Unit 2 (Relations And Functions)

Short Answer Type Questions

Q1. If A = {-1, 2, 3 } and B = {1, 3}, then determine (i) AxB (ii) BxC (c) BxB (iv) AxA Sol: We have A = {-1,2,3} and B = {1,3} (i) A x B = {(-1, 1), (-1, 3), (2, 1), (2, 3), (3, 1), (3, 3)} (ii) BxA = {(-1, -1), (-1, 2), (1,3), (3, -1), (3,2), (3, 3)} (iii) BxB = {(1,1), (1,3), (3,1), (3, 3)} (iv) A xA = {(-1, -1), (-1, 2), (-1, 3), (2, -1), (2, 2), (2, 3), (3, -1), (3, 2), (3,3)}

Q2. If P = {x : x < 3, x e N}, Q= {x : x $\leq 2,x \in W$ }. Find (Pu Q) x (Pn Q), where W is the set of whole numbers.

Sol: We have, $P=\{x: x<3, x \in N\} = \{1,2\}$ And $Q = \{x: x \le 2, x \in W\} = \{0,1,2\}$ $P \cup Q = \{0, 1,2\}$ and $P \cap Q = \{1,2\}$ $(P \cup Q) \times (P \cap Q) = \{0,1,2\} \times \{1,2\}$ $= \{(0,1), (0,2), (1,1), (1,2), (2,1), (2,2)\}$

Q3. If A={x:x \in W,x < 2}, 5 = {x : x \in N, 1 <.x < 5}, C= {3, 5}. Find

(i) Ax(BnQ) (ii) Ax(BuC)

Sol: We have, A = {x :x∈ W,x< 2} = {0, 1};

 $B = \{x : x \in N, 1 < x < 5\} = \{2, 3, 4\}; and C = \{3, 5\}$

(i) Bn C = {3} A x (B n C) = {0, 1} x {3} = {(0, 3), (1, 3)}

(ii) (B U C) ={2,3,4, 5} A x (B U C) = {0, 1} x {2, 3,4, 5} = {(0,2), (0,3), (0,4), (0,5), (1,2), (1,3), (1,4), (1, 5)}

Q4. In each of the following cases, find a and b. (2a + b, a - b) = (8, 3) (ii) (a/4, a - 2b) = (0, 6 + b)

Sol: (i) We have, (2a + b,a-b) = (8,3) => 2a + b = 8 and a - b = 3 On solving, we get a = 11/3 and b = 2/3

(ii) We have,
$$\left(\frac{a}{4}, a-2b\right) = (0, 6+b)$$

 $\Rightarrow \quad \frac{a}{4} = 0 \Rightarrow a = 0$
and $a-2b = 6+b$
 $\Rightarrow \quad 0-2b = 6+b$
 $\Rightarrow \quad b = -2$
 $\therefore \quad a = 0, b = -2$

Q5. Given A = {1,2,3,4, 5}, S= {(x,y) : $x \in A, y \in A$ }. Find the ordered pairs which satisfy the conditions given below

x+y = 5 (ii) x+y<5 (iii) x+y>8

Sol: We have, $A = \{1, 2, 3, 4, 5\}$, $S = \{(x, y) : x \in A, y \in A\}$

(i) The set of ordered pairs satisfying x + y = 5 is {(1,4), (2,3), (3,2), (4,1)}

(ii) The set of ordered pairs satisfying x+y < 5 is {(1,1), (1,2), (1,3), (2, 1), (2,2), (3,1)}

(iii) The set of ordered pairs satisfying x + y > 8 is {(4, 5), (5,4), (5, 5)}.

Q6. Given R = {(x,y) : $x,y \in W$, $x^2 + y^2 = 25$ }. Find the domain and range of R

Sol: We have, $R = \{(x,y):x,y \in W, x^2 + y^2 = 25\}$ = $\{(0,5), (3,4), (4, 3), (5,0)\}$ Domain of R = Set of first element of ordered pairs in R = $\{0,3,4,5\}$ Range of R = Set of second element of ordered pairs in R = $\{5,4,3,0\}$

Q7. If $R_1 = \{(x, y) | y = 2x + 7, where x \in R and <math>-5 \le x \le 5\}$ is a relation. Then find the domain and range of R_1 .

Sol: We have, $R_1 = \{(x, y)|y = 2x + 7, where x \in R \text{ and } -5 \le x \le 5\}$ Domain of $R_1 = \{-5 \le x \le 5, x \in R\} = [-5, 5]$ $x \in [-5, 5]$ $=> 2x \in [-10, 10]$ $=> 2x + 7 \in [-3, 17]$ Range is [-3, 17]

Q8. If $R_2 = \{(x, y) | x \text{ and } y \text{ are integers and } x^2 + y^2 = 64\}$ is a relation. Then find R_2

Sol: We have, $R_2 = \{(x, y) | x \text{ and } y \text{ are integers and } x^2 + y^2 - 64\}$ Clearly, $x^2 = 0$ and $y^2 = 64$ or $x^2 = 64$ and $y^2 = 0$ x = 0 and $y = \pm 8$ or $x = \pm 8$ and y = 0 $R_2 = \{(0, 8), (0, -8), (8, 0), (-8, 0)\}$

Q9. If $R_3 = \{(x, |x|) | x \text{ is a real number}\}$ is a relation. Then find domain and range

Sol: We have, $R_3 = \{(x, |x)\} | x \text{ is real number}\}$ Clearly, domain of $R_3 = R$ Now, $x \in R$ and $|x| \ge 0$. Range of R_3 is $[0,\infty)$

Q10. Is the given relation a function? Give reasons for your answer.

(i) h={(4,6), (3,9), (-11,6), (3,11)}

(ii) $f = \{(x, x) | x \text{ is a real number}\}$

(iii) g = {(n, 1 ln)| nis a positive integer}

(iv) $s = \{(n, n^2) | n is a positive integer\}$

(v) t= $\{(x, 3) | x \text{ is a real number}\}$

Sol: (i) We have, h = {(4,6),(3,9), (-11,6), (3,11)}.

Since pre-image 3 has two images 9 and 11, it is not a function.

(ii) We have, $f = \{(x, x) | x \text{ is a real number}\}$

Since every element in the domain has unique image, it is a function.

(iii) We have, $g = \{(n, 1/n) | nis a positive integer\}$

For n, it is a positive integer and 1/n is unique and distinct. Therefore, every element in the domain has unique image. So, it is a function.

(iii) We have, $s = \{(n, n^2) | n \text{ is a positive integer}\}$

Since the square of any positive integer is unique, every element in the domain has unique image. Hence, ibis a function.

(iv) We have, $t = \{(x, 3) | x \text{ is a real number}\}$.

Since every element in the domain has the image 3, it is a constant function.

Q11. If f and g are real functions defined by $f(x) = x^2 + 7$ and g(x) = 3x + 5, find each of the following

(i) f(3) + g(-5) (i) (iii) f(-2) + g(-1) (i) (v) $\frac{f(t) - f(5)}{t - 5}$, if $t \neq 5$

(ii) $f(1/2) \times g(14)$ (iv) f(t) - f(-2)

Sol. Given that, f and g are real functions defined by $f(x) = x^2 + 7$ and g(x) = 3x + 5.

(i) $f(3) = (3)^2 + 7 = 9 + 7 = 16$ and g(-5) = 3(-5) + 5 = -15 + 5 = -10 $\therefore f(3) + g(-5) = 16 - 10 = 6$

(ii)
$$f(1/2) = (1/2)^2 + 7 = (1/4) + 7 = 29/4$$

and $g(14) = 3(14) + 5 = 42 + 5 = 47$
 $\therefore f(1/2) \times g(14) = (29/4) \times 47 = 1363/4$
(iii) $f(-2) = (-2)^2 + 7 = 4 + 7 = 11$
and $g(-1) = 3(-1) + 5 = -3 + 5 = 2$
 $\therefore f(-2) + g(-1) = 11 + 2 = 13$
(iv) $f(t) = t^2 + 7$ and $f(-2) = (-2)^2 + 7 = 4 + 7 = 11$
 $\therefore f(t) - f(-2) = t^2 + 7 - 11 = t^2 - 4$
(v) $f(t) = t^2 + 7$ and $f(5) = 5^2 + 7 = 25 + 7 = 32$
 $\therefore \frac{f(t) - f(5)}{t - 5}$, if $t \neq 5$
 $= \frac{t^2 + 7 - 32}{t - 5}$
 $= \frac{t^2 - 25}{t - 5} = \frac{(t - 5)(t + 5)}{(t - 5)} = t + 5$ [$\because t \neq 5$]

Q12. Let f and g be real functions defined by f(x) = 2x+1 and g(x) = 4x - 7. (i) For what real numbers x, f(x) = g(x)? (ii) For what real numbers x, f(x) < g(x)? Sol: We have, f(x) = 2x + 1 and g(x) = 4x-7(i) Now f(x) = g(x)=> 2x+1=4x-7=> 2x = 8 =>x = 4(ii) f(x) < g(x)=> 2x + 1 < 4x - 7=> 8 < 2x=> x > 4

Q13. If f and g are two real valued functions defined as f(x) = 2x + 1, $g(x) = x^2 + 1$, then find.

(i)
$$f+g$$
 (ii) $f-g$ (iii) fg (iv) $\frac{f}{g}$
Sol. We have, $f(x) = 2x + 1$ and $g(x) = x^2 + 1$
(i) $(f+g)(x) = f(x) + g(x)$
 $= 2x + 1 + x^2 + 1 = x^2 + 2x + 2$
(ii) $(f-g)(x) = f(x) - g(x)$
 $= (2x + 1) - (x^2 + 1) = 2x + 1 - x^2 - 1 = 2x - x^2$
(iii) $(fg)(x) = f(x) \cdot g(x)$
 $= (2x + 1)(x^2 + 1) = 2x^3 + 2x + x^2 + 1 = 2x^3 + x^2 + 2x + 1$
(iv) $\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \frac{2x + 1}{x^2 + 1}$

Q14. Express the following functions as set of ordered pairs and determine their range. f:X->R,f{x} = $x^3 + 1$, where X= {-1,0, 3, 9, 7}

Sol: We have, f:X→ R,flx) = $x^3 + 1$. Where X = {-1, 0, 3, 9, 7} Now f (-l) = (-l)³+1 =-l + 1 =0 f(0) = (0)³+l=0+l = l f(3) = (3)³ + 1 = 27 + 1 = 28 f(9) = (9)³ + 1 = 729 + 1 = 730 f(7) = (7)³ + 1 = 343 + 1 = 344 f= {(-1, 0), (0, 1), (3, 28), (9, 730), (7, 344)} Range of f= {0, 1, 28, 730, 344} Q15. Find the values of x for which the functions $f(x) = 3x^2 - 1$ and g(x) = 3 + x are equal. Sol: f(x) = g(x)=> $3x^2 - 1 = 3 + x = > 3x^2 - x - 4 = 0 => (3x - 4)(x + 1) - 0$ x= -1,4/3

Q16. Is $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ a function? Justify. If this is described by the relation, g(x) = x +, then what values should be assigned to and ?

Sol:We have, $g = \{(1, 1), (2, 3), (3, 5), (4,7)\}$ Since, every element has unique image under g. So, g is a function. Now, g(x) = x + For (1,1), g(l) = a(l) + P=> l = + (i) For (2, 3), g(2) = (2) +=> 3 = 2 + (ii) On solving Eqs. (i) and (ii), we get = 2, = -l f(x) = 2x-1Also, (3, 5) and (4, 7) satisfy the above function.

Q17. Find the domain of each of the following functions given by

(i) $f(x) = \frac{1}{\sqrt{1 - \cos x}}$	(ii) $f(x) = \frac{1}{\sqrt{x+ x }}$
(iii) $f(x) = x x $	(iv) $f(x) = \frac{x^3 - x + 3}{x^2 - 1}$
$(v) f(x) = \frac{3x}{28 - x}$	
Sol. (i) We have, $f(x) = \frac{1}{\sqrt{1 - \cos x}}$ Now $-1 \le \cos x \le 1$ $\Rightarrow -1 \le -\cos x \le 1$	
$\Rightarrow 0 \le 1 - \cos x \le 1$ So, $f(x)$ is defined, if $1 - \cos x \ne 0$) ²¹
$\therefore \cos x \neq 1$ $\therefore x \neq 2n\pi, n \in \mathbb{Z}$ $\therefore \text{ Domain of } f \text{ is } \mathbb{R} - \{2n\pi : n\}$	∈ <i>Z</i> }
(ii) We have, $f(x) = \frac{1}{\sqrt{x+ x }}$	·
If $x > 0$, $x + x = x + x = 2x > 0$	•
If $x < 0$, $x + x = x - x = 0$	
Clearly, $x = 0$ is not possible.	
\therefore Domain of $f = R^+$	
(iii) We have, $f(x) = x x $	
We know that 'x' and ' $ x $ ' are defined as the second se	ined for all real values.
Clearly, $f(x)$ is defined for and $x \in$	≡ <i>R</i> .
\therefore Domain of $f = R$	

 \therefore Domain of f = R

(iv) We have,
$$f(x) = \frac{x^3 - x + 3}{x^2 - 1}$$

 $f(x)$ is not defined, if $x^2 - 1 = 0$
 $\Rightarrow (x - 1)(x + 1) = 0$
 $\Rightarrow x = -1, 1$
 \therefore Domain of $f = R - \{-1, 1\}$
(v) We have, $f(x) = \frac{3x}{28 - x}$
Clearly, $f(x)$ is not defined, if $28 - x = 0$
 $\Rightarrow x \neq 28$
 \therefore Domain of $f = R - \{28\}$

Q18. Find the range of the following functions given by

(i)
$$f(x) = \frac{3}{2 - x^2}$$

(ii) $f(x) = |x - 3|$
(ii) $f(x) = 1 - |x - 2|$
(iv) $f(x) = 1 + 3 \cos 2x$

Sol. (i) We have,
$$f(x) = \frac{3}{2 - x^2} = y$$
 (let)

$$\Rightarrow 2 - x^2 = \frac{3}{y} \Rightarrow x^2 = 2 - \frac{3}{y}$$

Since
$$x^2 \ge 0, 2 - \frac{3}{y} \ge 0$$

$$\Rightarrow \frac{2y-3}{y} \ge 0$$

$$\Rightarrow 2y-3 \ge 0 \text{ and } y > 0 \text{ or } 2y-3 \le 0 \text{ and } y < 0$$

$$\Rightarrow y \ge 3/2 \text{ or } y < 0$$

$$\Rightarrow y \in (-\infty, 0) \cup [3/2, \infty)$$

$$\therefore \text{ Range of } f \text{ is } (-\infty, 0) \cup [3/2, \infty)$$

(ii) We know that, $|x - 2| \ge 0$ $\Rightarrow -|x - 2| \le 0$ $\Rightarrow 1 - |x - 2| \le 1$ $\Rightarrow f(x) \le 1$ \therefore Range of f is (- ∞ , 1] (iii) We know that, $|x - 3| \ge 0$ $\Rightarrow f(x) \ge 0$ \therefore Range of $f = [0, \infty)$ (iv) We know that, $-1 \le \cos 2x \le 1$

$$\rightarrow -3 \leq 3 \cos 2r \leq 3$$

$$\Rightarrow -2 \le 1 + 3 \cos 2x \le 4$$

$$\Rightarrow -2 \leq f(x) \leq 4$$

 $\therefore \quad \text{Range of } f = [-2, 4]$

Q19. Redefine the function f(x) = |x-2| + |2+x|, $-3 \le x \le 3$

Sol.
$$f(x) = \begin{cases} -(x-2) - (2+x), & -3 \le x < -2 \\ -(x-2) + (2+x), & -2 \le x < 2 \\ (x-2) + (2+x), & 2 \le x \le 3 \end{cases}$$
$$= \begin{cases} -2x, & -3 \le x < -2 \\ 4, & -2 \le x < 2 \\ 2x, & 2 \le x \le 3 \end{cases}$$

When $-3 \le x \le -2, 4 \le -2x \le 6$ When $2 \le x \le 3, 4 \le 2x \le 6$

Thus range is [4, 6].

20. If $f(x) = \frac{x}{x+1}$, then show that

(i)
$$f\left(\frac{1}{x}\right) = -f(x)$$
 (ii) $f\left(-\frac{1}{x}\right) = \frac{-1}{f(x)}$

Sol. We have, $f(x) = \frac{x-1}{x+1}$

(i)
$$f\left(\frac{1}{x}\right) = \frac{\frac{1}{x}-1}{\frac{1}{x}+1} = \frac{\frac{1-x}{x}}{\frac{1+x}{x}} = \frac{1-x}{1+x} = -f(x)$$

(ii)
$$f\left(-\frac{1}{x}\right) = \frac{-\frac{1}{x}-1}{-\frac{1}{x}+1} = \frac{-1-x}{-1+x} = \frac{1+x}{1-x} = \frac{-1}{f(x)}$$

 $\therefore f\left(-\frac{1}{x}\right) = -\frac{1}{f(x)}$

Q21. Let f (x) = \sqrt{x} and g(x) = xbe two functions defined in the domain R⁺ u {0}. Find (i) (f+g)(x) (ii) (f-g)(x) (iii) (fg)(x) (iv) f/g(x) Sol. We have, $f(x) = \sqrt{x}$ and g(x) = x be two function defined in the domain $R^+ \cup \{0\}$ (i) $(f+g)(x) = f(x) + g(x) = \sqrt{x} + x$ (ii) $(f-g)(x) = f(x) - g(x) = \sqrt{x} - x$ (iii) $(fg)(x) = f(x).g(x) = \sqrt{x} \cdot x = x^{\frac{3}{2}}$ (iv) $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}}$ 22. Find the domain and Range of the function $f(x) = \frac{1}{\sqrt{x-5}}$. Sol. We have, $f(x) = \frac{1}{\sqrt{x-5}}$

Clearly, f(x) is defined, if $x - 5 > 0 \implies x > 5$ Thus, domain of f is $(5, \infty)$. For x - 5 > 0, $\sqrt{x - 5} > 0$

$$\therefore \qquad \frac{1}{\sqrt{x-5}} > 0$$

Hence, range of f is $(0, \infty)$

Q23. If f(x) = y = ax-b/cx-a then prove that f(y) = x

Sol. We have, $f(x) = y = \frac{ax - b}{cx - a}$ $\therefore \quad f(y) = \frac{ay - b}{cy - a} = \frac{a\left(\frac{ax - b}{cx - a}\right) - b}{c\left(\frac{ax - b}{cx - a}\right) - a}$ $= \frac{a(ax - b) - b(cx - a)}{c(ax - b) - a(cx - a)}$ $= \frac{a^2x - ab - bcx + ab}{acx - bc - acx + a^2} = \frac{a^2x - bcx}{a^2 - bc} = \frac{x(a^2 - bc)}{(a^2 - bc)}$

 $\therefore f(y) = x$

Objective Type Questions

Q24. Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is

(a) mⁿ

(b) n^m- 1

(c) mn – 1 (d) 2^{mn}– 1

Sol: (d) We have, n(A) = m and n(B) = n $n(A \times B) = n(A)$. n(B) = mnTotal number of relation from A to B = Number of subsets of AxB = 2^{mn} Q25. If $[x]^2 - 5[x] + 6 = 0$, where [.] denote the greatest integer function, then (a) $x \in [3,4]$ (b) $x \in (2,3]$ (c) $x \in [2,3]$ (d) $x \in [2,4)$ Sol: (d) We have $[x]^2 - 5[x] + 6 = 0 \Rightarrow [(x - 3)([x] - 2) = 0$ $\Rightarrow [x] = 2,3$. For $[x] = 2, x \in [2,3)$ For $[x] = 3, x \in [3,4)$ $x \in [2,3) \cup [3,4)$ Or $x \in [2,4)$

26. Range of
$$f(x) = \frac{1}{1-2\cos x}$$
 is
(a) $\left[\frac{1}{3},1\right]$ (b) $\left[-1,\frac{1}{3}\right]$
(c) $(-\infty, -1] \cup \left[\frac{1}{3},\infty\right)$ (d) $\left[-\frac{1}{3},1\right]$
Sol. (c) We know that, $-1 \le \cos x \le 1$
 $\Rightarrow -1 \le -\cos x \le 1$
 $\Rightarrow -2 \le -2\cos x \le 2$
 $\Rightarrow -1 \le 1-2\cos x \le 3$
Now $f(x) = \frac{1}{1-2\cos x}$ is defined if
 $-1 \le 1-2\cos x < 0$ or $0 < 1-2\cos x \le 3$
 $\Rightarrow -1 \ge \frac{1}{1-2\cos x} > -\infty$ or $\infty > \frac{1}{1-2\cos x} \ge \frac{1}{3}$
 $\Rightarrow \frac{1}{1-2\cos x} \in (-\infty, -1] \cup \left[\frac{1}{3},\infty\right)$
27. Let $f(x) = \sqrt{1+x^2}$, then
(a) $f(xy) = f(x) \times f(y)$ (b) $f(xy) \ge f(x) \times f(y)$
(c) $f(xy) \le f(x) \times f(y)$ (d) None of these

Sol. (c) We have,
$$f(x) = \sqrt{1 + x^2}$$

 $f(xy) = \sqrt{1 + x^2y^2}$
 $f(x) \cdot f(y) = \sqrt{1 + x^2} \cdot \sqrt{1 + y^2} = \sqrt{(1 + x^2)(1 + y^2)} = \sqrt{1 + x^2 + y^2 + x^2y^2}$
Now $\sqrt{1 + x^2y^2} \le \sqrt{1 + x^2 + y^2 + x^2y^2}$
 $\Rightarrow f(xy) \le f(x) \times f(y)$
28. Domain of $\sqrt{a^2 - x^2}$ ($a > 0$) is
(a) ($-a, a$) (b) [$-a, a$] (c) [$0, a$] (d) ($-a, 0$]
Sol. (b) We have $f(x) = \sqrt{a^2 - x^2}$
Clearly $f(x)$ is defined, if $a^2 - x^2 \ge 0$
 $\Rightarrow x^2 \le a^2$
 $\Rightarrow -a \le x \le a$ [$\because a > 0$]
 \therefore Domain of f is [$-a, a$]

Q29. If fx) ax+ b, where a and b are integers, f(-1) = -5 and f(3) - 3, then a and b are equal to (a) a = -3, b = -1(b) a = 2, b = -3(c) a = 0, b = 2(d) a = 2, b = 3

```
Sol. (b) We have, f(x) = ax + b

\therefore f(-1) = a(-1) + b

\Rightarrow -5 = -a + b (i)

Also, f(3) = a(3) + b

\Rightarrow 3 = 3a + b (ii)

On solving Eqs. (i) and (ii), we get

a = 2 and b = -3
```

30. The domain of the function f defined by $f(x) = \sqrt{4-x} + \frac{1}{\sqrt{x^2-1}}$ is equal to

(a) $(-\infty, -1) \cup (1, 4]$ (b) $(-\infty, -1] \cup (1, 4]$ (c) $(-\infty, -1) \cup [1, 4]$ (d) $(-\infty, -1) \cup [1, 4]$ Sol. (a) We have, $f(x) = \sqrt{4-x} + \frac{1}{\sqrt{x^2-1}}$ f(x) is defined if $4 - x \ge 0$ and $x^2 - 1 > 0$ $\Rightarrow x - 4 \le 0$ and (x + 1)(x - 1) > 0 $\Rightarrow x \le 4$ and (x < -1 or x > 1) \therefore Domain of $f = (-\infty, -1) \cup (1, 4]$

31. The domain and range of the real function f defined by $f(x) = \frac{4-x}{x-4}$ is

- (a) Domain = R, Range = $\{-1, 1\}$
- (b) Domain = $R \{1\}$, Range = R
- (c) Domain = $R \{4\}$, Range = $\{-1\}$
- (d) Domain = $R \{-4\}$, Range = $\{-1, 1\}$

Sol. (c) We have,
$$f(x) = \frac{4-x}{x-4} = -1$$
, for $x \neq 4$

32. The domain and range of real function f defined by $f(x) = \sqrt{x-1}$ is given by (a) Domain = $(1, \infty)$, Range = $(0, \infty)$ (b) Domain = $[1, \infty)$, Range = $(0, \infty)$ (c) Domain = $[1, \infty)$, Range = $[0, \infty)$ (d) Domain = $[1, \infty)$, Range = $[0, \infty)$ Sol. (d) We have, $f(x) = \sqrt{x-1}$ Clearly, f(x) is defined if $x - 1 \ge 0$ $x \ge 1$ ⇒ ÷ Domain of $f = [1, \infty)$ Now for $x \ge 1$, $x - 1 \ge 0$ $\sqrt{x-1} \ge 1$ <u>.</u> ⇒ Range of $f = [0, \infty)$ ⇒ 33. The domain of the function f given by $f(x) = \frac{x^2 + 2x + 1}{x^2 - x - 6}$ is (a) $R - \{3, -2\}$ (b) $R - \{-3, 2\}$ (c) R - [3, -2] (d) R - (3, -2)Sol. (a) We have, $f(x) = \frac{x^2 + 2x + 1}{x^2 - x - 6}$ f(x) is not defined, if $x^2 - x - 6 = 0$ (x-3)(x+2) = 0⇒ x = -2, 3:. *.*•. Domain of $f = R - \{-2, 3\}$ 34. The domain and range of the function f given by f(x) = 2 - |x - 5| is (a) Domain = R+, Range = ($-\infty$, 1] (b) Domain = R, Range = ($-\infty$, 2] (c) Domain = R, Range = $(-\infty, 2)$ (d) Domain = R+, Range = $(-\infty, 2]$ **Sol.** (b) We have, f(x) = 2 - |x - 5|Clearly, f(x) is defined for all $x \in R$. Domain of f = R... Now, $|x-5| \ge 0, \forall x \in R$ ⇒ $-|x-5| \le 0$ ⇒ $2 - |x - 5| \le 2$ *:*.. $f(x) \leq 2$ Range of $f = (-\infty, 2]$ *:*. 35. The domain for which the functions defined by $f(x) = 3x^2 - 1$ and g(x) = 3 + xare equal is (a) $\left\{-1, \frac{4}{3}\right\}$ (b) $\left[-1, \frac{4}{3}\right]$ (c) $\left(-1, -\frac{4}{3}\right)$ (d) $\left[-1, -\frac{4}{3}\right]$ **Sol.** (a) We have, $f(x) = 3x^2 - 1$ and g(x) = 3 + xf(x) = g(x)

 $\Rightarrow \qquad 3x^2 - 1 = 3 + x \Rightarrow 3x^2 - x - 4 = 0 \Rightarrow (3x - 4)(x + 1) = 0$ $\therefore \qquad x = -1, \frac{4}{3}$

Fill in the Blanks Type Questions

Q36. Let f and g be two real functions given by f= {(0, 1), (2,0), (3,-4), (4,2), (5, 1)} g= {(1,0), (2,2), (3,-1), (4,4), (5, 3)} then the domain of f x g is given by______. Sol: We have, f = {(0, 1), (2, 0), (3, -4), (4, 2), (5,1)} and g= {(1, 0), (2, 2), (3, 1), (4,4), (5, 3)} Domain of f = {0,2, 3, 4, 5} And Domain of g= {1, 2, 3,4, 5} Domain of (f x g) = (Domain of f) \cap (Domain of g) = {2, 3,4, 5}

Q37. Let $f = \{(2,4), (5,6), (8, -1), (10, -3)\}$ and $g = \{(2, 5), (7,1), (8,4), (10,13), (11, 5)\}$ be two real functions. Then match the following:

	Column I		Column II	
(a)	f-g	(i) [•]	$\left\{ \left(2,\frac{4}{5}\right), \left(8,\frac{-1}{4}\right), \left(10,\frac{-3}{13}\right) \right\}$	
(b)	f+g	(ii)	{(2, 20), (8, -4), (10, -39)}	
(c)	$f \times g$	(iii)	{(2, -1), (8, -5), (10, -16)}	
(d)	$\frac{f}{g}$	(iv)	{(2, 9), (8, 3), (10, 10)}	

Sol. Domain of f(x) is $\{2, 5, 8, 10\}$.

Domain of g(x) is $\{2, 7, 8, 10, 11\}$. Thus, domain of $f \pm g$, $f \times g$ and f/g is $\{2, 8, 10\}$. For function y = f(x), we have f(2) = 4, f(8) = -1 and f(10) = -3For function y = g(x), we have g(2) = 5, g(8) = 4 and g(10) = 13(f-g)(2) = f(2) - g(2) = 4 - 5 = -1(f-g)(8) = f(8) - g(8) = -1 - 4 = -5(f-g)(10) = f(10) - g(10) = -3 - 13 = -16Thus, $(f-g)(x) = \{(2, -1), (8, -5), (10, -16)\}$ (f+g)(2) = f(2) + g(2) = 4 + 5 = 9(f+g)(8) = f(8) + g(8) = -1 + 4 = 3(f+g)(10) = f(10) + g(10) = -3 + 13 = 10Thus, $(f+g)(x) = \{(2, 9), (8, 3), (10, 10)\}$ $(f \cdot g)(2) = f(2) \cdot g(2) = 4 \cdot 5 = 20$ $(f \cdot g)(8) = f(8) \cdot g(8) = (-1) \cdot 4 = -4$ $(f \cdot g)(10) = f(10) \cdot g(10) = (-3) \cdot 13 = -39$ Thus $(f \cdot g)(x) = \{(2, 20), (8, -4), (10, -39)\}$ (f/g)(2) = f(2)/g(2) = 4/5 = 4/5(f/g)(8) = f(8)/g(8) = (-1)/4 = -1/4(f/g)(10) = f(10)/g(10) = (-3)/13 = -3/13Thus $(f/g)(x) = \{(2, 4/5), (8, -1/4), (10, -3/13)\}$ So, correct matching is: (a) - (iii), (b) - (iv), (c) - (ii) and (d) - (i)

True/False Type Questions

Q38. The ordered pair (5,2) belongs to the relation R ={(x,y): y = x - 5, $x,y \in Z$ } Sol: False We have, R = {(x, y): y = x - 5, $x, y \in Z$ } When x = 5, then y = 5-5=0 Hence, (5, 2) does not belong to R.

Q39. If **P** = {1, 2}, then P x P x P = {(1, 1, 1), (2, 2, 2), (1, 2, 2), (2, 1, 1)} Sol:False We have, P = {1, 2} and n(P) = 2 n(P xPxP) = n(P) x n(P) x n(P) = 2 x 2 x 2= 8 But given P x P x P has 4 elements.

Q40. If A= {1,2, 3}, 5= {3,4} and C= {4, 5, 6}, then (A x B) \cup (A x C) = {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)}. Sol: True We have $A = \{1, 2, 3\}, 5= \{3, 4\}$ and $C= \{4, 5, 6\}$ AxB= {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)} And A x C = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)} (A x B) \cup (A xC) = {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)}

41. If $(x-2, y+5) = \left(-2, \frac{1}{3}\right)$ are two equal ordered pairs, then $x = 4, y = \frac{-14}{3}$. Sol. False

We have, $(x - 2, y + 5) = \left(-2, \frac{1}{3}\right)$ $\Rightarrow \qquad x - 2 = -2, y + 5 = \frac{1}{3}$ $\Rightarrow \qquad x = 0, y = \frac{-14}{3}$

Q42. If Ax B= {(a, x), (a, y), (b, x), (b, y)}, then M = {a, b},B= {x, y}.

Sol: True

We have, AxB= {{a, x}, {a, y}, (b, x), {b, y}}

A = Set of first element of ordered pairs in $A \times B = \{a, b\}$

B = Set of second element of ordered pairs in A x B = $\{x, y\}$