CBSE Class 11 Mathematics Important Questions

Chapter 4

Principle of Mathematical Induction

4 Marks Questions

1. For every integer \mathbf{n}, prove that $7^{n}-3^{n}$ is divisible by 4 .

Ans. $\mathrm{P}(\mathrm{n}): 7^{\mathrm{n}}-3^{\mathrm{n}}$ is divisible by 4
For $\mathrm{n}=1$
$P(1): 7^{1}-3^{1}=4$ which is divisible by Thus, $P(1)$ is true
Let $\mathrm{P}(\mathrm{k})$ be true
$7^{k}-3^{k}$ is divisible by 4
$7^{k}-3^{k}=4 \lambda$, where $\lambda \in \mathrm{N}(\mathrm{i})$
we want to prove that $P(k+1)$ is true whenever $P(k)$ is true
$7^{k+1}-3^{k+1}=7^{k} .7-3^{k} .3$
$=\left(4 \lambda+3^{k}\right) \cdot 7-3^{k} \cdot 3$ (from i)
$=28 \lambda+7.3^{k}-3^{k} .3$
$=28 \lambda+3^{k}(7-3)$
$=4\left(7 \lambda+3^{k}\right)$
Hence
$7^{k+1}-3^{k+1}$ is divisible by 4
thus $P(k+1)$ is true when $P(k)$ is true.
Therefore by P.M.I. the statement is true for every positive integer n .
2. Prove that $n(n+1)(n+5)$ is multiple of 3 .

Ans. $P(n): n(n+1)(n+5)$ is multiple of 3
for $n=1$
$\mathrm{P}(1): 1(1+1)(1+5)=12$ is multiple of 3
let $P(k)$ be true
$P(k): K(k+1)(k+5)$ is muetiple of 3
$\Rightarrow \mathrm{k}(\mathrm{k}+1)(\mathrm{k}+5)=3 \lambda$ where $\lambda \in \mathrm{N}(\mathrm{i})$
we want to prove that result is true for $n=k+1$
$P(k+1):(k+1)(k+2)(k+6)$
$\Rightarrow(\mathrm{K}+1)(\mathrm{k}+2)(\mathrm{k}+6)=[(k+1)(k+2)](k+6)$
$=k(k+1)(k+2)+6(k+1)(k+2)$
$=k(k+1)(k+5-3)+6(k+1)(k+2)$
$=k(k+1)(k+5)-3 k(k+1)+6(k+1)(K+2)$
$=\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+5)+(\mathrm{k}+1)[6(k+2)-3 k]$
$=k(k+1)(k+5)+(k+1)(3 k+12)$
$=k(k+1)(k+5)+3(k+1)(k+4)$
$=3 \lambda+3(k+1)(k+4)($ from i)
$=3[\lambda+(K+1)(K+4)]$ which is multiple of three
Hence $P(k+1)$ is multiple of 3 .
3. Prove that $10^{2 n-1}+1$ is divisible by 11

Ans. $P(n): 10^{2 n-t}+1$ is divisible by 11
for $\mathrm{n}=1$
$P(1)=10^{2 x 1-1}+1=11$ is divisible by 11 Hence result is true for $n=1$
let $\mathrm{P}(\mathrm{k})$ be true
$P(\mathrm{k}): 10^{2 \mathrm{k}-1}+1$ is divisible by 111
$\Rightarrow 10^{2 * 1}+1=11 \lambda$ where $\lambda \in \mathrm{N}(\mathrm{i})$
we want to prove that result is true for $n=k+$
$=10^{2(k+1)-1}+1=10^{2 k+2-1}+1$
$=10^{2 k+1}+1$
$=10^{2 k} \cdot 10^{1}+1$
$=(110 \lambda-10) \cdot 10+1$ (from i)
$=1100 \lambda-100+1$
$=1100 \lambda-99$
$=11(100 \lambda-9)$ is divisible by 11
Hence by P.M.I. $P(k+1)$ is true whenever $P(k)$ is true.
4. Prove $\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)=(n+1)$

Ans. $\operatorname{let} P(n):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)=(n+1)$
for $\mathrm{n}=1$
$P(1):\left(1+\frac{1}{1}\right)=(1+1)=2$
which is true
let $\mathrm{P}(\mathrm{k})$ be true
$\mathrm{P}(\mathrm{k}):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{k}\right)=(k+1)$
we want to prove that $\mathrm{P}(\mathrm{k}+1)$ is true
$\mathrm{P}(\mathrm{k}+1):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right) \cdot\left(1+\frac{1}{k+1}\right)=(k+2)$
L.H.S. $=\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right) \ldots .\left(1+\frac{1}{k}\right)\left(1+\frac{1}{k+1}\right)$
$=(k+1)\left(1+\frac{1}{k+1}\right) \quad[$ from $(1)]$
$=(\mathrm{k}+1)\left(\frac{k+1+1}{K+1}\right)$
$=(\mathrm{K}+2)$
thus $\mathrm{P}(\mathrm{k}+1)$ is true whenever
$\mathrm{P}(\mathrm{K})$ is true.
5. Prove $1.2+2.3+3.4+-+\mathbf{n}(n+1)=\frac{n(n+1)(n+2)}{3}$

Ans. $p(n): 1.2+2.3+--n(n+1)=\frac{n(n+1)(n+2)}{3}$
for $n=1$
$p(1): 1(1+1)=\frac{1(1+1)(1+2)}{3}$
$p(1)=2=2$
hence $p(1)$ be true
$p(k): 1.2+2.3+---+k(k+1)=\frac{k(k+1)(k+2)}{3} \ldots$
we want to prove that
$p(k+1)$:
$1.2+2.3+\cdots--+(k+1)(k+2)=\frac{(k+1)(k+2)(k+3)}{3}$
L.H.S.
$=1.2+2.3+---+k(k+1)+(k+1)(k+2)$
$=\frac{k(k+1)(k+2)}{3}+\frac{(k+1)(k+2)}{1} \quad[$ from $(i)]$
$\frac{k(k+1)(k+2)+3(k+1)(k+2)}{3}$
$\underline{(k+1)(k+2)[k+3]}$
3
hence $\mathrm{p}(k+1)$ is true whenenes $p(k)$ is true

6. Prove $(2 n+7)<(n+3)^{2}$

Ans. $p(n):(2 n+7)<(n+3)^{2}$
for $n=1$
$9<(4)^{2}$
$9<16$
which is true
let $\mathrm{p}(k)$ be true
$(2 k+7)<(k+3)^{2}$
now
$2(k+1)+7=(2 k+7)+2$
$<(k+3)^{2}+2=k^{2}+6 k+11$
$<k^{2}+8 k+16=(k+4)^{2}$
$=(k+3+1)^{2}$
$\therefore p(k+1): 2(k+1)+7<(k+1+3)^{2}$
$\Rightarrow p(k+1)$ is true, when ever $p(k)$ is true
hence by PMI $p(k)$ is true for all $n \in N$
7. Prove $\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+. .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}$

Ans. $p(n): \frac{1}{1.4}+\frac{1}{4.7}+---+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}$
for $n=1$
$p(1): \frac{1}{(3-2)(3+1)}=\frac{1}{(3+1)}=\frac{1}{4}$
which is true
let $p(k)$ be true
$p(k): \frac{1}{1.4}+\frac{1}{4.7}+--+\frac{1}{(3 k-2)(3 k+1)}=\frac{k}{(3 k+1)}$.
we want to prove that $\mathrm{p}(k+1)$ is true
$p(k+1): \frac{1}{1.4}+\frac{1}{4.7}+---+\frac{1}{(3 k+1)(3 k+4)}=\frac{k+1}{(3 k+4)}$
L.H.S.
$=\frac{1}{1.4}+\frac{1}{4.7}+---+\frac{1}{(3 k-2)(3 k+1)}+\frac{1}{(3 k+1)(3 k+4)}$
$=\frac{k}{3 k+1}+\frac{1}{(3 k+1)(3 k+4)} \quad[$ from $\ldots \ldots . .(i)]$
$=\frac{k(3 k+4)+1}{(3 k+1)(3 k+4)}$
$=\frac{3 k^{2}+4 k+1}{(3 k+1)(3 k+4)}=\frac{(3 k+1)(k+1)}{(3 k+1)(3 k+4)}$
$p(k+1)$ is true whenever $p(k)$ is true.
8. Prove $1 \cdot 2+2 \cdot 2^{2}+3 \cdot 2^{3}+\ldots+n .2^{n}=(n-1) 2^{n+1}+2$

Ans. $p(n): 1.2+2.2^{2}+3.2^{3}+---+n .2^{n}=(n-1) 2^{n+1}+2$
$p(n): 1.2+2.2^{2}+3.2^{3}+---+n .2^{n}=(n-1) 2^{n+1}+2$
for $n=1$
$p(1): 1.2^{1}=(1-1) 2^{2}+2$
$2=2$ which is true
let $p(k)$ be true
$p(k): 1.2+2.2^{2}+---+k \cdot 2^{k}=(k-1) 2 .^{k+1}+2$.
we want to prove that $p(k+1)$ is true
$p(k+1): 1.2+2.2^{2}+---+(k+1) 2^{k+1}=k \cdot 2^{k+2}+2$

L.H.S.

$1.2+2.2^{2}+---+k .2^{k}+(k+1) 2^{2 k+1} \quad[$ from...........i) $]$
$=(k-1) 2^{k+1}+2+(k+1) 2^{k+1} \mathbf{c}$
$=2^{k+1}(k-1+k+1)+2$
$=2^{k+2} k+2$
This $p(k+1)$ is true whenever $p(k)$ is true
9. Prove that $2.7^{\mathrm{n}}+3.5^{\mathrm{n}}-5$ is divisible by $24 \forall \mathrm{n} \in \mathrm{N}$

Ans. $\mathrm{P}(\mathrm{n}): 2.7^{\mathrm{n}}+3.5^{\mathrm{n}}-5$ is divisible by 24
for $n=1$
$P(1): 2.7^{1}+3.5^{1}-5=24$ is divisible by 24

Hence result is true for $\mathrm{n}=1$

Let $P(K)$ be true
$P(K): 2.7^{K}+3.5^{K}-5$
$\Rightarrow 2.7^{\mathrm{K}}+3.5^{\mathrm{K}}-5=24 \lambda$ when $\lambda \in \mathrm{N}^{(\mathrm{i})}$
we want to prove that $P(K+!)$ is True whenever $P(K)$ is true
$2.7^{\mathrm{K}+1}+3.5^{\mathrm{K}+1}-5=2.7^{\mathrm{K}} .7^{1}+3.5^{\mathrm{K}} \cdot 5^{1}-5$
$=7\left[2.7^{K}+3.5^{K}-5-3.5^{K}+5\right]+3.5^{\mathrm{K}} .5^{1}-5$
$=7\left[24 \lambda-3.5^{K}+5\right]+15.5^{\mathrm{K}}-5($ from i)
$=7 \times 24 \lambda-21.5^{\mathrm{K}}+35+15.5^{\mathrm{K}}-5$
$=7 \times 24 \lambda-6.5^{\mathrm{K}}+30$
$=7 \times 24 \lambda-6\left(5^{K}-5\right)$
$=7 \times 24 \lambda-6.4 p\left[\because 5^{K}-5\right.$ is multiple of 4$]$
$=24(7 \lambda-p), \quad 24$ is divisible by 24
Hence by P M I p (n) is true for all $n \in N$.

10. Prove that $\mathbf{4 1} \mathbf{n}-14^{\mathrm{n}}$ is a multiple of $\mathbf{2 7}$

Ans. P (n) : $41^{\mathrm{n}}-14^{\mathrm{n}}$ is a multiple of 27
for $\mathrm{n}=1$
$P(1): 41^{1}-14=27$, which is a multiple of 27
Let $P(K)$ be True
$P(K): 41^{\mathrm{K}}-14^{\mathrm{K}}$
$\Rightarrow 41^{\mathrm{K}}-14^{\mathrm{K}}=27 \lambda$, where $\lambda \in \mathrm{N}(\mathrm{i})$
we want to prove that result is true for $n=K+1$
$41^{\mathrm{K}+1}-14^{\mathrm{k}+1}=41^{\mathrm{K}} .41-14^{\mathrm{K}} .14$
$=\left(27 \lambda+14^{K}\right) \cdot 41-14^{K} \cdot 14($ from i$)$
$=27 \lambda .41+14^{K} .41-14^{K} .14$
$=27 \lambda .41+14^{K}(41-14)$
$=27 \lambda .41+14^{K}(27)$ is a multiple of 27
$=27\left(41 \lambda+14^{K}\right)$
Hence by PMI $p(n)$ is true for ace $n \in N$.

11. Using induction, prove that $10^{\mathrm{n}}+3.4^{\mathrm{n}+2}+5$ is divisible by $9 \forall \mathrm{n} \in \mathrm{N}$.

Ans. $P(n): 10^{n}+3.4^{n+2}+5$ is divisible by 9
For $n=1$
$p(1): 10^{1}+3.4^{1+2}+5=207$, divisible by 9

Hence result is true for $\mathrm{n}=1$
Let $p(K)$ be true
$\mathrm{p}(\mathrm{K}): 10^{\mathrm{K}}+3.4^{\mathrm{K}+2}+5$ is divisible by 9
$\Rightarrow 10^{K}+3.4^{K+2}+5=9 \lambda$ where $\lambda \in \mathrm{N}$ (i)
we want to prove that result is true for $n=K+1$
$10^{(\mathrm{K}+1)}+3.4^{\mathrm{K}+1+2}+5=10^{\mathrm{K}+1}+3.4^{\mathrm{K}+3}+5$
$=10^{K} \cdot 10+3 \cdot 4^{K} \cdot 4^{3}+5$
$=\left(9 \lambda-3 \cdot 4^{K+2}-5\right) \cdot 10+3 \cdot 4^{K} \cdot 4^{3}+5($ from i $)$
$=90 \lambda-30.4^{K+2}-50+3.4^{K+3}+5$
$=90 \lambda-30.4^{K+2}-45+3.4 \cdot 4^{\mathrm{K}+2}$
$=90 \lambda-18.4^{K+2}-45$
$=9\left(10 \lambda-2.4^{K+2}-5\right)$
which is divisible by 9 .
12. Prove that $\mathbf{1}^{\mathbf{2}}+\mathbf{2}^{\mathbf{2}}+\mathbf{3}^{\mathbf{2}}+\ldots+\mathbf{n}^{\mathbf{2}}=\frac{n(n+1)(2 n+1)}{6}$

Ans. Let $\mathrm{P}(\mathrm{n}): 1^{2}+2^{2}+3^{2}+--+\mathrm{n}^{2}=\frac{n(n+1)(2 n+1)}{6}$
for $\mathrm{n}=1$
$P(1): 1^{2}=\frac{1(2)(3)}{6}=1$
which is true
Let $\mathrm{P}(\mathrm{K})$ be true
$\mathrm{P}(\mathrm{K}): 1^{2}+2^{2}+\ldots+\mathrm{K}^{2}=\frac{K(K+1)(2 K+1)}{6}$
we want to prove that $\mathrm{P}(\mathrm{K}+1)$ is true
$\mathrm{P}(\mathrm{K}+1): 1^{2}+2^{2}+\ldots+(\mathrm{K}+1)^{2}=\frac{(K+1)(K+2)(2 K+3)}{6}$
L.H.S $=1^{2}{ }^{2}+2^{2}+--+K^{2}+(K+1)^{2}$
$=\frac{K(K+1)(2 K+1)}{6}+\frac{(K+1)^{2}}{1} \quad[$ from (1)
$=\frac{K(K+1)(2 K+1)+6(K+1)^{2}}{6}$
$=\frac{(K+1)[K(2 K+1)+6(K+1)]}{6}$
$=\frac{(K+1)\left(2 K^{2}+K+6 K+6\right)}{6}$
$=\frac{(K+1)\left(2 K^{2}+7 K+6\right)}{6}$
$=\frac{(K+1)(K+2)(2 K+3)}{6}$
Thus $\mathrm{P}(\mathrm{K}+1)$ is true, whenever $\mathrm{P}(\mathrm{K})$ is true.
Hence, from PMI, the statement $\mathrm{P}(\mathrm{n})$ is true for all natural no. n .
13. Prove that $1+3+3^{2}+-+3^{n-1}=\frac{3^{n}-1}{2}$

Ans. Let
$P(n): 1+3+3^{2}+-+3^{n-1}=\frac{3^{n}-1}{2}$ for $n=1$
P (1) $3^{1-1}=\frac{3^{1}-1}{2}=1$
which is true

Let $P(K)$ be true
$P(K): 1+3+3^{2}+\ldots-+3^{K-1}=\frac{3^{K}-1}{2}$
we want to prove that $\mathrm{P}(\mathrm{K}+1)$ is true
$P(K+1): 1+3+3^{2}+---+3^{K}=\frac{3^{K+1}-1}{2}$
L.H.S $=1+3+3^{2}+---+3^{\mathrm{K}-1}+3^{\mathrm{K}}$
$=\frac{3^{K}-1}{2}+3^{K}$
[From (1)
$=\frac{3^{K}-1+2.3^{K}}{2}$
$=\frac{3^{K}(1+2)-1}{2}$
$=\frac{3^{K} \cdot 3-1}{2}$
$=\frac{3^{K+1}-1}{2}$

Hence $p(K+1)$ is true whenever $p(K)$ is True
14. By induction, prove that $\mathbf{1}^{2}+\mathbf{2}^{2}+\mathbf{3}^{2}+--+\mathbf{n}^{2}>\frac{n^{3}}{3} \forall \mathrm{n} \in \mathrm{N}$

Ans. Let $\mathrm{P}(\mathrm{n}): 1^{2}+2^{2}+3^{2}+\ldots+\mathrm{n}^{2}>\frac{n^{3}}{3}$
for $n=1$
$12>\frac{1}{3}$ which is true
Let $P(K)$ be true
$\mathrm{P}(\mathrm{K}): 1^{2}+2^{2}+3^{2}+--+\mathrm{K}^{2}>\frac{K^{3}}{3}$
we want to prove that $P(K+1)$ is true

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~K}+1): 1^{2}+2^{2}+\cdots+(\mathrm{K}+1)^{2} \\
& =1^{2}+2^{2}+-+\mathrm{K}^{2}+(\mathrm{K}+1)^{2} \\
& >\frac{\mathrm{K}^{3}}{3}+(\mathrm{K}+1)^{2} \\
& =\frac{1}{3}\left[\mathrm{~K}^{3}+3(\mathrm{~K}+1)^{2}\right] \\
& =\frac{1}{3}\left[\mathrm{~K}^{3}+3 \mathrm{~K}^{2}+3+6 \mathrm{~K}\right] \\
& =\frac{1}{3}\left[(\mathrm{~K}+1)^{3}+(3 \mathrm{~K}+2)\right] \\
& >\frac{1}{3}(\mathrm{~K}+1)^{3}
\end{aligned}
$$

$\Rightarrow \mathrm{P}(\mathrm{K}+1)$ is true

Hence by PMI P (n) is true $\forall \mathrm{n} \in \mathrm{N}$
15. Prove by PMI (ab) ${ }^{n}=a^{n} b^{n}$

Ans. Let $P(n):(a b)^{n}=a^{n} b^{n}$
for $\mathrm{n}=1$
$a b=a b$ which is true

Let $P(K)$ be true
$(a b)^{K}=a^{K} b^{K}(1)$
we want to prove that $\mathrm{P}(\mathrm{K}+1)$ is true
$(\mathrm{ab})^{\mathrm{K}+1}=\mathrm{a}^{\mathrm{K}+1} \cdot \mathrm{~b}^{\mathrm{K}+1}$
L.H.S $=(a b)^{K+1}$
$=(a b)^{K} \cdot(a b)^{1}$
$=\mathrm{a}^{\mathrm{K}} \mathrm{b}^{\mathrm{K}} .(\mathrm{ab})^{1}[$ from (1)
$=\mathrm{a}^{\mathrm{K}+1} \cdot \mathrm{~b}^{\mathrm{K}+1}$
$\Rightarrow P(K+1)$ is true.
16. Prove by PMI a $+\mathbf{a r}+\mathbf{a r}^{2}+\ldots-+\mathbf{a r}^{\mathbf{n}-\mathbf{1}}=\frac{a\left(r^{n}-1\right)}{r-1}$

Ans. Let $\mathrm{P}(\mathrm{n}): \mathrm{a}+\mathrm{ar}+\mathrm{ar}^{2}+--+\mathrm{ar}^{\mathrm{n}-1}=\frac{a\left(r^{n}-1\right.}{r-1}$
for $\mathrm{n}=1$
$P(1)=a=a$ which is true

Let $P(K)$ be true
$\mathrm{P}(\mathrm{K}): \mathrm{a}+\mathrm{ar}+\mathrm{ar}^{2}+--+\mathrm{ar}^{\mathrm{K}-1}=\frac{a\left(r^{K}-1\right)}{r-1}$
we want to prove that
$\mathrm{P}(\mathrm{K}+1): \mathrm{a}+\mathrm{ar}+\mathrm{ar}^{2}+-+\mathrm{ar}^{\mathrm{K}}=\frac{a\left(r^{K+1}-1\right)}{r-1}$
L.H.S $=a+a r+a r^{2}+--+a r^{K-1}+a r^{K}$
$=\frac{a\left(r^{K}-1\right)}{r-1}+a r^{K} \quad[$ from (1)
$=\frac{a\left(r^{K}-1\right)+a r^{k+1}-a r^{K}}{r-1}$
$=\frac{a 44^{K K}-a+a r^{K+1}-a r^{K Z}}{r-1}=\frac{a\left(r^{K+1}-1\right)}{r-1}$

Thus $\mathrm{P}(\mathrm{K}+1)$ is true whenever $\mathrm{P}(\mathrm{K})$ is true
Hence by PMI $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{N}$
17. Prove that $x^{2 n}-y^{2 n}$ is divisible by $x+y$.

Ans. $P(n): x^{2 n}-y^{2 n}$ is divisible by $x+y$
for $\mathrm{n}=1$
$p(1): x^{2}-y^{2}=(x-y)(x+y)$, which is divisible by $x+y$
Hence result is true for $\mathrm{n}=1$

Let $P(K)$ be true
$\mathrm{p}(\mathrm{K}): \mathrm{x}^{2 \mathrm{~K}}-\mathrm{y}^{2 \mathrm{~K}}$ is divisible by $\mathrm{x}+\mathrm{y}$
$\Rightarrow \mathrm{x}^{2 \mathbb{K}}-\mathrm{y}^{2 \mathrm{~K}}=(\mathrm{x}+\mathrm{y}) \lambda$, where $\lambda \in \mathrm{N}(\mathrm{i})$
we want to prove the result is true for $\mathrm{n}=\mathrm{K}+1$
$\mathrm{x}^{2(\mathrm{~K}+1)}-\mathrm{y}^{2(\mathrm{~K}+1)}=\mathrm{x}^{2 \mathrm{~K}+2}-\mathrm{y}^{2 \mathrm{~K}+2}$
$=x^{2 \mathbb{K}} \cdot x^{2}-y^{2 K} \cdot y^{2}$
$=\left((x+y) \lambda+y^{2 K}\right) x^{2}-y^{2 K} \cdot y^{2}($ from $i)$
$=(x+y) \lambda x^{2}+x^{2} y^{2 K}-y^{2 K} \cdot y^{2}$
$=(x+y) \lambda x^{2}+y^{2 K}\left(x^{2}-y^{2}\right)$
$=(x+y) \lambda x^{2}+y^{2 K}(x+y)(x-y)$
$=(x+y)\left[x^{2} \lambda+y^{2 \mathbb{K}}(x-y)\right]$ is divisible by $(x+y)$
$\Rightarrow \mathrm{p}(\mathrm{K}+1)$ is true whenever $\mathrm{p}(\mathrm{K})$ is true
Hence by P.M.I, p (n) is true $\forall \mathrm{n} \in \mathrm{N}$
18. Prove that $n(n+1)(2 n+1)$ is divisible by 6 .

Ans.P (n) : $\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)$ is divisible by 6 for $\mathrm{n}=1$
$P(1):(1)(2)(3)=6$ is divisible by 6
Hence result is true for $\mathrm{n}=1$

Let $P(K)$ be true
$P(K): K(K+1)(2 K+1)$ is divisible by 6
$\Rightarrow K(K+1)(2 K+1)=6 \lambda$ where $\lambda \in \mathrm{N}(\mathrm{i})$
we want to prove that result is true for $\mathrm{n}=\mathrm{K}+1$
$(\mathrm{K}+1)(\mathrm{K}+2)(2 \mathrm{k}+3)=(\mathrm{K}+1)(\mathrm{K}+2)[(2 K+1)+2]$
$=(\mathrm{K}+1)(\mathrm{K}+2)(2 \mathrm{~K}+1)+2(\mathrm{~K}+1)(\mathrm{K}+2)$
$=(K+2)[(K+1)(2 K+1)]+2(\mathrm{~K}+1)(\mathrm{K}+2)$
$=\mathrm{K}(\mathrm{K}+1)(2 \mathrm{~K}+1)+2(\mathrm{~K}+1)(2 \mathrm{~K}+1)+2(\mathrm{~K}+1)(\mathrm{K}+2)$
$=6 \lambda+2(K+1)(2 K+1)+2(K+1)(K+2)($ by i $)$
$=6 \lambda+2(\mathrm{~K}+1)[2 K+1+K+2]$
$=6 \lambda+2(K+1)(3 K+3)$
$=6 \lambda+6(K+1)(K+1)$
$=6[\lambda+(K+1)(K+1)]$
is divisible by 6 .
19. Show that $2^{3 n}-1$ is divisible by 7 .

Ans.P (n) : $2^{3 n}-1$ is divisible by 7
for $\mathrm{n}=1$

P (1) : $2^{3}-1=7$ which is divisible by 7
Let $P(K)$ be true
$\mathrm{P}(\mathrm{K}): 2^{3 \mathrm{~K}}-1$ is divisible by 7
$\Rightarrow 2^{3 \mathrm{~K}}-1=7 \lambda$ where $\lambda \in \mathrm{N}(\mathrm{i})$
we want to prove that $\mathrm{P}(\mathrm{K}+1)$ is true whenever $\mathrm{P}(\mathrm{K})$ is true $2^{3(K+1)}-1=2^{3 K+3}-1$
$=2^{3 \mathrm{~K}} \cdot 2^{3}-1$
$=(7 \lambda+1) \cdot 8-1($ from i$)$
$=56 \lambda+8-1$
$=56 \lambda+7$
$=7(8 \lambda+1)$ which is divisible by 7 s

Thus $\mathrm{P}(\mathrm{K}+1)$ is true
Hence by P.M.I $P(n)$ is true $\forall \mathrm{n} \in \mathrm{N}$
20. Prove by P M I.

1. $2.3+2.3 .4+--+n(n+1)(n+2)$
$=\frac{n(n+1)(n+2)(n+3)}{4}$

Ans.Let P (n): 1.2. $3+2.3 .4+---+n(n+1)(n+2)$
$=\frac{n(n+1)(n+2)(n+3)}{4}$

For $\mathrm{n}=1$
$P(1)=1(2)(3)=\frac{(1)(2)(3)(4)}{4}$
$P(1)=6=6$ which is true

Let $P(K)$ be true
$P(K): 1.2 .3+2.3 .4+--+K(K+1)(K+2)$
$=\frac{K(K+1)(K+2)(K+3)}{4}$
we want to prove that
$\mathrm{P}(\mathrm{K}+1) \mathrm{n}: 1.2 .3+2.3 .4+--+(\mathrm{K}+1)(\mathrm{K}+2)(\mathrm{K}+3)=\frac{(K+1)(K+2)(K+3)(K+4)}{4}$
L.H.S $=1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+--+K(K+1)(K+2)+(K+1)(K+2)(K+3)$
$=\frac{K(K+1)(K+2)(K+3)}{4}+\frac{(K+1)(K+2)(K+3)}{1} \quad[$ from (1)
$=\frac{(K+1)(K+2)(K+3)[K+4]}{4}$,
Thus $\mathrm{P}(\mathrm{K}+1)$ is true whenever $\mathrm{P}(\mathrm{K})$ is true.
21. Prove that $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.+\frac{1}{n(n+1)}=\frac{n}{n+1}$

Ans.P(n) : $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.+\frac{1}{n(n+1)}=\frac{n}{n+1}$
For $\mathrm{n}=1$
$P(1)=\frac{1}{2}=\frac{1}{2}$ which is true
Let $P(K)$ be true
$P(K): \frac{1}{1.2}+\frac{1}{2.3}+\cdots+\frac{1}{K(K+1)}=\frac{K}{K+1}$
we want to prove that $\mathrm{P}(\mathrm{K}+1)$ is true
$\mathrm{P}(\mathrm{K}+1): \frac{1}{1.2}+\frac{1}{2.3}+\cdots+\frac{1}{(K+1)(K+2)}=\frac{K+1}{K+2}$
L.H.S $=\frac{1}{1.2}+\frac{1}{2.3}+\cdots+\frac{1}{K(K+1)}+\frac{1}{(K+1)(K+2)}$
$=\frac{K}{K+1}+\frac{1}{(K+1)(K+2)} \quad[$ from (1)
$=\frac{K(K+2)+1}{(K+1)(K+2)}$
$=\frac{K^{2}+2 K+1}{(K+1)(K+2)}=\frac{(K+1)^{7}}{(K+1 /)(K+2)}$
$=\frac{K+1}{K+2}$,
Thus $P(K+1)$ is for whenever $P(K)$ is true.
22. Show that the sum of the first n odd natural no is $\mathbf{n}^{\mathbf{2}}$.

Ans.Let P (n) : $1+3+5+--+(2 n-1)=n^{2}$

For $\mathrm{n}=1$
$P(1)=1=1$ which is true

Let $P(K)$ be true
$\mathrm{P}(\mathrm{K}): 1+3+5+\ldots-+(2 \mathrm{~K}-1)=\mathrm{K}^{2}(1)$
we want to prove that $P(K+1)$ is true
$P(K+1): 1+3+5+---+(2 K+1)=(K+1)^{2}$
L.H.S $=1+3+5+--+(2 K-1)+(2 K+1)$
$=K^{2}+2 K+1 \quad[$ From (1)
$=(K+1)^{2}$
Thus $P(K+1)$ is true whenever $P(K)$ is true.

Hence by PMI, $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{N}$.

23. Prove by P M I

$1^{3}+2^{3}+3^{3}+---+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
Ans.P (n) : $1^{3}+2^{3}+3^{3}+---+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
For $n=1$
$P(1): 1^{3}=1^{3}$ which is true

Let $P(K)$ be true
$P(K): 1^{3}+2^{3}+--+K^{3}=\left(\frac{K(K+1)}{2}\right)^{2}$
we want to prove that $\mathrm{P}(\mathrm{K}+1)$ is true
$\mathrm{P}(\mathrm{K}+1): 1^{3}+2^{3}+\ldots+(\mathrm{K}+1)^{3}=\left(\frac{(K+1)(K+2)}{2}\right)^{2}$
L.H.S $=1^{1^{3}+2^{3}+--+K^{3}}+(K+1)^{3}$
$=\left(\frac{K(K+1)}{2}\right)^{2}+(K+1)^{3} \quad[$ from (1)
$=\frac{K^{2}(K+1)^{2}}{4}+\frac{(K+1)^{3}}{1}$
$=\frac{K^{2}(K+1)^{2}+4(K+1)^{3}}{4}$
$=\frac{(K+1)^{2}\left[K^{2}+4(K+1)\right]}{4}$
$=\frac{(K+1)^{2}\left(K^{2}+4 K+4\right)}{4}$
$=\frac{(K+1)^{2}(K+2)^{2}}{4}$
$=\left[\frac{(K+1)(K+2)}{2}\right]$

Thus $\mathrm{P}(\mathrm{K}+1)$ is true whenever $\mathrm{P}(\mathrm{K})$ is true.
24. Prove. $\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)-\cdots+\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2}$

Ans.P $(\mathrm{n}):\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)---\left(1+\frac{(2 \mathrm{n}+1)}{\mathrm{n}^{2}}\right)=(\mathrm{n}+1)^{2}$
For $\mathrm{n}=1$
$P(1): 4=4$ which is true

Let $P(K)$ be true

$$
\begin{equation*}
\mathrm{P}(\mathrm{~K}):\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)---\left(1+\frac{(2 K+1)}{K^{2}}\right)=(K+1)^{2} \tag{1}
\end{equation*}
$$

We want to power that $\mathrm{P}(\mathrm{K}+1)$ is true

$$
\begin{aligned}
& P(K+1):\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)--\left(1+\frac{(2 K+3)}{(K+1)^{2}}\right)=(K+2)^{2} \\
& \text { L.H.S }=\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)--\left(1+\frac{(2 K+1)}{K^{2}}\right)\left(1+\frac{(2 K+3)}{(K+1)^{2}}\right)
\end{aligned}
$$

$=(\mathrm{K}+1)^{2}\left(1+\frac{(2 K+3)}{(K+1)^{2}}\right) \quad[\because$ from (1)
$=(\mathrm{K}+1)^{2}\left[\frac{(K+1)^{2}+2 K+3}{(K+1)^{2}}\right]^{2}$
$=\frac{(K+1)^{2}\left(K^{2}+4 K+4\right)}{(K+1)^{2}}$
$=\frac{(K \not+y)^{z}(K+2)^{2}}{\left.(K+\not)^{\prime}\right)^{\gamma}}$
$=(\mathrm{K}+2)$
Thus $P(K+1)$ is true whenever $P(K)$ is true.
25. Prove that $3^{2 n+2}-8 n-9$ is divisible by 8

Ans. $\mathrm{P}(\mathrm{n}): 3^{2 \mathrm{n}+2}-8 \mathrm{n}-9$ is divisible by 8
For $\mathrm{n}=1$

P (1) : $3^{2+2}-8-9=64$
which is divisible by 8
Hence result is true for $\mathrm{n}=1$
Let $P(K)$ be true
$P(K): 3^{2 K+2}-8 K-9$ is divisible by 8
$\Rightarrow 3^{2 K+2}-8 K-9=8 \lambda$, where $\lambda \in \mathrm{N}$ (i)
we want to prove that result is true for $n=K+1$
$3^{2(\mathrm{~K}+1)+2}-8(\mathrm{~K}+1)-9=3^{2 \mathrm{~K}+2+2}-8 \mathrm{~K}-8-9$
$=3^{2 K+4}-8 K-17$
$=3^{2 K} \cdot 3^{4}-8 K-17$
$=3^{2 k+2} \cdot 3^{2}-8 K-17$
$=(8 \lambda+8 K+9) .9-8 K-17$
$=72 \lambda+72 K+81-8 K-17$
$=64 \lambda+64 K+64$
$=8(8 \lambda+8 K+8)$
(from i)
which is divisible by 8
Hence $\mathrm{P}(\mathrm{K}+1)$ is true whwnever $\mathrm{P}(\mathrm{K})$ is true.
Hence by P.M.I P (n) is true $\forall \mathrm{n} \in \mathrm{N}$

26. Prove by PMI.

$x^{n}-y^{n}$ is divisible by ($x-y$) whenever $x-y \neq 0$
Ans. $\mathrm{P}(\mathrm{n}): \mathrm{x}^{\mathrm{n}}-\mathrm{y}^{\mathrm{n}}$ is divisible by ($\mathrm{x}-\mathrm{y}$)
For $\mathrm{n}=1$
$P(1): x-y$ is divisible by $(x-y)$
Let $P(K)$ be true
$P(K): x^{K}-y^{K}$ is divisible by $(x-y)$
$\Rightarrow \mathrm{x}^{\mathrm{K}}-\mathrm{y}^{\mathrm{K}}=\lambda(\mathrm{x}-\mathrm{y})(\mathrm{i})$
we want to prove that $\mathrm{P}(\mathrm{K}+1)$ is true whenever $\mathrm{P}(\mathrm{K})$ is true
$x^{K+1}-y^{K+1}=x^{K} \cdot x-y^{K} \cdot y$
$=\left(\lambda(x-y)+y^{\mathrm{K}}\right) \cdot \mathrm{x}-\mathrm{y}^{\mathrm{K}} \cdot \mathrm{y}($ from i$)$
$=\lambda(x-y) x+y^{K} x-y^{K} y$
$=\lambda(x-y) \cdot x+y^{K}(x-y)$
$=(x-y)\left[\lambda x+y^{K}\right]$
which is divisible by $\mathrm{x}-\mathrm{y}$
Hence $\mathrm{P}(\mathrm{K}+1)$ is true
27. Prove ($\mathrm{x}^{2 \mathrm{n}}-1$) is divisible by ($\mathrm{x}-1$).

Ans.P (n) : ($\mathrm{x}^{2 \mathrm{n}}-1$) is divisible by ($\left.\mathrm{x}-1\right)$.
For $\mathrm{n}=1$
$P(1):\left(x^{2}-1\right)=(x-1)(x+1)$
which is divisible by ($\mathrm{x}-1$)
Let $P(K)$ be true
$P(K):\left(x^{2 K}-1\right)$ is divisible by x-1 (i)
$\Rightarrow \mathrm{x}^{2 \mathbb{K}}-1=\lambda(\mathrm{x}-1)$
we want to prove that $\mathrm{P}(\mathrm{K}+1)$ is true
$\mathrm{P}(\mathrm{K}+1): \mathrm{x}^{2(\mathrm{~K}+1)}-1$
L.H.S
$=x^{2 K+2}-1$
$=x^{2 K} \cdot x^{2}-1$
$=(\lambda(x-1)+1) \cdot x^{2}-1($ from i $)$
$=\lambda(x-1) \cdot x^{2}+x^{2}-1$
$=\lambda(\mathrm{x}-1) \cdot \mathrm{x}^{2}+(\mathrm{x}-1)(\mathrm{x}+1)$
$=(x-1)\left[\lambda x^{2}+(x+1)\right]$
which is divisible by ($\mathrm{x}-1$)
Hence $p(\mathrm{~K}+1)$ is true whenever $p(\mathrm{k})$ is true

28. Prove

$1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+--+\frac{1}{(1+2+--+n)}=\frac{2 n}{(n+1)}$
Ans.P $(\mathrm{n}): 1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+--+\frac{1}{(1+2+--+n)}=\frac{2 n}{(n+1)}$
$1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+---+\frac{1}{\frac{n(n+1)}{2}}=\frac{2 n}{n+1}$
$1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+--+\frac{2}{n(n+1)}=\frac{2 n}{n+1}$
for $n=1$
P (1): $\frac{2}{2}=\frac{2}{2}=1$
which is true
Let $\mathrm{p}(\mathrm{k})$ be true
$\mathrm{p}(\mathrm{k}): 1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+---+\frac{2}{k(k+1)}=\frac{2 k}{k+1}$
we want to prove that $\mathrm{p}(\mathrm{k}+1)$ is true
$\mathrm{p}(\mathrm{k}+1): 1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+---+\frac{2}{(k+1)(k+2)}=\frac{2(k+1)}{k+2}$
$L . H . S=1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+---+\frac{2}{k(k+1)}+\frac{2}{(k+1)(k+2)}$
$=\frac{2 k}{k+1}+\frac{2}{(k+1)(k+2)}$
[from (1)
$=\frac{2 k(k+2)+2}{(k+1)(k+2)}$
$=\frac{2 k^{2}+4 k+2}{(k+1)(k+2)}$
$=\frac{2\left(k^{2}+2 k+1\right)}{(k+1)(k+2)}$
$=\frac{2(k+1)^{z}}{\left(k^{2} \nVdash \not \partial\right)(k+2)}$
$=\frac{2(k+1)}{(k+2)}$
thus $p(k+1)$ is true whenever $p(k)$ is true
Hence by PMI $\mathrm{p}(\mathrm{n})$ is true $\forall \mathrm{n} \in \mathrm{N}$.
29. Prove $1.3+3.5+5.7+--+(2 n-1)(2 n+1)$
$=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$
Ans.Let $\mathrm{p}(\mathrm{n}): 1.3+3.5+--+(2 n-1)(2 n+1)$
$=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$

For $\mathrm{n}=1$
$P(1)=(1)(3)=\frac{1(4+6-1)}{3}$
$P(1)=3=3$ Hence $p(1)$ is true

Let (k) be true
$\mathrm{P}(\mathrm{k}): 1.3+3.5+--+(2 \mathrm{k}-1)(2 \mathrm{~K}+1)=\frac{k\left(4 k^{2}+6 k-1\right)}{3}$
we want to prove that $p(k+1)$ is true
$\mathrm{p}(\mathrm{k}+1): 1.3+3.5+--+(2 \mathrm{k}+1)(2 \mathrm{k}+3)=\frac{(k+1)\left[4(k+1)^{2}+6(k+1)-1\right]}{3}$
L. H. S
$1.3+3.5+--+(2 k-1)(2 k+1)+(2 k+1)(2 k+3)$
$=\frac{k\left(4 k^{2}+6 k-1\right)}{3}+\frac{(2 k+1)(2 k+3)}{1} \quad[$ from (1)
$=\frac{k\left(4 k^{2}+6 k-1\right)+3(2 k+1)(2 k+3)}{3}$
$=\frac{4 k^{3}+18 k^{2}+23 k+9}{3}[$ put $k=-1(k+1)$ is one fator $]$
$=\frac{(k+1)\left(4 k^{2}+14 k+9\right)}{3}$
Thus $p(k+1)$ is true whenever $p(k)$ is true.

30. Prove by PMI

$3.2^{2}+3^{2} \cdot 2^{3}+3^{3} \cdot 2^{4}+\cdots+3^{n} \cdot 2^{\mathbf{n + 1}}=\frac{12}{5}\left(6^{n}-1\right) n \in N$.
Ans.Let $\mathrm{p}(\mathrm{n}): 3.2^{2}+3^{2} \cdot 2^{3}+3^{3} \cdot 2^{4}+\ldots+3^{\mathrm{n}} \cdot 2^{\mathrm{n}+1}=\frac{12}{5}\left(6^{n}-1\right)$
For $\mathrm{n}=1$
$p(1): 3^{1} \cdot 2^{2}=\frac{12}{5}\left(6^{1}-1\right)$
$p(1)=12=12$
$p(1)$ is true
Let $p(k)$ be true
$p(\mathrm{k}): 3 \cdot 2^{2}+3^{2} \cdot 2^{3}+-+3^{\mathrm{k}} \cdot 2^{\mathrm{k}+1}=\frac{12}{5}\left(6^{\mathrm{k}}-1\right)$
we want to prove that $\mathrm{p}(\mathrm{k}+1)$ is true
$p(k+1): 3 \cdot 2^{2}+3^{2} \cdot 2^{3}+\ldots+3^{k+1} \cdot 2^{k+2}=\frac{12}{5}\left(6^{k+1}-1\right)$
$L \cdot H \cdot S=3 \cdot 2^{2}+3^{2} \cdot 2^{3}+--+3^{k} \cdot 2^{k+1}+3^{k+1} \cdot 2^{k+2}$
$=\frac{12}{5}\left(6^{k}-1\right)+3^{k+1} \cdot 2^{k+2}$
[from (1)
$=\frac{2}{5} \cdot 6 \cdot 6^{k}-\frac{12}{5}+3^{k+1} \cdot 2^{k+1} \cdot 2^{1}$
$=\frac{2}{5} 6^{k+1}-\frac{12}{5}+6^{k+1} \cdot 2$
$=6^{k+1}\left(\frac{2}{5}+2\right)-\frac{12}{5}$
$=6^{k+1}\left(\frac{12}{5}\right)-\frac{12}{5}=\frac{12}{5}\left[6^{k+1}-1\right]$
Thus $p(k+1)$ is truewhenever $p(k)$ is true.
31. Prove $1.3+2.3^{2}+\mathbf{3 . 3 ^ { 3 }}+\ldots+\mathbf{n} .3^{\mathbf{n}}=\frac{(2 n-1) 3^{n+1}+3}{4}$

Ans.P (n) : $1.3+2.3^{2}+3.3^{3}+\ldots+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$
For $\mathrm{n}=1$
$P(1): 1.31=\frac{(2-1) \cdot 3^{2}+3}{4}$
$p(1): 3=\frac{\not \partial 2^{\prime} 3}{A}$
hence $p(1)$ is true
Let $p(k)$ be true
$p(k): 1.3+2.3^{2}+3.3^{3}+-+\mathrm{k} .3^{k}=\frac{(2 k-1) 3^{k+1}+3}{4}$
we want to prove that $\mathrm{p}(\mathrm{k}+1)$ is true
$p(k+1): 1.3+2.3^{2}+3.3^{3}+--+(k+1) \cdot 3^{k+1}=\frac{(2 k+1) 3^{k+2}+3}{4}$
$L . H . S=1.3+2.3^{2}+3.3^{3}+-+k .3^{k}+(k+1) .3^{k+1}$
$=\frac{(2 k-1) \cdot 3^{k+1}+3}{4}+\frac{(k+1) 3^{k+1}}{1} \quad[$ from (1)
$=\frac{(2 k-1) \cdot 3^{k+1}+3+4(k+1) 3^{k+1}}{4}$
$=\frac{(2 k-1+4 k+4) \cdot 3^{k+1}+3}{4}$
$=\frac{(6 k+3) \cdot 3^{k+1}+3}{4}$
$=\frac{3(2 k+1) \cdot 3^{k+1}+3}{4}$
$=\frac{(2 k+1) 3^{k+2}+3}{4}$

Thus $\mathrm{p}(\mathrm{k}+1)$ is true whenever $\mathrm{p}(\mathrm{k})$ is true.
32. Prove $\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+--+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}$

Ans. $\mathrm{P}(\mathrm{n}): \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+--+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}$
For $\mathrm{n}=1$
$p(1): \frac{1}{(2+1)(2+3)}=\frac{1}{3(2+3)}$
$p(1)=\frac{1}{.15}=\frac{1}{15}$ Hence $\mathrm{p}(1)$ is true
Let $\mathrm{p}(\mathrm{k})$ be true
$\mathrm{p}(\mathrm{k}): \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+--+\frac{1}{(2 k+1)(2 k+3)}=\frac{k}{3(2 k+3)}$
we want to prove that $\mathrm{p}(\mathrm{k}+1)$ is true
$\mathrm{p}(\mathrm{k}+1): \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+--+\frac{1}{(2 k+3)(2 k+5)}=\frac{(k+1)}{3(2 k+5)}$

$$
\begin{aligned}
& \text { L.H.S }=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+--+\frac{1}{(2 k+1)(2 k+3)}+\frac{1}{(2 k+3)(2 k+5)} \\
& =\frac{k}{3(2 k+3)}+\left(\frac{1}{(2 k+3)}\right)\left(\frac{1}{(2 k+5)}\right) \quad[\text { from (1) } \\
& =\frac{k(2 k+5)+3}{3(2 k+3)(2 k+5)} \\
& =\frac{k+1}{3(2 k+5)}
\end{aligned}
$$

Thus $\mathrm{p}(\mathrm{k}+1)$ is true whenever $\mathrm{p}(\mathrm{k})$ is true
Hence $p(n)$ is true for all $n \in N$.
33. The sum of the cubes of three consecutive natural no. is divisible by 9.

Ans. $\mathrm{P}(\mathrm{n})\left[k^{3}+(k+1)^{3}+(k+2)^{3}\right]$ is divisible by 9

For $\mathrm{n}=1$
$P(1): 1+8+9=18$
which is divisible by 9

Let $\mathrm{p}(\mathrm{k})$ be true
$p(k):\left[k^{3}+(k+1)^{3}+(k+2)^{3}\right]$ is divisible by 9
$\Rightarrow k^{3}+(k+1)^{3}+(k+2)^{3}=9 \lambda(i)$
we want to prove that $\mathrm{p}(\mathrm{k}+1)$ is true
$\mathrm{p}(\mathrm{k}+1):(\mathrm{k}+1)^{3}+(\mathrm{k}+2)^{3}+(\mathrm{k}+3)^{3}$
L.H.S $=(k+1)^{3}+(k+2)^{3}+(k+3)^{3}$
$=(k+1)^{3}+(k+2)^{3}+k^{3}+9 k^{2}+27 k+27$
$=k^{3}+(k+1)^{3}+(k+2)^{3}+9\left(k^{2}+3 k+3\right)$
$=9 \lambda+9\left(k^{2}+3 k+3\right)($ from i)
$=9\left[\lambda+\left(k^{2}+3 k+3\right)\right]$ which is \div by 9 .
34. Prove that $12^{\mathrm{n}}+25^{\mathrm{n}-1}$ is divisible by 13

Ans. $\mathrm{P}(\mathrm{n}): 12^{\mathrm{n}}+25^{\mathrm{n}-1}$ is divisible by 13
For $\mathrm{n}=1$
$\mathrm{P}(1): 12+(25)^{0}=13$
which is divisible by 13
Let $\mathrm{p}(\mathrm{k})$ be true
$\mathrm{P}(\mathrm{k}): 12^{\mathrm{k}}+25^{\mathrm{k}-1}$ is divisible by 13
$\Rightarrow 12^{k}+25^{k-1}=13 \lambda(i)$
we want to prove that result is true for $n=k+1$
$12^{(\mathrm{k}+1)}+25^{\mathrm{k}+x-y}=12^{\mathrm{k}} \cdot 12^{1}+25^{\mathrm{k}}$
$=\left(13 \lambda-25^{k-1}\right) \cdot 12+25^{k}($ from $i)$
$=13 \times 12 \lambda-25^{k-1} .12+25^{k}$
$=13 \times 12 \lambda+25^{k-1}(-12+25)$
$=13\left(12 \lambda+25^{k-1}\right)$
which is divisible by 13 .
35. Prove $11^{\mathrm{n}+2}+12^{2 \mathrm{n}+1}$ is divisible by 133 .

Ans. $\mathrm{P}(\mathrm{n}): 11^{\mathrm{n}+2}+12^{2 \mathrm{n}+1}$ is divisible by 133 .
For $\mathrm{n}=1$
$P(1): 11^{3}+12^{3}=3059$
which is divisible by 133

Let $\mathrm{p}(\mathrm{k})$ be true
$p(k): 11^{k+2}+12^{2 k+1}$ is divisible by 133
$\Rightarrow 11^{k+2}+12^{2 k+1}=133 \lambda$ (i)
we want to prove that
result is true for $n=k+1$
L.H.S $=11^{\mathrm{k}+1+2}+12^{2(\mathrm{k}+1)+1}$
$=11^{k+3}+12^{2 k+2+1}$
$=11^{k+3}+12^{2 k+3}$
$=11^{\mathrm{k}} \cdot 11^{3}+12^{2 \mathrm{k}} \cdot 12^{3}$
$=11^{\mathrm{k}+2} \cdot 11+12^{2 \mathrm{k}} \cdot 12^{3}$
$=\left(133 \lambda-12^{2 k+1}\right) \cdot 11+12^{2 k} \cdot 12^{3}($ from i)
$=133 \times 11 \lambda-12^{2 k+1} \cdot 11+12^{2 *} \cdot 12^{3}$
$=133 \times 11 \times \lambda+12^{\mathrm{k}}\left(-12 \times 11+12^{3}\right)$
$=133\left[\left(11 \lambda+12^{k}(1596)\right]\right.$
which is $\div 133$.
36. Prove $1^{3}+2^{3}+3^{3}+\ldots+\mathbf{n}^{3}=\frac{n^{2}(n+1)^{2}}{4}$

Ans. $\mathrm{P}(\mathrm{n}): 1^{3}+2^{3}+3^{3}+\ldots+\mathrm{n}^{3}=\frac{n^{2}(n+1)^{2}}{4}$
For $\mathrm{n}=1$
$p(1): 1^{3}=\frac{1^{2}(2)^{2}}{4}=1$
which is true
Let $p(k)$ be true
$\mathrm{p}(\mathrm{k}): 1^{3}+2^{3}+\ldots+\mathrm{k}^{3}=\frac{k^{2}(k+1)^{2}}{4}$
we want to prove that $p(k+1)$ is true
$\mathrm{p}(k+1): 1^{3}+2^{3}+\ldots+(k+1)^{3}=\frac{(k+1)^{2}(k+2)^{2}}{4}$
L.H.S $=1^{3}+2^{3}+\ldots-+k^{3}+(k+1)^{3} \quad[$ from (1)
$=\frac{k^{2}(k+1)^{2}}{4}+\frac{(k+1)^{3}}{1}$
$=\frac{k^{2}(k+1)^{2}+4(k+1)^{3}}{4}$
$=\frac{(k+1)^{2}\left[k^{2}+4(k+1)\right]}{4}$
$=\frac{(k+1)^{2}(k+2)^{2}}{4}$
Thus $p(k+1)$ is true whenever $p(k)$ is true.
37. Prove (a)+(a+d)+(a+2d)+-+[a+(n-1)d]=[n$[2 a+(n-1) d]$

Ans. $\mathrm{P}(\mathrm{n}):(\mathrm{a})+(\mathrm{a}+\mathrm{d})+(\mathrm{a}+2 \mathrm{~d})+\cdots+[\mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
For $\mathrm{n}=1$
$p(1): a+(1-1) d=\frac{1}{2} 2 a+(1-1) d=a$
which is true
Let $\mathrm{p}(\mathrm{k})$ be true
$p(k):(a)+(a+d)+(a+2 d)+--+(a+(k-1) d)=\frac{k}{2}[2 a+(k-1) d]$
we want to prove that $\mathrm{p}(\mathrm{k}+1)$ is true
$p(k+1):(a)+(a+d)+--+(a+k d)=\frac{k+1}{2}[2 a+k d]$
L.H.S $=a+(a+d)+--+a+k d$
$=a+(a+d)+--+a+(k-1) d+a+k d$
$=\frac{\mathrm{k}}{2}[2 \mathrm{a}+(\mathrm{k}-1) \mathrm{d}]+\mathrm{a}+\mathrm{kd} \quad[$ from (1)
$=k a+\frac{k}{2}(k-1) d+a+k d$
$=\frac{2 a \mathrm{k}+\mathrm{k}^{2} \mathrm{~d}-\mathrm{kd}+2 \mathrm{a}+2 \mathrm{kd}}{2}$
$=\frac{2 a(k+1)+k d(k+1)}{2}=\frac{(k+1)(2 a+k d)}{2}$
proved.
38. Prove that $2^{\mathbf{n}}>\mathbf{n} \forall$ positive integers n.

Ans. Let $\mathrm{p}(\mathrm{n}): 2^{\mathrm{n}}>\mathrm{n}$

For $\mathrm{n}=1$

P(1): $2^{1}>1$

Which is true

Let $\mathrm{p}(\mathrm{k})$ be true

P(k) : $2^{\mathrm{k}}>\mathrm{k}(1)$
we want to prove that $p(k+1)$ is true
$2^{\mathrm{k}}>\mathrm{k}$ by (1)
$\Rightarrow 2^{\mathrm{k}} .2>2 \mathrm{k}$
$2^{k+1}>2 k$
$2^{k+1}>2 k=k+k>k+1$
Hence provtd.
39. Prove $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+---+\frac{1}{n(n+1)}=\frac{n}{n+1}$

Ans. $\mathrm{P}(\mathrm{n}): \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+---+\frac{1}{n(n+1)}=\frac{n}{n+1}$

For $\mathrm{n}=1$
$p(1)=\frac{1}{2}=\frac{1}{2}$ which is true
Let $\mathrm{p}(\mathrm{k})$ be true
$\mathrm{p}(\mathrm{k}): \frac{1}{1.2}+\frac{1}{2.3}+--+\frac{1}{k(k+1)}=\frac{k}{k+1}$
we want to prove that $\mathrm{p}(\mathrm{k}+1)$ is true
$\mathrm{p}(\mathrm{k}+1): \frac{1}{1.2}+\frac{1}{2.3}+--+\frac{1}{(k+1)(k+2)}=\frac{k+1}{k+2}$
L.H.S $=\frac{1}{1.2}+\frac{1}{2.3}+--+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)}$
[from (1)
$=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}$
$=\frac{k(k+2)+1}{(k+1)(k+2)}$
$=\frac{k^{2}+2 k+1}{(k+1)(k+2)}=\frac{(k+1)^{z}}{\left(k^{\prime} \nVdash \not 1\right)(k+2)}$
$=\frac{k+1}{k+2}$
proved.
40. Prove $\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+--+\frac{1}{3 n(3 n+3)}=\frac{n}{9(n+1)}$.

Ans.P(n) : $\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+---+\frac{1}{3 n(3 n+3)}=\frac{n}{9(n+1)}$.
For $\mathrm{n}=1$
$p(1): \frac{1}{3(6)}=\frac{1}{9(2)}=\frac{1}{18}$ which is true
Let $\mathrm{p}(\mathrm{k})$ be true
$\mathrm{p}(\mathrm{k}): \frac{1}{3.6}+\frac{1}{6.9}+---+\frac{1}{3 k(3 k+3)}=\frac{k}{9(k+1)}$
we want to prove that $\mathrm{p}(\mathrm{k}+1)$ is true

$$
\begin{aligned}
& p(k+1): \frac{1}{3.6}+\frac{1}{6.9}+--+\frac{1}{3(k+1)(3 k+6)}=\frac{k+1}{9(k+2)} \\
& L \cdot H \cdot S=\frac{1}{3.6}+\frac{1}{6.9}+---+\frac{1}{3 k(3 k+3)}+\frac{1}{3(k+1)(3 k+6)} \\
& =\frac{\mathrm{k}}{9(\mathrm{k}+1)}+\frac{1}{3(\mathrm{k}+1) 3(\mathrm{k}+2)} \quad[\text { from }(1) \\
& =\frac{\mathrm{k}(\mathrm{k}+2)+1}{9(\mathrm{k}+1)(\mathrm{k}+2)} \\
& =\frac{\mathrm{k}^{2}+2 \mathrm{k}+1}{9(\mathrm{k}+1)(\mathrm{k}+2)} \\
& =\frac{(\mathrm{k}+1)^{z}}{9(\mathrm{k} \nless 1)(\mathrm{k}+2)} \\
& =\frac{\mathrm{k}+1}{9(\mathrm{k}+2)} \\
& \text { proved. }
\end{aligned}
$$

Principles Of Mathematical Induction

1. Give an example of a statement $\mathrm{P}(n)$ which is true for all $n \geq 4$ but $\mathrm{P}(1), \mathrm{P}(2)$ and $P(3)$ are not true. Justify your answer.
2. Give an example of a statement $\mathrm{P}(n)$ which is true for all n. Justify your answer. Prove each of the statements in Exercises 3-16 by the Principle of Mathematical Induction:
3. $4^{n}-1$ is divisible by 3 , for each natural number n.
4. $2^{3 n}-1$ is divisible by 7 , for all natural numbers n.
5. $n^{3}-7 n+3$ is divisible by 3 , for all natural numbers n.
6. $3^{2 n}-1$ is divisible by 8 , for all natural numbers n.
7. For any natural number $n, 7^{n}-2^{n}$ is divisible by 5 .
8. For any natural number $n, x^{n}-y^{n}$ is divisible by $x-y$, where x and y are any integers with $x \neq y$.
9. $n^{3}-n$ is divisible by 6 , for each natural number $n \geq 2$.
10. $n\left(n^{2}+5\right)$ is divisible by 6 , for each natural number n.
11. $n^{2}<2^{*}$ for all natural numbers $n \geq 5$.
12. $2 n<(n+2)$! for all natural number n.
13. $\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}$, for all natural numbers $n \geq 2$.
14. $2+4+6+\ldots+2 n=n^{2}+n$ for all natural numbers n.
15. $1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$ for all natural numbers n.
16. $1+5+9+\ldots+(4 n-3)=n(2 n-1)$ for all natural numbers n.

Use the Principle of Mathematical Induction in the following Exercises.
17. A sequence $a_{1}, a_{2}, a_{3} \ldots$ is defined by letting $a_{1}=3$ and $a_{k}=7 a_{2-1}$ for all natural numbers $k \geq 2$. Show that $a_{n}=3.7^{-1}$ for all natural numbers.
18. A sequence $b_{0}, b_{1}, b_{2} \ldots$ is defined by letting $b_{0}=5$ and $b_{k}=4+b_{k-1}$ for all natural numbers k. Show that $b_{n}=5+4 n$ for all natural number n using mathematical induction.
19. A sequence $d_{1}, d_{2}, d_{3} \ldots$ is defined by letting $d_{1}=2$ and $d_{k}=\frac{d_{k-1}}{k}$ for all natural numbers, $k \geq 2$. Show that $d_{n}=\frac{2}{n!}$ for all $n \in \mathbf{N}$.
20. Prove that for all $n \in \mathbf{N}$
$\cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos (\alpha+(n-1) \beta)$

$$
=\frac{\cos \left(\alpha+\left(\frac{n-1}{2}\right) \beta\right) \sin \left(\frac{n \beta}{2}\right)}{\sin \frac{\beta}{2}}
$$

21. Prove that, $\cos \theta \cos 2 \theta \cos 2^{2} \theta \ldots \cos 2^{n-1} \theta=\frac{\sin 2^{n} \theta}{2^{n} \sin \theta}$, for all $n \in \mathbf{N}$.
22. Prove that, $\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin n \theta=\frac{\frac{\sin n \theta}{2} \sin \frac{(n+1)}{2} \theta}{\sin \frac{\theta}{2}}$, for all $n \in \mathbf{N}$.
23. Show that $\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}$ is a natural number for all $n \in \mathbf{N}$.
24. Prove that $\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}>\frac{13}{24}$, for all natural numbers $n>1$.
25. Prove that number of subsets of a set containing n distinct elements is \boldsymbol{Z}^{2}, for all $n \in \mathbf{N}$.

Choose the correct answers in Exercises 26 to 30 (M.C.Q.).
26. If $10^{n}+3.4^{n+2}+k$ is divisible by 9 for all $n \in \mathbf{N}$, then the least positive integral value of k is
(A) 5
(B) 3
(C) 7
(D) 1
27. For all $n \in \mathbf{N}, 3.5^{2 n+1}+2^{3 n+1}$ is divisible by
(A) 19
(B) 17
(C) 23
(D) 25
28. If $x^{n}-1$ is divisible by $x-k$, then the least positive integral value of k is
(A) 1
(B) 2
(C) 3
(D) 4

