. Let $P(n): \cos \theta \cos 2 \theta \ldots \cos 2^{n-1} \theta=\frac{\sin 2^{n} \theta}{2^{n} \sin \theta}$
$P(1): \cos \theta=\frac{\sin 2^{1} \theta}{2^{1} \sin \theta}=\frac{\sin 2 \theta}{2 \sin \theta}=\frac{2 \sin \theta \cos \theta}{2 \sin \theta}=\cos \theta$, which is true.
Hence, $P(1)$ is true.
Now, let us assume that $P(n)$ is true for some natural number $n=k$.
$\therefore P(k): \cos \theta \cos 2 \theta \cos 2^{2} \theta \ldots \cos 2^{k-1} \theta=\frac{\sin 2^{k} \theta}{2^{k} \sin \theta}$

To prove that $P(k+1)$ is true, we have to show that
$P(\mathrm{k}+1): \cos \theta \cos 2 \theta \cos 2^{2} \theta \cos 2^{k-1} \theta \cos 2^{k} \theta=\frac{\sin 2^{k+1} \theta}{2^{k+1} \sin \theta}$
Now $\cos \theta \cos 2 \theta \cos 2^{2} \theta \cos 2^{k-1} \theta \cos 2^{k} \theta$

$$
\begin{align*}
& =\frac{\sin 2^{k} \theta}{2^{k} \sin \theta} \cos 2^{k} \theta \tag{i}\\
& =\frac{2 \sin 2^{k} \theta \cos 2^{k} \theta}{2 \cdot 2^{k} \sin \theta} \\
& =\frac{\sin 2 \cdot 2^{k} \theta}{2^{k+1} \sin \theta}=\frac{\sin 2^{(k+1)} \theta}{2^{k+1} \sin \theta}
\end{align*}
$$

Hence, $P(k+1)$ is true whenever $P(k)$ is true.
22. Prove that, $\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin n \theta=\frac{\sin \frac{n \theta}{2} \sin \frac{(n+1)}{2} \theta}{\sin \frac{\theta}{2}}$, for all $n \in N$.
Sol. Let $P(n): \sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin n \theta=\frac{\sin \frac{n \theta}{2} \sin \frac{(n+1)}{2} \theta}{\sin \frac{\theta}{2}}$, for all $n \in N$

$$
P(1): \sin \theta=\frac{\sin \frac{\theta}{2} \cdot \sin \frac{(1+1)}{2} \theta}{\sin \frac{\theta}{2}}=\frac{\sin \frac{\theta}{2} \cdot \sin \theta}{\sin \frac{\theta}{2}}=\sin \theta
$$

Hence, $P(1)$ is true.
Now, let us assume that $P(n)$ is true for some natural number $n=k$.
$\therefore P(k): \sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin k \theta=\frac{\sin \frac{k \theta}{2} \sin \left(\frac{k+1}{2}\right) \theta}{\sin \frac{\theta}{2}}$
Now, to prove that $P(k+1)$ is true, we have to show that

$$
\begin{gather*}
P(k+1): \sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin k \theta+\sin (k+1) \theta \\
=\frac{\sin \frac{(k+1) \theta}{2} \sin \left(\frac{k+1+1}{2}\right) \theta}{\sin \frac{\theta}{2}} \\
\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin k \theta+\sin (k+1) \theta \\
= \tag{i}\\
=\frac{\sin \frac{k \theta}{2} \sin \left(\frac{k+1}{2}\right) \theta}{\sin \frac{\theta}{2}}+\sin (k+1) \theta \quad \text { [Using(i)] } \\
=\frac{\sin \frac{k \theta}{2} \sin \left(\frac{k+1}{2}\right) \theta+\sin (k+1) \theta \cdot \sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}
\end{gather*}
$$

$$
\begin{aligned}
& \cos \left[\frac{k \theta}{2}-\left(\frac{k+1}{2}\right) \theta\right]-\cos \left[\frac{k \theta}{2}+\left(\frac{k+1}{2}\right) \theta\right] \\
= & \frac{+\cos \left[(k+1) \theta-\frac{\theta}{2}\right]-\cos \left[(k+1) \theta+\frac{\theta}{2}\right]}{2 \sin \frac{\theta}{2}} \\
= & \frac{\cos \frac{\theta}{2}-\cos \left(k \theta+\frac{\theta}{2}\right)+\cos \left(k \theta+\frac{\theta}{2}\right)-\cos \left(k \theta+\frac{3 \theta}{2}\right)}{2 \sin \frac{\theta}{2}} \\
= & \frac{\cos \frac{\theta}{2}-\cos \left(k \theta+\frac{3 \theta}{2}\right)}{2 \sin \frac{\theta}{2}} \\
= & \frac{2 \sin \frac{1}{2}\left(\frac{\theta}{2}+k \theta+\frac{3 \theta}{2}\right) \cdot \sin \frac{1}{2}\left(k \theta+\frac{3 \theta}{2}-\frac{\theta}{2}\right)}{2 \sin \frac{\theta}{2}} \\
= & \frac{\sin \left(\frac{k \theta+2 \theta}{2}\right) \cdot \sin \left(\frac{k \theta+\theta}{2}\right)}{\sin \frac{\theta}{2}} \\
= & \frac{\sin (k+1) \frac{\theta}{2} \cdot \sin (k+1+1) \frac{\theta}{2}}{\sin \frac{\theta}{2}}
\end{aligned}
$$

Hence, $P(k+1)$ is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for any natural number n.
23. Show that $\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}$ is a natural number, for all $n \in N$.

Sol. Let $P(n): \frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}$ is a natural number, for all $n \in N$.
$P(1): \frac{1^{5}}{5}+\frac{1^{3}}{3}+\frac{7(1)}{15}=\frac{3+5+7}{15}=\frac{15}{15}=1$, which is a natural number.
Hence, $P(1)$ is true.
Let us assume that $P(n)$ is true, for some natural number $n=k$.
$\therefore \quad P(k): \frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}$ is natural number

Now, we have to prove that $P(k+1)$ is true.

$$
\begin{aligned}
P(k+1) & : \frac{(k+1)^{5}}{5}+\frac{(k+1)^{3}}{3}+\frac{7(k+1)}{15} \\
& =\frac{k^{5}+5 k^{4}+10 k^{3}+10 k^{2}+5 k+1}{5}+\frac{k^{3}+1+3 k^{2}+3 k}{3}+\frac{7 k+7}{15} \\
& =\frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}+\frac{5 k^{4}+10 k^{3}+10 k^{2}+5 k+1}{5}+\frac{3 k^{2}+3 k+1}{3}+\frac{7}{15} \\
& =\frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}+k^{4}+2 k^{3}+2 k^{2}+k+k^{2}+k+\frac{1}{5}+\frac{1}{3}+\frac{7}{15} \\
& =\frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}+k^{4}+2 k^{3}+3 k^{2}+2 k+1
\end{aligned}
$$

which is a natural number
[Using (i)]
Hence, $P(k+1)$ is true whenever $P(k)$ is true.
So, by the principle of mathematical induction $P(n)$ is true for any natural number n.
24. Prove that $\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}>\frac{13}{24}$, for all natural numbers $n>1$.

Sol. Let $P(n): \frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}>\frac{13}{24}$, for all natural numbers $n>1$.

$$
\begin{aligned}
\Rightarrow & P(2): \frac{1}{2+1}+\frac{1}{2+2}>\frac{13}{24} \\
& \frac{1}{3}+\frac{1}{4}>\frac{13}{24} \Rightarrow \frac{4+3}{12}>\frac{13}{24}
\end{aligned}
$$

$\Rightarrow \quad \frac{7}{12}>\frac{13}{24}$, which is true.
Hence, $P(2)$ is true.
Let us assume that $P(n)$ is true, for some natural number $n=k$.

$$
\begin{equation*}
\therefore \quad P(k): \frac{1}{k+1}+\frac{1}{k+2}+\cdots+\frac{1}{2 k}>\frac{13}{24} \tag{i}
\end{equation*}
$$

Now, to prove that $P(k+1)$ is true, we have to show that

$$
\begin{aligned}
& P(k+1): \frac{1}{k+1}+\frac{1}{k+2}+\cdots+\frac{1}{2 k}+\frac{1}{2(k+1)}> \frac{13}{24} \\
& \frac{1}{k+1}+\frac{1}{k+2}+\frac{1}{2 k}+\frac{1}{2(k+1)}>\frac{13}{24}+\frac{1}{2(k+1)}>\frac{13}{24} \\
&\left(\because \frac{1}{2(k+1)}>0\right)
\end{aligned}
$$

Hence, $P(k+1)$ is true whenever $P(k)$ is true.

So, by the principle of mathematical induction $\mathrm{P}(\mathrm{n})$ is true for any natural number $\mathrm{rt}, \mathrm{n}>1$.

Q25. Prove that number of subsets of a set containing \mathbf{n} distinct elements is $\mathbf{2 "}^{\prime \prime}$, for all $\mathrm{n} \in$ Sol: Let $\mathrm{P}(\mathrm{n})$: Number of subset of a set containing n distinct elements is $2^{\prime \prime}$, for all ne N . For $n=1$, consider set $A=\{1\}$. So, set of subsets is $\{\{1\}, \varnothing\}$, which contains 2^{1} elements. So, $P(1)$ is true.
Let us assume that $\mathrm{P}(\mathrm{n})$ is true, for some natural number $\mathrm{n}=\mathrm{k}$.
$P(k)$: Number of subsets of a set containing k distinct elements is 2^{k} To prove that $P(k+1)$ is true,
is 2^{k+1}
We know that, with the addition of one element in the set, the number of subsets become double.

Number of subsets of a set containing ($k+1$) distinct elements $=2 \times 2^{k}=2^{k+1}$
So, $P(k+1)$ is true. Hence, $P(n)$ is true.

