Chapter 2. Relations and Functions

Question-1

Find x and y, if $(2 x, x+y)=(6,2)$.

> Solution: $\begin{aligned} & 2 \mathrm{x}=6 \\ & \therefore \mathrm{x}=3 \\ & \mathrm{x}+\mathrm{y}=2 \\ & 3+\mathrm{y}=2 \\ & \therefore \mathrm{y}=-1\end{aligned}$

Question-2

Find the domain of the following function : $\mathrm{f}(\mathrm{x})=\mathrm{x}|\mathrm{x}|$

Solution:

The domain of the function $f(x)=x|x|$ is R.

Question-3

Let $A=\{a, b, c\}$ and $B=\{p, q\}$. Find
(i) $A \times B$
(ii) $B \times A$
(iii) $A \times A$
(iv) $B \times B$

Solution:

(i) $A \times B=\{(a, p),(a, q),(b, p),(b, q),(c, p),(c, q)\}$
(ii) $B \times A=\{(p, a),(q, a),(p, b),(q, b),(p, c),(q, c)\}$
(iii) $A \times A=\{(a, a),(a, b),(a, c),(b, a),(b, b),(b, c),(c, a),(c, b),(c, c)\}$
(iv) $B \times B=\{(p, p),(p, q),(q, p),(q, q)\}$

Question-4

Find the domain of the following function : $f(x)=\frac{1}{\sqrt{x+|x|}}$

Solution:
$\mathrm{x}+|\mathrm{x}|=0$ for $\mathrm{x}<0$ or $\mathrm{x}=0$.
\therefore The domain of the function $f(x)=\frac{1}{\sqrt{x+|x|}}$ is $(0, \infty)$

Question-5

Let $A=\{1,2,3\}, B=\{2,3,4\}$ and $C=\{4,5\}$. Verify that
(i) $A \times(B \cap C)=(A \times B) \cap(A \times C)$
(ii) $A \times(B \cup C)=(A \times B) \cup(A \times C)$

Solution:

(i) L.H.S $=A \times(B \cap C)=\{1,2,3\} \times\{4\}=\{(1,4),(2,4),(3,4)\}$

$$
\text { R.H.S }=(A \times B) \cap(A \times C)
$$

$$
\begin{aligned}
= & \{(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\} \cap \\
& \{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\} \\
= & \{(1,4),(2,4),(3,4)\} \therefore A \times(B \cap C)=(A \times B) \cap(A \times C)
\end{aligned}
$$

(ii) L.H.S $=A \times(B \cup C)$

$$
=\{1,2,3\} \times\{2,3,4,5\}
$$

$$
=\{(1,2),(1,3),(1,4),(1,5),(2,2),(2,3),(2,4),(2,5),(3,2),(3,3),
$$

$$
(3,4),(3,5)\}
$$

$$
\begin{aligned}
\text { R.H.S }= & (A \times B) \cup(A \times C) \\
= & \{(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\} \cup \\
& \{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\} \\
= & \{(1,2),(1,3),(1,4),(1,5),(2,2),(2,3),(2,4),(2,5)(3,2),(3,3),(3,4),(3,5)\}
\end{aligned}
$$

$$
\therefore A \times(B \cup C)=(A \times B) \cup(A \times C)
$$

Question-6

If R is the relation "less than" from $A=\{1,2,3,4,5\}$ to $B=\{1,4,5\}$, write down the set of ordered pairs corresponding to R. Find the inverse relation to R .

Solution:

$R=\{(x, y) / x \in A, y \in B$ and $x<y\}$
$=\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)\}$
\therefore Inverse relation corresponds to the Cartesian product $\{(4,1),(5,1),(4,2)$, $(5,2),(4,3),(5,3),(5,4)\}$ and corresponds to the relation 'greater than' from B to A .

Question-7

Prove that $A \cap(B-C)=(A \cap B)-(A \cap C)$.

Solution:

Let $x \in A \cap(B-C)$
$=X \in A$ and $x \in(B-C)$
$=x \in A$ and $\{x \in B$ and $x \notin C\}$
$=x \in A$ and $\{x \in B$ and $x \notin C\}$
$=x \in A$ and $x \in B$ or $x \in A$ and $x \in C$

$$
=(A \cap B)-(A \cap C)
$$

Question-8

If $A=\{1,2,3\}, B=\{4\}, C=\{5\}$, then verify that
(i) $A \times(B \cup C)=(A \times B) \cup(A \times C)$
(ii) $A \times(B-C)=(A \times B)-(A \times C)$

Solution:

(i) $A \times(B \cup C)=(A \times B) \cup(A \times C)$.

$$
\begin{aligned}
A \times(B \cup C) & =\{1,2,3\} \times\{4,5\} \\
& =\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\} \\
(A \times B) \cup(A \times C) & =\{(1,4),(2,4),(3,4)\} \cup\{(1,5),(2,5),(3,5)\} \\
& =\{(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)\}
\end{aligned}
$$

$\therefore A \times(B \cup C)=(A \times B) \cup(A \times C)$
(ii) $A \times(B-C)=(A \times B)-(A \times C)$

$$
\begin{aligned}
A \times(B-C) & =\{1,2,3\} \times\{4\} \\
& =\{(1,4),(2,4),(3,4)\}
\end{aligned}
$$

$$
(A \times B)-(A \times C)=\{(1,4),(2,4),(3,4)\}-\{(1,5),(2,5),(3,5)\}
$$

$$
=\{(1,4),(2,4),(3,4)\}
$$

Question-9

If R is the relation in $N x N$ defined by (a, b) $R(c, d)$ if and only if $a+d=b+c$, show that R is an equivalence relation.

Solution:

Reflexive

$$
\begin{aligned}
&(a, b) R(a, b) \\
& \Leftrightarrow a+b=b+a \text { for } a, b \in N \\
& \Leftrightarrow b+a=a+b \text { (Transposing) } \\
& \Leftrightarrow(a, b) R(a, b) \text { for } a, b \in N
\end{aligned}
$$

$\therefore(a, b) R(a, b) \Leftrightarrow(a, b) R(a, b)$ for $a, b \in N$

Symmetric

If $(a, b) R(c, d) \Leftrightarrow a+d=b+c$ for $a, b, c, d \in N$

$$
\begin{aligned}
& \Leftrightarrow b+c=a+d \text { (transposing) } \\
& \Leftrightarrow(c, d) R(a, b) \text { for } a, b, c, d \in N
\end{aligned}
$$

$\therefore(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d}) \Leftrightarrow(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{a}, \mathrm{b})$ for $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{N}$

Transitive
If (a,b) R (c,d) $\Leftrightarrow \mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c}$ for $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{N}$
and $(c, d) R(e, f) \Leftrightarrow c+f=d+e$ for $c, d, e, f \in N$
then $(a, b) R(c, d) \Leftrightarrow a+d=b+c$ for $a, b, c, d \in N$
$\Leftrightarrow a+d+e+f=b+c+e+f$
$\Leftrightarrow a+(d+e)+f=b+c+e+f \quad($ since $c+f=d+e)$
$\Leftrightarrow a+\varepsilon+f+k=b+\varepsilon+e+k$
$\Leftrightarrow a+f=b+e$
$\Leftrightarrow(a, b) R(e, f)$ for $a, b, e, f \in N$
$\therefore(a, b) R(c, d) \Leftrightarrow(a, b) R(e, f)$ for $a, b, c, d, e, f \in N$
\therefore the relation defined by $(a, b) R(c, d)$ if and only if $a+d=b+c$ is an equivalence relation.

Question-10

Find the domain of the following function : $f(x)=\frac{x}{x^{2}-3 x+2}$

Solution:

$x^{2}-3 x+2=0$ for $x=2,1 . \therefore$ The domain of the function : $f(x)=\frac{x}{x^{2}-3 x+2}$ is $R-\{1,2\}$.

Question-11

Let $A=\{1,2,3,4\}$ and $S=\{(a, b): a \in A, b \in A$, a divides $b\}$. Write S explicitly.

Solution:

$S=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$

Question-12

Find the domain of the following function : $f(x)=e^{x+\sin x}$

Solution:

The domain of the function: $f(x)=e^{x+\sin x}$ is R.

Question-13
Find the domain of the following function : $f(x)=\frac{x+7}{x^{2}-8 x+4}$

Solution:

$$
\begin{aligned}
& x^{2}-8 x+4=0 \text { for } x=\frac{8 \pm \sqrt{64-16}}{2}=\frac{8 \pm \sqrt{48}}{2}=\frac{8 \pm 4 \sqrt{3}}{2}=4 \pm 2 \sqrt{3} \\
& \text { The domain of the function: } f(x)=\frac{x+7}{x^{2}-8 x+4} \text { is } R-\{4 \pm 2 \sqrt{3}\}
\end{aligned}
$$

Question-14

Let $A=\{1,2\}$ and $B=\{3,4\}$. Write all subsets of $A \times B$.

Solution:
$A \times B=\{(1,3),(1,4),(2,3),(2,4)\}$.
\therefore The subsets of $\mathrm{A} \times \mathrm{B}$ are $\varphi,\{(1,3)\},\{(1,4)\},\{(2,3)\},\{(2,4)\}$,
$\{(1,3),(1,4)\},\{(1,3),(2,3)\},\{(1,3),(2,4)\},\{(1,4),(2,3)\},\{(1,4),(2,4)\},\{(2,3),(2,4)\}$,
$\{(1,3),(1,4),(2,3)\},\{(1,3),(1,4),(2,4)\},\{(1,3),(2,3),(2,4)\},\{(1,4),(2,3),(2,4)\}$,
$\{(1,3),(1,4),(2,3),(2,4)\}$.
Question-15
Find the domain of the following function: $f(x)=[x]+x$

Solution:
The domain of the function $f(x)=[x]+x$ is R.

Question-16

Let A and B be two sets such that $n(A)=3$ and $n(B)=2$. If $(x, 1),(y, 2),(z, 1)$ are in $A \times B$, find A and B, where x, y, z are distinct elements.

Solution:

$A=\{x, y, z\}$ and $B=\{1,2\}$

Question-17

Find the domain of the following function : $f(x)=\frac{\mathbf{s i n}^{-1} x}{x}$

Solution:

The domain of the function : $f(x)=\frac{\sin ^{-1} x}{x}$ is $[-1,1]-\{0\}$

Question-18

Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$. Verify that $A \times C \subset$ $B \times D$.

Solution:

$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$
$B \times D=\{(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6)$,
$(3,7),(3,8),(4,5),(4,6),(4,7),(4,8)\}$
$\therefore \mathrm{A} \times \mathrm{C} \subset \mathrm{B} \times \mathrm{D}$.

Question-19

Find the range of each of the following function: $f(x)=|x-3|$

Solution:

$f(x)=|x-3|$ is positive for all values of x in R.
The range of the function $f(x)=|x-3|$ is $(0, \infty)$.

Question-20

Let A be a non empty set such that $A \times B=A \times C$. show that $B=C$.

Solution:

Let $a \in A$. Since $B \neq \varphi$, there exists $b \in B$. Now, $(a, b) \in A \times B=A \times C$ implies $b \in C$.
\therefore every element in B is in C giving $\mathrm{B} \subset \mathrm{C}$. Similarly, $\mathrm{C} \subset \mathrm{B}$. Hence $\mathrm{B}=\mathrm{C}$.

Question-21

Find the range of the following function: $f(x)=1-|x-2|$

Solution:

$|x-2| \geq 0 \Rightarrow 1-|x-2| \leq 1$
The range of the function $f(x)=1-|x-2|$ is $(-\infty, 1)$

Question-22

Find the range of the following function: $f(x)=\frac{|x-4|}{x-4}$

Solution:
$f(x)=\frac{|x-4|}{x-4}=1$, if $x-4>0$

$$
=-1 \text {, if } x-4<0
$$

\therefore The range of the function $f(x)=\frac{|x-4|}{x-4}$ is $(-1,1)$

Question-23

Let $A=\{1,2,3,4\}$ and $B=\{x, y, z\}$. Let R be a relation from A to B defined by $R=\{(1, x),(1, z),(3, x),(4, y)\}$. Find the domain and range of R.

Solution:

Domain of $R=\{1,3,4\}$ and Range $R=\{x, y, z\}=B$

Question-24

Let $A=\{1,2,3,4\}$ and $B=\{x, y, z\}$.
Let R be a relation from A to B defined by $R=\{(1, x),(1, z),(3, x),(4, y)\}$.
Draw the arrow diagram of relation R.

Solution:

Question-25

Find the range of the following function: $f(x)=\sqrt{16-x^{2}}$

Solution:

The range of the function : $\mathrm{f}(\mathrm{x})=\sqrt{16-\mathrm{x}^{2}}$ is $[0,4]$.

Question-26

Find the range of the following function: $f(x)=\frac{1}{\sqrt{x-5}}$

Solution:

The range of the function is $(0, \infty)$

Question-27

In $N \times N$, show that the relation defined by $(a, b) R(c, d)$ if and only if $a d=b c$ is an equivalence relation.

Solution:

Reflexive
$(a, b) R(a, b) \hat{U} a b=b a$ for $a, b i ̂ N$
Û $b a=a b$ (Transposing)
Û $(a, b) R(a, b)$ for $a, b i ̂ N$
$\therefore(a, b) R(a, b) \Leftrightarrow(a, b) R(a, b)$ for $a, b i ̂ N$.

Symmetric
$(a, b) R(c, d)$ Û $a d=b c a, b, c, d i ̂ N$
Û bc = ad (Transposing)
Û (c,d)R(a,b) for a,b,c,dîN
$\therefore(a, b) R(c, d) \Leftrightarrow(c, d) R(a, b)$ for $a, b, c, d i ̂ N$
Transitive
If $(a, b) R(c, d) \Leftrightarrow a d=b c a, b, c, d i ̂ N$
and $(c, d) R(e, f) \Leftrightarrow c=$ de $c, d, e, f i ̂ N$

Then $(a, b) R(c, d) \Leftrightarrow a d=b c a, b, c, d i ̂ N$
Û adef = bcef (Multiplying both sides by ef)
Û adef $=b e(c f)$
Û adef = bede (Since cf = de)
Û af = be Û $(a, b) R(e, f) a, b, e, f i ̂ N$
$\therefore(a, b) R(c, d) \hat{U}(a, b) R(e, f) a, b, e, f i ̂ N$
\therefore the relation defined by $(a, b) R(c, d)$ if and only if $a d=b c$ is an equivalence relation.

Question-28

Find the domain and the range of the following function : $f(x)=\frac{1}{\sqrt{x-[x]}}$

Solution:

We know that $0 \leq x-[x] \leq 1$ for all $x \in \mathrm{R}$. Also, $x-[x]=0$ for $x \in Z$.
$f(x)=\frac{1}{\sqrt{x-[x]}}$ is defined if $x-[x]>0$
i.e., $x \in \mathrm{R}-\mathrm{Z}$.

Hence the domain of the function is $R-Z$.

Question-29

Find the domain and the range of the following function: $f(x)=\frac{1}{\sqrt{4+3 \sin x}}$

Solution:

$-1 \leq \sin x \leq 1 \Rightarrow-3 £ 3 \sin x \leq 3$
i.e $-1 \leq 4+3 \sin x \leq 7$
$\therefore \frac{1}{\sqrt{7}} \leq \mathrm{y} \leq 1$
The domain of the function is R; Range : $\frac{1}{\sqrt{7}} \leq \mathrm{y} \leq 1$
Question-30
Let R be the relation on Z defined by $a R b$ if and only if $a-b$ is an even integer. Find (i) R, (ii) domain R, (iii) range of R.

Solution:

(i) $R=\{(a, b):$ a and b are even integers $\} \cup\{(c, d): c$ and d are odd integers $\}$
(ii) Domain $=Z$
(iii) Range = Z

Question-31

Find the domain and the range of the following function : $f(x)=1-|x-3|$

Solution:

The domain of the function is R ; Range : $(-\propto, 1)$

Question-32

Let R be the relation on Z defined by $R=\left\{(a, b): a \in Z, b \in Z, a^{2}=b^{2}\right\}$. Find (i) R, (ii) domain R, (iii) range of R.

Solution:

(i) $R=\{(a, a): a \in Z\} \cup\{(a,-a): a \in Z\}$
(ii) Domain $=\mathrm{Z}$
(iii) Range = Z

Question-33

Find the domain and the range of the following function : $f(x)=x$!

Solution:

The domain of the function is $\mathrm{N} \cup\{0\}$; Range : $\{\mathrm{n}!: \mathrm{n}=0,1,2 \ldots$.

Question-34

Determine the domain and the range of the relation R defined by $R=\{(x+1$, $x+5): x \in\{0,1,2,3,4,5\}\}$

Solution:
Domain $=\{1,2,3,4,5,6\}$, Range $=\{5,6,7,8,9,10\}$

Question-35

Determine the domain and the range of the relation R, where $R=\left\{\left(x, x^{3}\right): x\right.$ is a prime number less than 10$\}$.

Solution:
Domain $=\{2,3,5,7\}$, Range $=\{8,27,125,343\}$

Question-36
Find the domain and the range of the following function: $f(x)=\sin ^{2}\left(x^{3}\right)+$ $\cos ^{2}\left(x^{3}\right)$

Solution:
$\sin ^{2}\left(x^{3}\right)+\cos ^{2}\left(x^{3}\right)=1$
\therefore The domain of the function is R ; Range : $\{1\}$

Question-37

Is inclusion of a subset in another, i.e., ARB if and only if $A \subset B$, in the context of a universal set, an equivalence relation in the class of subsets of the universal set? Justify your answer.

Solution:

Let U be the universal set .Let R be the relation' is a subset of' or 'is included in ' between the subsets of U.

Since every set is a subset of itself i.e., for every subset A in $U, A \subseteq A$ or $A R$ A.
$\therefore \mathrm{R}$ is reflexive.

Now let A and B be two subsets of U such that $A \subseteq B$, then it is not necessary that B must also be a subset of A.
\therefore A R B need not imply B R A.
$\therefore \mathrm{R}$ is not symmetric.
Hence R is not an equivalence relation.

Question-38

Find the domain and the range of the following function: $f(x)=\frac{x^{2}-9}{x-3}$

Solution:

$f(x)=\frac{x^{2}-9}{x-3}=x+3$
The domain of the function is R; Range : R.

Question-39

Determine the domain and range of the following relations
(i) $\{(1,2),(1,4),(1,6),(1,8)\}$
(ii) $\{(x, y): x \in N, y \in N$ and $x+y=10\}$
(iii) $\{(x, y): x \in N, x<5, y=3\}$
(iv) $\{(x, y): y=|x-1|, x \in Z$ and $|x| \leq 3\}$

Solution:

(i) Domain $=\{1\}$, Range $=\{2,4,6,8\}$
(ii) Domain $=\{1,2,3,4,5,6,7,8,9\}$, Range $=\{9,8,7,6,5,4,3,2,1\}$
(iii) Domain $=\{1,2,3,4\}$, Range $=\{3\}$
(iv) Domain $=\{-3,-2,-1,0,1,2,3\}$, Range $=\{4,3,2,1,0\}$

Question-40

How many relations are possible from a set A of m elements to another set B of n elements? Why?

Solution:

Number of elements in $A=m$.
Number of elements in $B=n$
\therefore Number of elements in $A \times B=m n$
Number of subsets of $A \times B=2^{m n}$

Since every subset of $A \times B$ is a relation from A to B therefore $2^{m n}$ relations are possible from A to B.

Question-41

Draw the graph of the following function: $f(x)=\frac{1}{x}, x \neq 0$

Solution:

Question-42

Let $A=\{1,2\}$. List all the relations on A.

Solution:
$A \times A=\{(1,1),(1,2),(2,1),(2,2)\}$

The relations on A are $\phi,\{(1,1)\},\{(1,2)\},\{(2,1)\},\{(2,2)\}$,
$\{(1,1),(1,2)\},\{(1,1),(2,1)\},\{(1,1),(2,2)\}$,
$\{(1,2),(2,1)\},\{(1,2),(2,2)\}\{(2,1),(2,2)\}$,
$\{(1,1),(1,2),(2,1)\},\{(1,1),(1,2),(2,2)\}$,
$\{(1,1),(2,1),(2,2)\},\{(1,2),(2,1),(2,2)\}$, $\{(1,1),(1,2),(2,1),(2,2)\}$

Question-43

Let $A=\{x, y, z\}$ and $B=\{1,2\}$. Find the number of relations from A into B.

Solution:

$\mathrm{n}(\mathrm{A})=3$ and $\mathrm{n}(\mathrm{B})=2$
$\therefore \mathrm{n}(\mathrm{A} \times \mathrm{B})=2 \times 3=6$
\therefore the number of relations from A into B are $2^{6}=64$.

Question-44

Which of the following relations are functions? If it is a function, determine its domain and range:
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$
(iii) $\{(0,0),(1,1),(1,-1),(4,2),(4,-2),(9,3),(9,-3),(16,4),(16,-4)\}$
(iv) $\{(1,2),(1,3),(2,5)\}$
(v) $\{(2,1),(3,1),(5,2)\}$
(vi) $\{(1,2),(2,2),(3,2)\}$

Solution:

(i) Domain $=\{2,5,8,11,14,17\}$, Range $=\{1\}$
(ii) Domain $=\{2,4,6,8,10,12,14\}$, Range $=\{1,2,3,4,5,6,7\}$
(iii) No, As there are four pairs of ordered pairs which have the same first element.
(iv) No, As two ordered pairs which have the same first element.
(v) Domain $=\{2,3,5\}$, Range $=\{1,2\}$
(vi) Domain $=\{1,2,3\}$, Range $=\{2\}$

Question-45

If $A=\{1,2,3\}, B=\{a, b\}$, find $A \times A$.

Solution:

$$
A \times A=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}
$$

Question-46

Find the domain and range of the following functions:
(i) $\left\{\left(x, \frac{x^{2}-1}{x-1}\right): x \in R, x=1\right\}$
(ii) $\{(x,-|x|): x \in R\}$

Solution:
(i) Domain $=\mathrm{R}-\{1\}$, Range $=\mathrm{R}-\{2\}$
(ii) Domain $=R$, Range $=\{y: y \in R$ and $y \leq 0\}$

Question-47

If $A=\{1,2,3\}, B=\{a, b\}$, find $A \times B$

Solution:

$$
A \times B=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}
$$

Question-48

Find the domain and range of the following functions:
(i) $\left\{\left(\mathrm{x}, \sqrt{9-\mathrm{x}^{2}}\right): \mathrm{x} \in \mathrm{R}\right\}$
(ii) $\left\{\left(x, \frac{1}{1-x^{2}}\right): x \in R, x \neq 1\right\}$

Solution:

(i) Domain $=\{x: x \in R$ and $-3 \leq x \leq 3\}$, Range $=\{y: y \in R$ and $-3 \leq y \leq 3\}$
(ii) Domain $=R-\{1,-1\}$, Range $=\{y: y \in R, y \neq 0, y<0$ and $y \geq 1\}$

Question-49

If $A=\{1,2,3\}, B=\{a, b\}$, find $B \times B$.

Solution:

$B \times B=\{(a, a),(a, b),(b, a),(b, b)\}$

Relations \& Functions

1. Let $A=\{-1,2,3\}$ and $B=\{1,3\}$. Determine
(i) $\mathrm{A} \times \mathrm{B}$
(i) $\mathrm{B} \times \mathrm{A}$
(iii) $\mathrm{B} \times \mathrm{B}$
(iv) $\mathrm{A} \times \mathrm{A}$
2. If $\mathrm{P}=\{x: x<3, x \in \mathbf{N}\}, \mathrm{Q}=\{x: x \leq 2, x \in \mathbf{W}\}$. Find $(P \cup Q) \times(P \cap Q)$, where W is the set of whole numbers.
3. If $\mathrm{A}=\{x: x \in \mathbf{W}, x<2\} \quad \mathrm{B}=\{x: x \in \mathbf{N}, 1<x<5\} \quad \mathrm{C}=\{3,5\}$ find
(i) $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})$
(ii) $\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})$
4. In each of the following cases, find a and b.
(1) $(2 a+b, a-b)=(8,3)$
(ii) $\left(\frac{a}{4}, a-2 b\right)=(0,6+b)$
5. Given $\mathrm{A}=\{1,2,3,4,5\}, \mathrm{S}=\{(x, y): x \in \mathrm{~A}, y \in \mathrm{~A}\}$. Find the ordered pairs which satisfy the conditions given below:
(i) $x+y=5$
(i) $x+y<5$
(iii) $x+y>8$
6. Given $\mathrm{R}=\left\{(x, y): x, y \in \mathbf{W}, x^{2}+y^{2}=25\right\}$. Find the domain and Range of R .
7. If $\mathrm{R}_{1}=\{(x, y) \mid y=2 x+7$, where $x \in \mathrm{R}$ and $-5 \leq x \leq 5\}$ is a relation. Then find the domain and Range of \mathbf{R}_{1}.
8. If $\mathrm{R}_{2}=\left\{(x, y) \mid x\right.$ and y are integers and $\left.x^{2}+y^{2}=64\right\}$ is a relation. Then find R_{2}
9. If $\mathrm{R}_{3}=\{(x,|x|) \mid x$ is a real number $\}$ is a relation. Then find domain and range of R_{3}.
10. Is the given relation a function? Give reasons for your answer.
(i) $h=\{(4,6),(3,9),(-11,6),(3,11)\}$
(ii) $f=\{(x, x) \mid x$ is a real number $\}$
(iii) $g=\left\{\left.\left(n, \frac{1}{n}\right) \right\rvert\, n\right.$ is a positive integer $\}$
(iv) $s=\left\{\left(n, n^{2}\right) \mid n\right.$ is a positive integer $\}$
(v) $t=\{(x, 3) \mid x$ is a real number.
11. If f and g are real functions defined by $f(x)=x^{2}+7$ and $g(x)=3 x+5$, find each of the following
(a) $f(3)+g(-5)$
(b) $f\left(\frac{1}{2}\right) \times g(14)$
(c) $f(-2)+g(-1)$
(d) $f(t)-f(-2)$
(c) $\frac{f(t)-f(5)}{t-5}$, if $t \neq 5$
12. Let f and g be real functions defined by $f(x)=2 x+1$ and $g(x)=4 x-7$.
(a) For what real numbers $x, f(x)=g(x)$?
(b) For what real numbers $x, f(x)<g(x)$?
13. If f and g are two real valued functions defined as $f(x)=2 x+1, g(x)=x^{2}+1$, then find.
(i) $f+g$
(ii) $f-g$
(iii) $f g$
(iv) $\frac{f}{g}$
14. Express the following functions as set of ordered pairs and determine their range. $f: \mathbf{X} \rightarrow \mathbf{R}, f(x)=x^{3}+1$, where $\mathbf{X}=\{-1,0,3,9,7\}$
15. Find the values of x for which the functions
$f(x)=3 x^{2}-1$ and $g(x)=3+x$ are equal
16. Is $g=\{(1,1),(2,3),(3,5),(4,7)\}$ a function? Justify. If this is described by the relation, $g(x)=\alpha x+\beta$, then what values should be assigned to α and β ?
17. Find the domain of each of the following functions given by
(1) $f(x)=\frac{1}{\sqrt{1-\cos x}}$
(ii) $f(x)=\frac{1}{\sqrt{x+|x|}}$
(iii) $f(x)=x|x|$
(iv) $f(x)=\frac{x^{3}-x+3}{x^{2}-1}$
(v) $f(x)=\frac{3 x}{2 x-8}$
18. Find the range of the following functions given by
(i) $f(x)=\frac{3}{2-x^{2}}$
(ii) $f(x)=1-|x-2|$
(iii) $f(x)=|x-3|$
(iv) $f(x)=1+3 \cos 2 x$
(Hint : $-1 \leq \cos 2 x \leq 1 \Rightarrow-3 \leq 3 \cos 2 x \leq 3 \Rightarrow-2 \leq 1+3 \cos 2 x \leq 4$)
19. Redefine the function $f(x)=|x-2|+|2+x| .-3 \leq x \leq 3$
20. If $f(x)=\frac{x-1}{x+1}$, then show that
(i) $f\left(\frac{1}{x}\right)=-f(x)$
(ii) $f\left(-\frac{1}{x}\right)=\frac{-1}{f(x)}$
21. Let $f(x)=\sqrt{x}$ and $g(x)=x$ be two functions defined in the domain $\mathrm{R}^{+} \cup\{0\}$. Find
(i) $(f+g)(x)$
(ii) $(f-g)(x)$
(iii) $(f g)(x)$
(iv) $\left(\frac{f}{g}\right)(x)$
22. Find the domain and Range of the function $f(x)=\frac{1}{\sqrt{x-5}}$.
23. If $f(x)=y=\frac{a x-b}{c x-a}$, then prove that $f(y)=x$

Choose the correct answers in Exercises from 24 to 35 (M.C.Q.)
24. Let $n(A)=m$, and $n(B)=n$. Then the total number of non-empty relations that can be defined from A to B is
(A) m^{*}
(B) $n^{n}-1$
(C) $m n-1$
(D) $2^{m n}-1$
25. If $[x]^{2}-5[x]+6=0$, where [.] denote the greatest integer function, then
(A) $x \in[3,4]$
(B) $x \in(2,3]$
(C) $x \in[2,3]$
(D) $x \in[2,4)$
26. Range of $f(x)=\frac{1}{1-2 \cos x}$ is
(A) $\left[\frac{1}{3}, 1\right]$
(B) $\left[-1, \frac{1}{3}\right]$
(C) $(-\infty,-1] \cup\left[\frac{1}{3}, \infty\right)$
(D) $\left[-\frac{1}{3}, 1\right]$
27. Let $f(x)=\sqrt{1+x^{2}}$, then
(A) $f(x y)=f(x) \cdot f(y)$
(B) $f(x y) \geq f(x) \cdot f(y)$
(C) $f(x y) \leq f(x) \cdot f(y)$
(D) None of these
[Hint : find $f(x y)=\sqrt{1+x^{2} y^{2}}, f(x), f(y)=\sqrt{1+x^{2} y^{2}+x^{2}+y^{2}}$]
28. Domain of $\sqrt{a^{2}-x^{2}}(a>0)$ is
(A) $(-a, a)$
(B) $[-a, a]$
(C) $[0, a]$
(D) $(-a, 0]$
29. If $f(x)=a x+b$, where a and b are integers, $f(-1)=-5$ and $f(3)=3$, then a and b are equal to
(A) $a=-3, b=-1$
(B) $a=2, b=-3$
(C) $a=0, b=2$
(D) $a=2, b=3$
30. The domain of the function f defined by $f(x)=\sqrt{4-x}+\frac{1}{\sqrt{x^{2}-1}}$ is equal to
(A) $(-\infty,-1) \cup(1,4]$
(B) $(-\infty,-1] \cup(1,4]$
(C) $(-\infty,-1) \cup[1,4]$
(D) $(-\infty,-1) \cup[1,4)$
31. The domain and range of the real function f defined by $f(x)=\frac{4-x}{x-4}$ is given by
(A) Domain $=\mathbf{R}$, Range $=\{-1,1\}$
(B) Domain $=\mathbf{R}-\{1\}$, Range $=\mathbf{R}$
(C) Domain $=\mathbf{R}-\{4\}$. Range $=\{-1\}$
(D) Domain $=\mathbf{R}-\{-4\}$, Range $=\{-1,1\}$
32. The domain and range of real function f defined by $f(x)=\sqrt{x-1}$ is given by
(A) Domain $=(1, \infty)$, Range $=(0, \infty)$
(B) Domain $=[1, \infty)$, Range $=(0, \infty)$
(C) Domain $=[1, \infty)$, Range $=[0, \infty)$
(D) Domain $=[1, \infty)$, Range $=[0, \infty)$
33. The domain of the function f given by $f(x)=\frac{x^{2}+2 x+1}{x^{2}-x-6}$
(A) $\mathrm{R}-\{3,-2\}$
(B) $\mathrm{R}-\{-3,2\}$
(C) $\mathrm{R}-[3,-2]$
(D) $\mathbf{R}-(3,-2)$
34. The domain and range of the function f given by $f(x)=2-|x-5|$ is
(A) Domain $=\mathbf{R}^{+}$, Range $=(-\infty, 1]$
(B) Domain $=\mathbf{R}$, Range $=(-\infty, 2]$
(C) Domain $=\mathbf{R}$, Range $=(-\infty, 2)$
(D) Domain $=\mathbf{R}^{+}$, Range $=(-\infty, 2]$
35. The domain for which the functions defined by $f(x)=3 x^{2}-1$ and $g(x)=3+x$ are equal is
(A) $\left\{-1, \frac{4}{3}\right\}$
(B) $\left[-1, \frac{4}{3}\right]$
(C) $\left(-1, \frac{4}{3}\right)$
(D) $\left[-1, \frac{4}{3}\right)$

CBSE Class 11 Mathematics
 Important Questions
 Chapter 2
 Relations and Functions

1 Marks Questions

1. Find a and b if $(a-1, b+5)=(2,3)$ If $A=\{1,3,5\}, B=\{2,3\}$ find $:(Q u e s t i o n-2,3)$

Ans. $\mathrm{a}=3, \mathrm{~b}=-2$
2. $A \times B$

Ans. $\mathrm{A} \times \mathrm{B}=\{(1,2),(1,3),(3,2),(3,3),(5,2),(5,3)\}$
3. $B \times A$ Let $A=\{1,2\}, B=\{2,3,4\}, C=\{4,5\}$, find (Question- 4,5)

Ans. $B \times A=\{(2,1),(2,3),(2,5),(3,1),(3,3),(3,5)\}$
4. $A \times(B \cap C)$

Ans. $\{(1,4),(2,4)\}$
5. $A \times(B \cup C)$

Ans. $\{(1,2),(1,3),(1,4),(1,5),(2,2),(2,3),(2,4),(2,5)\}$
6. If $P=\{1,3\}, Q=\{2,3,5\}$, find the number of relations from A to B

Ans. $2^{6}=64$
7. If $A=\{1,2,3,5\}$ and $B=\{4,6,9\}, R=\{(x, y):|x-y|$ is odd, $x \in A, y \in B\}$ Write R in roster form

Which of the following relations are functions. Give reason.

Ans. $R=\{(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)\}$
8. $R=\{(1,1),(2,2),(3,3),(4,4),(4,5)\}$

Ans. Not a function because 4 has two images.
9. $R=\{(2,1),(2,2),(2,3),(2,4)\}$

Ans. Not a function because 2 does not have a unique image.
10. $R=\{(1,2),(2,5),(3,8),(4,10),(5,12),(6,12)\}$ Which of the following arrow diagrams represent a function? Why?

Ans. Function
11.

Ans. Function
12.

Let f and g be two real valued functions, defined by, $f(x)=x 2, g(x)=3 x+2$.
Ans. Not a function
13. $(f+g)(-2)$

Ans. 0
14. $(f-g)(1)$

Ans. -4
15. (fg)(-1)

Ans. -1
16. $\left(\frac{\mathrm{f}}{\mathrm{g}}\right)(0)$

Ans. 0
17. If $\mathbf{f}(\mathbf{x})=\mathbf{x} 3$, find the value of, $\frac{\mathrm{f}(5)-f(1)}{5-1}$

Ans. 31
18. Find the domain of the real function, $f(x)=\sqrt{x^{2}-4}$

Ans. $(-\infty,-2] \cup[2, \infty)$
19. Find the domain of the function, $f(x)=\frac{x^{2}+2 x+3}{x^{2}-5 x+6}$ Find the range of the following functions, (Question- 20,21)

Ans. $\mathrm{R}-\{2,3\}$
20. $f(x)=\frac{1}{1-x^{2}}$

Ans. $(-\infty,-0] \cup[1, \infty)$
21. $\mathbf{f}(\mathrm{x})=\mathrm{x}^{2+2}$

Ans. $[2, \infty)$
22. Find the domain of the relation, $R=\{(x, y): x, y \in Z, x y=4\}$ Find the range of the following relations : (Question-23, 24)

Ans. $\{-4,-2,-1,1,2,4\}$
23. $R=\{(a, b): a, b \in N$ and $2 a+b=10\}$

Ans. $\{2,4,6,8\}$
$\mathbf{2 4 .} \mathbf{R}=\left\{\left(\mathrm{x}, \frac{1}{\mathrm{x}}\right): x \in z, 0<x<6\right\}$
Ans. $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5},\right\}$
25.If the ordered Pairs $(x-1, y+3)$ and $(2, x+4)$ are equal, find x and y
(i) $(3,3)$ (ii) $(3,4)$ (iii) (1,4) (iv) (1,0$)$

Ans. (3,4)
26. If, $n(A)=3, n(B)=2, A$ And B are two sets Then no. of relations of $A \times B$ have.
(i) (6)
(ii) (12)
(iii) (32)
(iv) (64)

Ans. 64
27.Let $f(x)=-|x|$ then Range of function
(i) $(0, \infty)$ (ii) $(-\infty, \infty)$ (iii) $(-\infty, 0)$ (iv) none of there

Ans. $(-\infty, 0)$
28.A real function f is defined by $f(x)=2 x-5$. Then the Value of $f(-3)$
(i) - 11 (ii) 1 (iii) 0 (iv) none of there

Ans. -11
29.If $P=\{a, b, c\}$ and $Q=\{d\}$, form the sets $P \times Q$ and $Q \times P$ are these two Cartesian products equal?

Ans. Given $P=\{a, b, c\}$ and $Q=\{d\}$, by definition of cartesion product, we set

$$
P \times Q=[(a, d) ;(b, d),(c, d)] \text { and } Q \times P=[(d, a),(d, b),(d, c)]
$$

By definition of equality of ordered pains the pair (a, d) is not equal to the pair (d, a) therefore $p \times \underset{\sim}{\neq Q} \times P$.
30..If A and B are finite sets such that $n(A)=m$ and $n(B)=k$ find the number of relations from A to B

Ans. Linen $n(A)=n$ and $n(B)=k$
$\therefore n(A \times B)=\bigcap(A) \times \bigcap(B)=m k$
\therefore the number of subsets of $A \times B=2 m k$
$\because n(A)=m$, then the number of subsets of $A=2^{m}$

Since every subset of $A \times B$ is a relation from A to B therefore the number of relations from A to $B=2^{m k}$
31.Let $f=\{(1,1),(2,3),(0,-1),(-1,3), \ldots \ldots\}$ be a function from \mathbf{z} to \mathbf{z} defined by $f(x)=a x+b$, for same integers \mathbf{a} and \mathbf{b} determine \mathbf{a} and \mathbf{b}.

Ans. Given $f(x)=a x+b$
Since $(1,1) \in f_{1} f(1)=1 \Rightarrow a+b=1$
$(2,3) \in f \cdot f(2)=3 \Rightarrow 2 a+b=3$
Subtracting (i) from(ii) we set $\mathrm{a}=2$

Substituting $a=2$ is (ii) we get $2+b=1$
$\Rightarrow \mathrm{b}=-1$

Hence $\mathrm{a}=2, \mathrm{~b}=-1$
32.Express $\{(x, y): y+2 x=5, x y \in w\}$ as the set of ordered pairs

Ans. Since $y+2 x=5$ and $x, y \in w$,
Put $x=0, y+0=5 \Rightarrow y=5$
$x=1, y+2 \times 1=5 \Rightarrow y=3$
$x=2, y+2 \times 2=5 \Rightarrow y=1$
For anther values of $x \in w$, we do not get $y \in w$.
Hence the required set of ordered peutes is $\left\{\left(0^{\prime} 5\right),(1,3),(2,1)\right\}$
33.If $A=\{1,2\}$, find $(A \times A \times A)$

Ans. We have

$$
A \times A \times A=\{(1,1,1),(1,1,2),(1,2,1),(2,1,1),(2,2,1),(2,2,2)\}
$$

34. A Function f is defined by $f(x)=2 x-3$ find $f(5)$

Ans. Here $f(x)=2 x-3$
$f(x)=(2 \times 5-3)=7$
35.Let $f=\{(0,-5),(1,-2),(2,1),(3,4),(4,7)\}$ be a linear function from z into z find f

Ans. $f(x)=3 x-5$
36.If the ordered pairs $(x-2,2 y+1)$ and $(y-1, x+2)$ are equal, find $x \& y$

Ans. $x=3, \quad y=2$
37.Let $A=\{-1,2,5,8\}, B=\{0,1,3,6,7\}$ and R be the relation, is one less than from A to B then find domain and Range of R

Ans. Given $A=\{-1,2,5,8\}, B=\{0,1,3,6,7\}$, and R is the relation 'is one less than' from
A to B therefore $R=[(-1,0),(2,3),(5,6)]$
Domain of $R=\{-1,2,5\}$ and range of $R=\{0,3.6\}$
38.Let R be a relation from N to N define by $R=\left[(a, b): a, b \in N\right.$ and $\left.a=b^{2}\right]$. Is the following true $a, b \in R$ implies $(b, a) \in R$

Ans. No; let $a=4, b=2$. As $4=2^{2}$, so $(4,2) \in R$ but $2 \neq 4^{2}$. so $(2,4) \in R$
39.Let N be the set of natural numbers and the relation R be define in N by $R=$ $[(x, y): y=2 x, x, y \in N]$. what is the domain, co domain and range of R ? Is this relation a function?

Ans. Given $R=[(x, y): y=2 x, x, y \in N]$
\therefore Domain of $R=N$. co domain of $R=N$. and Range of R is the set of even natural numbers.

Since every natural number x has a unique image $2 x$ therefore, the relation R is a function.
40.Let $R=\{(x, y): y=x+1\}$ and $y \in\{0,1,2,3,4,5\}$ list the element of R

Ans. $R=\{(-1,0),(0,1),(1,2),(2,3),(3,4),(4,5)\}$
41.Let f be the subset of $Q \times Z$ defined by
$f=\left\{\left(\frac{m}{n}, m\right): m n \in Z, n \neq 0\right\}$. Is f a function from Q to Z ? Justify your answer
Ans. f Is not a function from Q to Z
$f\left(\frac{1}{2}\right)=1$ and $f\left(\frac{2}{4}\right)=2$
But $\frac{1}{2}=\frac{2}{4}$
\therefore One element $\frac{1}{2}$ have two images
$\therefore f$ is not function
42.The function ' f^{\prime} ' which maps temperature in Celsius into temperature in Fahrenheit is defined by $f(c)=\frac{9}{5} c+32$ find $f(0)$

Ans. $f(0)=\frac{9}{5} \times 0+32$
$f(0)=32$
43.If $f\left(x=x^{3}-\frac{1}{x^{3}}\right)$ Prove that $f(x)+f\left(\frac{1}{x}\right)=0$

Ans. $f(x)=x^{3}-\frac{1}{x^{3}}$
$f\left(\frac{1}{x}\right)=\frac{1}{x^{3}}-x^{3}$
$f(x)+f\left(\frac{1}{x}\right)=x^{3}-\frac{1}{x}+\frac{1}{x}-x^{3}$
$=0$
44.If A and B are two sets containing m and n elements respectively how many different relations can be defined from A to B ?

Ans. 2^{m+n}

CBSE Class 12 Mathematics

Important Questions
 Chapter 2
 Relations and Functions

4 Marks Questions

1. Let $A=\{1,2,3,4\}, B=\{1,4,9,16,25\}$ and R be a relation defined from A to B as, $R=\{(x, y)$: $x \in A, y \in B$ and $\left.y=x^{2}\right\}$
(a) Depict this relation using arrow diagram.
(b) Find domain of R.
(c) Find range of R.
(d) Write co-domain of R.

Ans.

(b) $\{1,2,3,4\}$
(c) $\{1,4,9,16\}$
(d) $\{1,4,9,16,25\}$
2. Let $R=\{(x, y): x, y \in N$ and $y=2 x\}$ be a relation on N. Find :
(i) Domain
(ii) Codomain
(iii) Range

Is this relation a function from \mathbf{N} to \mathbf{N}

Ans. (i) N
(ii) N
(iii) Set of even natural numbers
yes, R is a function from N to N .
3. Find the domain and range of, $f(x)=|2 x-3|-3$

Ans. Domain is R

Range is $[-3, \infty$)
4. Draw the graph of the Constant function, $f: R \in R ; f(x)=2 x \in R$. Also find its domain and range.

Ans. Domain $=\mathrm{R}$
Range $=\{2\}$
5.Let $R=\{(x,-y): x, y=\in W, 2 x+y=8\}$ then
(i) Find the domain and the range of R (ii) Write R as a set of ordered pairs.

Ans. (i)Given $2 x+y=8$ and $x y \in w$
Put

$$
\begin{aligned}
& x=0,2 \times 0+y=8 \Rightarrow y=8 \\
& x=1,2 \times 1+y=8 \Rightarrow y=6
\end{aligned}
$$

$x=2,2 \times 2+y=8 \Rightarrow y=4$,
$x=3,2 \times 3+y=8 \Rightarrow y=2$,
$x=4,2 \times 4+y=8 \Rightarrow y=0$
for all other values of $x \in w$; we do not get $y \in w$
\therefore Domain of $R=\{0,1,2,3,4$,$\} and range of R=\{8,6,4,2,0\}$
(ii) R as a set of ordered pairs can be written as

$$
R=\{(0,8),(1,6),(2,4),(3,2),(4,0)\}
$$

6. Let \mathbf{R} be a relation from \mathbf{Q} to \mathbf{Q} defined by $R=\{(a, b): a, b \in Q$ and $a-b \in z$,$\} show$ that $(i)(a, a) \in R$ for all $a \in Q \quad(i i)(a, b) \in R$ implies that $(b, a) \in R$
(iii) $(a, b) \in R$ and $(b, c) \in R$ implies that $(a, c) \in R$

Ans. $R=[(a, b): a, b \in Q$ and $a-b \in z]$
(i) For all $a \in Q, a-a=0$ and $0 \in z$, it implies that $(a, a) \in R$.
(ii) Given $(a, b) \in R \Rightarrow a-b \in z \Rightarrow-(a-b) \in z$
$\Rightarrow b-a \in z \Rightarrow(b, a) \in R$.
(iii) Given $(a, b) \in R$ and $(b, c) \in R \Rightarrow a-b \in z$ and $b-c \in z \Rightarrow(a-b)+(b-c) \in z$
$\Rightarrow a-c \in z \Rightarrow(a-c) \in R$.
7.If $f(x)=\frac{x^{2}-3 x+1}{x-1}$, find $f(-2)+f\left(\frac{1}{3}\right)$

Ans. Given $f(x)=\frac{x^{2}-3 x+1}{x-1}, D f=R-\{1\}$
$\therefore f(-2)=\frac{(-2)^{2}-3(-2)+1}{-2-1}-\frac{4+6+1}{-3}=1 \frac{1}{3}$ and
$f\left(\frac{1}{3}\right)=\frac{\left(\frac{1}{3}\right)^{2}-3 \times \frac{1}{3}+1}{\frac{1}{3}-1}=\frac{\frac{1}{9-1+1}}{-\frac{2}{3}}=\frac{\frac{1}{9}}{-\frac{2}{3}}=\frac{1}{9} \times\left(-\frac{3}{2}\right)=-\frac{1}{6}$
$\therefore f(-2)+f\left(\frac{1}{3}\right)=-\frac{11}{3}-\frac{1}{6}=\frac{-22-1}{6}=\frac{-23}{6}=3 \frac{5}{6}$.
8.Find the domain and the range of the function $f(x)=3 x^{2}-5$. Also find $f(-3)$ and the numbers which are associated with the number 43 m its range.

Ans. Given $f(x)=3 x^{2}-5$
For $D f, f(x)$ must be real number
$\Rightarrow 3 x^{2}-5$ must be a real number
Which is a real number for every $x \in R$
$\Rightarrow D f=R$.
for Rf, let $y=f(x)=3 x^{2}-5$
We know that for all $x \in R, x^{2} \geq 0 \Rightarrow 3 x^{2} \geq 0$
$\Rightarrow 3 x^{2}-5 \geq-5 \Rightarrow y \geq-5 \Rightarrow R f=[-5, \infty]$
Funthes, as $-3 \in D f, f(-3)$ exists is and $f(-3)$
$=3(-3)^{2}-5=22$.
As $43 \in R f$ on putting $y=43$ is (i) weget
$3 x^{2}-5=43 \Rightarrow 3 x^{2}=48 \Rightarrow \mathrm{x}^{2}=16 \Rightarrow x=-4,4$.

There fore -4 and 4 are number
(is $D f$) which are associated with the number 43 in $R f$
9.If $f(x)=x^{2}-3 x+1$, find x such that $f(2 x)=f(x)$

Ans. Given $f(x)=x^{2}-3 x+1, D f=R$
$\therefore f(2 x)=(2 x)^{2}-3(2 x)+1=4 x^{2}-6 x+1$
As $f(2 x)=f(x)($ Given)
$\Rightarrow 4 x^{2}-6 x+1=x^{2}-3 x+1$
$\Rightarrow 3 x^{2}-3 x=0 \Rightarrow x^{2}-x=0 \Rightarrow x(x-1)=0$
$\Rightarrow x=0,1$.
10.Find the domain and the range of the function $f(x)=\sqrt{x-1}$

Ans. Given $f(x)=\sqrt{x-1}$
for $D f, f(x)$ must be a real number
$\Rightarrow \sqrt{x-1}$ must be a real number
$\Rightarrow x-1 \geq 0 \Rightarrow x \geq 1$
$\Rightarrow D f=[1, \infty]$
for $R f$, let $y=f(x)=\sqrt{x-1}$
$\Rightarrow \sqrt{x-1} \geq 0 \Rightarrow y \geq 0$
$\Rightarrow R f=[0, \infty]$
11.Let a relation $R=\{(0,0),(2,4),(-1,2),(3,6),(1,2)\}$ then

(i) write domain of R

(ii) write range of R
(iii) write R the set builder form
(iv) represent R by an arrow diagram

Ans. Given $R=[(0,0),(2,4),(-1,-2),,(3,6),(1,2)]$
(i) Domain of $R=[0,2,-1,3,1]$
(ii)Rang of $R=[0,4,-2,6,2]$
(iii) R in the builder from can be written as
$R=[(x, y): x \in I,-1 \leq x \leq 3, y=2 x]$
(iv) The reaction R can be represented by the arrow diagram are shown.
12.Let $A=\{1,2,3\}, \quad B=\{1,2,3,4\}$ and $R=\{(x, y):(x, y) \in A \times B, y=x+1\}$
(i) find $A \times B$
(ii) write R in roster form
(iii) write domain \& range of R

(iv) represent R by an arrow diagram

Ans. (i) $\{(1,1),(1,2),(1,3),(1,4)$

$(2,1),(2,2),(2,3),(2,4)$
$(3,1),(3,2),(3,3),(3,4)\}$
(ii) $R=[(1,2),(2,3),(3,4)]$
(iii)Domain of $R=\{1,2,3\}$ and range of $R=\{2,3,4\}$
(iv)The relation R can be represented by the are arrow diagram are shown.
13.The cartesian product $A \times A$ has a elements among which are found $(-1,0)$ and $(0,1)$. find the set and the remaining elements of $A \times A$

Ans. Let $n(A)=m$
Given $n(A \times A)=9 \Rightarrow n(A) n(A)=9$
$\Rightarrow m . m=9 \Rightarrow m^{2}=9 \Rightarrow m=3 \quad(\because m>0)$
Given $(-1,0) \in A \times A \Rightarrow-1 \in A$ and $0 \in A$
Also $(0,1) \in A \times A \Rightarrow 0 \in A$ and $1 \in A$

This $-1,0,1 \in A$ but $n(A)=3$

Therefore $A=[-1,0,1]$
The remaining elements of $A \times A$ are $(-1,-1),(-1,1),(0,-1),(0,0),(1,-1),(1,0),(1,1)$
14.Find the domain and the range of the following functions $f(x)=\frac{1}{\sqrt{5-x}}$

Ans. Given $f(x)=\frac{1}{\sqrt{5-x}}$
For $D_{F}, f(x)$ must be a real number
$\Rightarrow \frac{1}{\sqrt{5-x}}$ Must be a real number
$\Rightarrow 5-x>0 \Rightarrow 5>x \Rightarrow x<5$
$\Rightarrow D_{F}=(-\infty, 5)$
For R_{F} let $y=\frac{1}{\sqrt{5-x}}$
As $x<5,0<5-x$
$\Rightarrow 5-x>0 \Rightarrow \sqrt{5-x}>0$
$\Rightarrow \frac{1}{\sqrt{5} x}>0\left(\because \frac{1}{a}>0\right.$ if and only if $\left.a>0\right)$
$\Rightarrow y>0$
$\Rightarrow R_{F}=(0, \infty)$
15.Let $f(x)=x+1$ and $g(x)=2 x-3$ be two real functions. Find the following functions (i) $f+g$ (ii) $f-g$ (iii) $f g$ (iv) $\frac{f}{g} \quad$ (v) $f^{2}-3 g$

Ans. Given $f(x)=x+1$ and $g(x)=2 x-3$ we note that $D_{F}=R$ and $D_{g}=R$ so there functions have the same Domain R
(i) $(f+g)(x)=f(x)+g(x)=(x+1)+(2 x-3)=3 x-2$, for $x \in R$
(ii) $(f-g)(x)=f(x)-g(x)=(x+1)-(2 x-3)-x+4$, for all $x \in R$
(iii) $(f g)(x)=f(x)=(x+1)(2 x-3)=2 x^{2}-x-3$, for all $x \in R$
(iv) $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{x+1}{2 s-3}, x \neq \frac{3}{2}, x \in R$
(v) $\left(f^{2}-3 g\right)(x)=\left(f^{2}\right)(x)-(3 f)(x)=(f(x))^{2}-3 g(x)$
$=(x+1)^{2}-3(2 x-3)=x^{2}+2 x+1-6 x+9$
$=x^{2}-4 x+10$, for all $x \in R$

16.Find the domain and the range of the following functions

(i) $f(x)=\frac{x-3}{2 x+1}$ (ii) $f(x)=\frac{x^{2}}{1+x^{2}}$ (iii) $f(x)=\frac{1}{1-x^{2}}$

Ans. (i)Given $f(x)=\frac{x-3}{2 x+1}$
For $D_{F}, f(x)$ must be a real number
$\Rightarrow \frac{x-3}{2 x+1}$ must be a real number
$\Rightarrow 2 x+1 \neq 0 \Rightarrow x \neq-\frac{1}{2}$
$\Rightarrow D_{F}=$ set of all real number except
$-\frac{1}{2}$ i.e. $R-\left[-\frac{1}{2}\right]$
For R_{F}, let $y=\frac{x-3}{2 x+1} \Rightarrow 2 x y+y=x-3$
$\Rightarrow(2 y-1) x=-y-3 \Rightarrow x=\frac{y+3}{1-2 y}$ but $x \in R$
$\Rightarrow \frac{y+3}{1-2 y}$ Must be a real number $\Rightarrow 1-2 y \neq 0 \Rightarrow y \neq \frac{1}{2}$
$\Rightarrow R_{F}=$ Set of all real number except $\frac{1}{2} R-\left[\frac{1}{2}\right]$
(ii) Given $f(x)=\frac{x^{2}}{1+x^{2}}$

For $D_{F}, f(x)$ must be a real number $\Rightarrow \frac{x^{2}}{1+x^{2}}$
Must be a real number
$\Rightarrow D_{F}=R \quad\left(\because x^{2}+1 \neq 0\right.$ for all $\left.x \in R\right)$
For R_{F} let $y=\frac{x^{2}}{1+x^{2}} \Rightarrow x^{2} y+y=x^{2}$
$\Rightarrow(y-1) x^{2}=-y \Rightarrow x^{2}=\frac{-y}{y-1}, y \neq 1$
But $x 2 \geq 0$ for all $x \in R \Rightarrow \frac{-y}{y-1} \geq 0, y \neq 1$
Multiply both sides by $(y-1)^{2}$, a positive real number
$\Rightarrow-y(y-1) \geq 0$
$\Rightarrow y(y-1) \leq 0 \Rightarrow(y-0)(y-1) \leq 0$
$\Rightarrow 0 \leq y \leq 1$ but $y \neq 1$
$\Rightarrow 0 \leq y<1$
$\Rightarrow R_{F}=(0,1)$
(iii) Given $f(x)=\frac{1}{1-x^{2}}$

For $D_{F_{0}} f(x)$ must be a real number
$\Rightarrow \frac{1}{1-x^{2}}$ Must be a real number
$\Rightarrow 1-x^{2} \neq 0 \Rightarrow x \neq-1,1$
$\Rightarrow D_{F}=$ Set of all real number except $-1,1 i . e D_{F}=R-[-1,1]$

For R_{F} let $y=\frac{1}{1-x^{2}}, y \neq 0$
$\Rightarrow 1-x^{2}=\frac{1}{y} \Rightarrow x^{2}=1-\frac{1}{y} \neq 0$
But $x^{2} \geq 0$ for all $\in D_{F} \Rightarrow 1-\frac{1}{y} \geq 0$
But $y^{2}>0, y \neq 0$
Multicity bath sides by y^{2} a positive real number
$\Rightarrow y 2\left(1-\frac{1}{y}\right) \geq 0 \Rightarrow y \cdot(y-1) \geq 0 \Rightarrow(y-0)(y-1) \geq 0$
Either $y \leq 0$ or $y \geq 1$ but $y \neq 0$
$\Rightarrow R_{F}=(-\infty, 0) \cup(1, \infty)$.
17.If $A=\{1,2,3\} B=\{3,4\}$ and $c=\{4,5,6\}$
find (i) $A \times(B \cup C)$ (ii) $A \times(B \cap C)$ (iii) $(A \times B) \cap(B \times C)$
Ans. We have
(i) $(B \cup C)=\{3,4\} \cup\{4,5,6\}=\{3,4,5,6\}$
$\therefore A \times(B \cup C)$
$=\{1,2,3\} \times\{3,4,5,6\}$
$=\{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4)$,
$(2,5),(2,6),(3,3),(3,4),(3,5),(3,6)\}$
(ii) $(B \cap C)=\{3,4\} \cap\{4,5,6\}=\{4\}$
$\therefore A \times(B \cap C)=\{1,2,3\} \times\{4\}=\{(1,4),(2,4),(3,4)\}$
(iii) $(A \times B)=\{1,2,3\} \times\{3,4\}$
$=\{(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)\}$
$(B \times C)=\{3,4\} \times\{4,5,6\}$
$=\{(3,4),(3,5),(3,6),(4,4),(4,5),(4,6)\}$
$\therefore(A \times B) \cap(B \times C)=\{(3,4)\}$
18.For non empty sets A and B prove that $(A \times B)=(B \times A) \Leftrightarrow A=B$

Ans. First we assume that $A=B$
Then $(A \times B)=(A \times A)$ and $(B \times A)=(A \times A)$
$\therefore(A \times B)=(B \times A)$
This, when $A=B$, then $(A \times B)=(B \times A)$
Conversely, Let $(A \times B)=(B \times A)$, and let be $x \in A$.
Then, $x \in A \Rightarrow(x, b) \in A \times B$ for same $b \in B$
$\Rightarrow(x, b) \in B \times A \quad[\therefore A \times B=B \times A]$
$\Rightarrow x \in B$.
$\therefore A \subseteq B$
similarly $B \subseteq A$
Hence, $A=B$
19.Let m be a given fixed positive integer. let
$R=[(a, b): a, b \in z$ and $(a-b)$ is divisible by $m]$ show that R is an equivalence relation on Z .

Ans. $R=\{(a, b): a, b \in Z$ and $(a-b)$ is divisible by $m\}$
(i) Let $a \in Z$. Then,
$a-a=0$, which is divisible by m
$\therefore(a, a) \in R$ for all $a \in Z$
so R is refleseive
(ii)Let $(a, b) \in R$ Then
$(a, b) \in R \Rightarrow(a-b)$ is divisible by m
$\Rightarrow-(a-b)$ is divisible by m
$\Rightarrow(b-a)$ is divisible m
$\Rightarrow(b, a) \in R$
Then $(a, b) \in R \Rightarrow(b, a) \in R$.
So R is symmetric.
(iii) Let $(a, b) \in R$ and $(b, c) \in R$
$\Rightarrow(a-b)$ is divisible by m and $(b-c)$ is divisible by m
$\Rightarrow[(a-b)+(b-c)]$ is divisible by m
$\Rightarrow(a-c)$ is divisible by m
$\Rightarrow(a, c) \in R$
$\therefore(a, b) \in R$ and $(b, c) \in R \Rightarrow(a, c) \in R$.
So, R is transitive this R is reflexive symmetric and transitive Hence, R is an equivalence relation and Z.
20.Let $A=\{1,2,3,4,5\}$ and $B=\{1,3,4\}$ let R be the relation, is greater than from A to B. Write R as a a set of ordered pairs. find domain (R) and range (R)

Ans. $R=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,1),(5,2),(5,3),(5,4)\}$
Domain of $R=\{2,3,4,5\}$ Range of $R=\{1,2,3,4\}$

21.Define modulus function Draw graph.

Ans. let $f: R \rightarrow R: f(x)=|x|$ for each $x \in R$. then $f(x)=|x|=\left\{\begin{array}{l}x \text {, when } x \geq 0 \\ -x, \text { when } x<0\end{array}\right\}$ we know that $|x|>0$ for all x
$\therefore \operatorname{dom}(f)=R$ and range $(f)=$ set of non negative real number
Drawing the graph of modulus function defined by

$f: R \rightarrow R: f(x)=|x|=\left\{\begin{array}{l}x \text { when } x \geq 0 \\ -x \text { when } x<0\end{array}\right\}$
We have

x	$\mathbf{3}$	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$f(x)$	3	2	$\mathbf{1}$	0	1	2	3	4

Scale: 5 small divisions = 1 unit
On a graph paper, we plot the points
$A(-3,3), B(-2,2), C(-1,1), o(0,0), D(1,1), \in(2,2), F(3,3)$ and $G(4,4)$
Join them successively to obtain the graph lines AO and OG, as show in the figure above.
22.Let $f(x)=\left\{\begin{array}{l}x^{2}, \text { when } 0 \leq x \leq 3 \\ 3 x \text {, when } 3 \leq x \leq 10\end{array}\right\} \quad g(x)\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 3 \\ 2 x, 3 \leq x \leq 10\end{array}\right\}$ Show that f is a function, while g is not α function.

Ans. Each element in $\{0,10\}$ has a unique image under f.
But, $g(3)=3^{2}=9$ and
$g(3)=(2 \times 3)=6$
So g is not a function
23.Let $A=\{1,2\}$ and $b=\{3,4\}$ write $A \times B$ how many subsets will $A \times B$ have? List them.

Ans. $A \times B=\{(1,3),(1,4),(2,3),(2,4)\} ; 16$ Subsets of $A \times B$ have
Subsets $=\phi,\{(1,3)\}:\{(1,4)\},\{(2,3)\},\{(2,4)\}$,
$\{(1,4)\}:\{(1,3),(2,3)\},\{(1,3),(2,4)\}$,
$\{(1,4),(2,3)\}=\{(1,4),(2,4)\}=\{(2,3)\}$,
$\{(2,4)\},\{(1,3),(1,4),(2,3)\},\{(1,3),(1,4)$,
$\{(2,4)\}=,\{(1,3),(2,3),(2,4)\},\{(1,4),(2,3)\}=$
$\{(2,4)\}$;
24.Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$ verify that
(i) $A \times(B \cap C)=(A \times B) \cap(A \times C)$ (ii) $A \times C$ is subset of $B \times D$

Ans. L.H.S. $B \cap C=\phi$

Part-I

L.H.S $\quad A \times(B \cap C)=\phi$
R.H.S. $A \times B=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4) \\ (2,1),(2,2),(2,3),(2,4)\end{array}\right\}$
$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$
$(A \times B) \cap(A \times C)=\phi \quad$ L.H.S $=$ R.H.S

Part-II

$B \times D=\left\{\begin{array}{l}(1,5),(1,6),(1,7),(1,8) \\ (2,5),(2,6),(2,7),(2,8)\end{array}\right\}$
$(A \times C) \subset(B \times D)$
25.Find the domain and the range of the relation R defined by
$R=[(x+1, x+3): x \in(0,1,2,3,4,5)]$
Ans. Given $x \in\{0,1,2,3,4,5\}$
put $x=0, x+1=0+1=1$ and $x+3=0+3=3$
$x=1, x+1=1+1=2$ and $x+3=1+3=4$,
$x=2, x+1=2+1=3$ and $x+3=2+3=5$,
$x=3, x+1=3+1=4$ and $x+3=3+3=6$,
$x=4, x+1=4+1=5$ and $x+3=4+3=7$
$x=5, x+1=6$ and $x+3=5+3=8$
Hence $R=[(1,3),(2,4),(3,5),(4,6),(5,7),(6,8)]$
\therefore Domain of $R=[1,2,3,4,5,6]$ and range of $R=[3,4,5,6,7,8]$
26.Find the linear relation between the components of the ordered pairs of the relation R where $R=\{(2,1),(4,7),(1,-2), \ldots \ldots\}$

Ans. Given $R=\{(2,1),(4,7),(1,-2), \ldots\}$
Let $y=a x+b$ be the linear relation between the components of R

Since $(2,1) \in R, \therefore y=a x+b \Rightarrow 1=2 a+b$
Also $(4,7) \in R, \therefore y=a x+b \Rightarrow 7=4 a+b$

Subtracting (i) from (ii), we get $2 a=6 \Rightarrow a=3$

Subtracting $a=3$ is (i), we get $1=6+b \Rightarrow b=-5$

Subtracting there values of a and b in $y=a x+b$, we get
$y=3 x-5$, which is the required linear relation between the components of the given relation.
27.Let $A=\{1,2,3,4,5,6\}$ define a relation R from A to A by $R=\{(x, y): y=x+1, x, y \in A\}$
(i) write R in the roaster form
(ii) write down the domain, co-domain and range of R
(iii) Represent R by an arrow diagram

Ans. (i) $\{(1,2),(2,3),(3,4),(4,5),(5,6)\}$
(ii) Domain $=\{1,2,3,4,5\}$ co domain $=A$, range $=\{2,3,4,5,6\}$
(iii)

28.A relation' f^{\prime} is defined by $f: x \rightarrow x^{2}-2$ where $x \in\{-1,-2,0,2\}$
(i) list the elements of f
(ii) is f a function?

Ans. Reletion f is defined by $f: x \rightarrow x^{2}-2$
(i) is $f(x)=x^{2}-2$ whene $x \in\{-1,-2,0,2\}$
$f(-1)=(-1)^{2}-2=1-2=-1$
$f(-2)=(-2)^{2}-2=4-2=2$
$f(0)=0^{2}-2=0-2=-2$
$f(2)=2^{2}-2=4-2=2$
$\therefore f=\left\{(-1,-1),(-2,2),(0,-2),\left(2^{\prime} 2\right)\right\}$
(ii)We note that each element of the domain of f has a unique image; therefore, the relation f is a function.
29.If $y=\frac{6 x-5}{5 x-6}$. Prove that $f(y)=x, x \neq \frac{6}{5}$

Ans. $y=\frac{6 x-5}{5 x-6}$
$y=f(x)=\frac{6 x-5}{5 x-6}$
$f(y)=\frac{6\left[\frac{6 x-5}{5 x-6}\right]-5}{5\left[\frac{6 x-5}{5 x-6}\right]-6}$

$$
f(y)=\frac{\frac{36 x-3 Q-25 x+3 Q}{3 x-6}}{\frac{3 Q x-25-30 x+36}{3 x-6}}
$$

$f(y)=\frac{11 x}{11}=x, x \neq \frac{6}{5}$
30.Let $f: X \rightarrow Y$ be defined by $f(x)=x^{2}$ for all $x \in X$ where $X=\{-2,-1,0,1,2,3\}$ and $y=\{0,1,4,7,9,10\}$ write the relation f in the roster farm. It f a function?

Ans. $f: X \rightarrow Y$ defined by
$f(x)=x^{2}, x \in X$
and $X=\{-2,-1,0,1,2,3\}$

$$
\begin{aligned}
& y=\{0,1,4,7,9,10\} \\
& f(-2)=(-2)^{2}=4 \\
& f(-1)=(-1)^{2}=1 \\
& f(0)=0^{2}=0 \\
& f(1)=1^{2}=1 \\
& f(2)=2^{2}=4 \\
& f(3)=3^{2}=9
\end{aligned}
$$

$\therefore f=\{(-2,4),(-1,1),(0,0),(1,1),(2,4),(3,9)\}$
f is a function because different elements of X have different imager in y

31.Determine a quadratic function ' f^{\prime} defined by

$f(x)=a x^{2}+b x+c$ if $f(0)=6, f(2)=11$ and $f(-3)=6$
Ans. $f(x)=a x^{2}+b x+c$
$f(0)=6$
$a \times 0^{2}+b \times 0+c=6$
$c=6$
$f(2)=11$
$a \times 2^{2}+b \times 2+c=11$
$4 a+2 b+c=11$
$4 a+2 b+6=11$
$4 a+2 b=11-6$
$[4 a+2 b=5]---(i)$
$(-3)=6$
$a \times(-3)^{2}+b \times(-3)+c=0$
$9 a-3 b+6=0$
$[9 a-3 b=-6]---($ ii $)$
Multiplying eq. (i) by 3 and eq. (ii) by 2
$12 a+6 b=15$
$\frac{18 a-6 k=-12}{30 a=3}$
$a=\frac{3}{30}=\frac{1}{10}$
${ }^{2} \times \frac{1}{{ }_{5} \mathrm{VQ}}+2 b=5$
$2 b=5 \frac{-2}{5}$
$2 b=\frac{25-2}{5}=\frac{23}{5}$
$b=\frac{23}{10}$
$\therefore f(x)=\frac{1}{10} x^{2}+\frac{23}{10} x+6$
32.Find the domain and the range of the function f defied by $f(x)=\frac{x+2}{|x+2|}$

Ans. $f(x)=\frac{x+2}{|x+2|}$
For Df, $f(x)$ must be a real no.
$\Rightarrow x+2 \mid \neq 0 \Rightarrow x+2 \neq 0 \Rightarrow x \neq-2$
\therefore Domain of $f=$ set of all real numbers
except $-2 i . e . D f=R-\{-2\}$
for $R f$
casel if $x+2>0$ then $|x+2|=x+2$
$\therefore f(x)=\frac{x+2}{|x+2|}=1$
caseII if $x+2<0,|x+2|=-(x+2)$
$\therefore f(x)=\left(\frac{x+2}{-x+2}\right)=-1$
\therefore Range of $f=\{-1,1\}$
33.Find the domain and the range of $f(x)=\frac{x^{2}}{1+x^{2}}$

Ans. $f(x)=\frac{x^{2}}{1+x^{2}}$
Domain of $f=$ all real no. $=R$
for Range let $f(x)=y$
$y=\frac{x^{2}}{1+x^{2}}$
$y\left(1+x^{2}\right)=x^{2}$
$y+y x^{2}=x^{2}$
$y=x^{2}-y x^{2}$
$y=(1-y) x^{2}$
$x^{2}=\frac{y}{1-y}$
$x=\sqrt{\frac{y}{1-y}}$
$\frac{y}{1-y} \geq 0 \quad 1-y \neq 0$
$y \neq 1$
also $y \geq 0$ and $1-y>0$

$$
y<1
$$

\therefore Range of $f=[0,1)$.
34. If
$A=\{1,2,3\}, B=\{1,2,3,4\}$. and
$R=\{(x, y):(x, y) \in A \times B, y=x+1\}$ then
(i) find $A \times B$ (ii) write domain and Range

Ans.
(i)
$A \times B=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4)\}$
(ii) $R=\{(1,2),(2,3),(3,4)\}$

Domain of $R=\{1.2 .3\}$
Range of $R=\{2,3,4\}$

CBSE Class 12 Mathematics

Important Questions

Chapter 2

Relations and Functions

6 Marks Questions

1.Draw the graphs of the following real functions and hence find their range
$f(x)=\frac{1}{x}, x \in R, x \neq 0$
Ans. Given $f(x)=\frac{1}{x}, x \in R, x \neq 0$
Let $y=f(x)=i \ell y=\frac{1}{x}, x \in R, x \neq 0$

(Fig for Answer 11)

x	-4	-2	-1	-0.5	-0.25	0.5	1	2	4
$y=\frac{1}{x}$	-0.25	-0.5	-1	-2	-4	2	1	0.5	0.25

Plot the points shown is the above table and join there points by a free hand drawing.

Portion of the graph are shown the right margin
From the graph, it is clear that $R f=R-[0]$

This function is called reciprocal function.
2.If $f(x)=x-\frac{1}{x}$, Prove that $[f(x)]^{3}=f\left(x^{3}\right)+3 f\left(\frac{1}{x}\right)$

Ans. If $f(x)=x-\frac{1}{x}$, prove that $[f(x)]^{3}=f\left(x^{3}\right)+f\left(\frac{1}{x}\right)$
Given $f(x)=x-\frac{1}{x}, D f=R-[0]$
$\Rightarrow f\left(x^{3}\right)=x^{3}-\frac{1}{x^{3}}$ and $f\left(\frac{1}{x}\right)=\frac{1}{x}-\frac{1}{\frac{1}{x}}=\frac{1}{x}-x$.
$\therefore[f(x)]^{3}=\left(x-\frac{1}{x}\right)^{3}=x^{3}-\frac{1}{x^{3}}-3 x \cdot \frac{1}{x}\left(x-\frac{1}{x}\right)$
$=x^{3}-\frac{1}{x^{3}}-3\left(x-\frac{1}{x}\right)$
$=x^{3}-\frac{1}{x^{3}}+3\left(\frac{1}{x}-x\right)$
$=f\left(x^{3}\right)+3 f\left(\frac{1}{x}\right)[\operatorname{using}(i)]$
3.Draw the graphs of the following real functions and hence find their range
(i) $f(x)=2 x-1(i i) f(x)=\frac{x^{2}-1}{x-1}$

Ans. (i)Given $f(x)$ i.e. $y=x-1$, which is first degree equation in x, y and hence it represents a straight line. Two points are sufficient to determine straight lint uniquely

Table of values

x	$\mathbf{0}$	$\mathbf{1}$
y	-1	1

A portion of the graph is shown in the figure from the graph, it is clear that y takes all real values. It therefore that $R_{F}=R$
(ii)Given $f(x)=\frac{x^{2}-1}{x-1} \Rightarrow D_{F}=R-(1)$

Let $y=f(x)=\frac{x^{2}-1}{x-1}=x+1(\because x \neq 1)$
i.e $y=x+1$, which is a first degree equation is x, y and hence it represents a straight line. Two points are sufficient to determine a straight line uniquely

Table of values

x	$\mathbf{- 1}$	$\mathbf{0}$
\mathbf{y}	0	1

A portion of the graph is shown is the figure from the graph it is clear that y takes all real values except 2 . It fallows that $R_{F}=R-[2]$.
4. Let \mathbf{f} be a function defined by $F: x \rightarrow 5 x^{2}+2, x \in R$
(i) find the image of 3 under f
(ii) find $f(3)+f(2)$
(iii) find x such that $f(x)=22$

Ans. Given $f(x)=5 x^{2}+2, x \in R$
(i) $f(3)=5 \times 3^{2}+2=5 \times 9+2=47$
(ii) $f(2)=5 \times 2^{2}+2=5 \times 4+2=22$
$\therefore f(3) \times f(2)=47 \times 22=1034$
(iii) $f(x)=22$
$\Rightarrow 5 x^{2}+2=22$
$\Rightarrow 5 x^{2}=20$
$\Rightarrow x^{2}=4$
$\Rightarrow x=2,-2$
5.The function $f(x)=\frac{9 x}{5}+32$ is the formula to connect $x^{\circ} C$ to Fahrenheit
units find (i) $f(0)$ (ii) $f(-10)$ (iii) the value of $x f(x)=212$ interpret the result is each case

Ans. $f(x)=\frac{9 x}{5}+32($ given $)$
(i) $f(0)=\left(\frac{9 \times 0}{5}+32\right)=32 \Rightarrow f(0)=32 \Rightarrow 0^{\circ} c=32^{\circ} F$
(ii) $f(-10)=\left(\frac{9 \times(-10)}{5}+32\right)=14 \Rightarrow f(-10)=14^{\circ} \Rightarrow(-10)^{\circ} c=14^{\circ} F$
(iii) $f(x)=212 \Leftrightarrow \frac{9 x}{5}+32=212 \Leftrightarrow 9 x=5 \times(180)$
$\Leftrightarrow x=100$
$\therefore 212^{\circ} f=100^{\circ} \mathrm{C}$
6.Draw the graph of the greatest integer function, $f(x)=[x]$.

Ans. Clearly, we have

$f(x)=\left\{\begin{array}{l}-2, \text { when } x \in[-2,-1) \\ -1, \text { when } x \in[-1,0) \\ 0, \text { when } x \in[0,1) \\ 1, \text { when } x \in[1,2)\end{array}\right\}$

x	$\ldots \ldots .$.	$-2 \leq x<1$	$-1 \leq x<0$	$0 \leq x<1$	$1 \leq x<2$	$2 \leq x<3$	$\ldots .$.
y	$\ldots \ldots .$.	-2	-1	0	1	2	$\ldots \ldots$

7.Find the domain and the range of the following functions:
(i) $f(x)=\sqrt{x^{2}-4} \quad$ (ii) $f(x)=\sqrt{16-x^{2}}$ (iii) $\quad f(x)=\frac{1}{\sqrt{9-x^{2}}}$

Ans. (i)Given $f(x)=\sqrt{x^{2}-4}$
For $D f_{1} f(x)$ must be a real number
$\Rightarrow \sqrt{x^{2}-4}$ Must be a real number
$\Rightarrow x^{2}-4 \geq 0 \Rightarrow(x+2)(x-2) \geq 0$
\Rightarrow either $x \leq-2$ or $x \geq 2$
$\Rightarrow D_{F}=(-\infty,-2] \cup[2, \infty)$.
For R_{F}, let $y=\sqrt{x^{2}-4}$.
As square root of a real number is always non-negative, $y \geq 0$
On squaring (i), we get $y^{2}=x^{2}-4$
$\Rightarrow x^{2}=y^{2}+4$ but $x^{2} \geq 0$ for all $x \in D_{F}$
$\Rightarrow y^{2}+4 \geq 0 \Rightarrow y^{2} \geq-4$, which is true for all $y \in R$. also $y \geq 0$
$\Rightarrow R_{F}=[0, \infty)$
(ii) Given $f(x)=\sqrt{16-x^{2}}$

For $D_{F}, f(x)$ must be a real number
$\Rightarrow \sqrt{16-x^{2}}$ must be a real number
$\Rightarrow \sqrt{16-x^{2}} \geq 0 \Rightarrow-\left(x^{2}-16\right) \geq 0$
$\Rightarrow x^{2}-16 \leq 0$
$\Rightarrow(x+4)(x-4) \leq 0 \Rightarrow-4 \leq x \leq 4$
$\Rightarrow D_{F}=[-4,4]$.
For R_{F}, let $y=\sqrt{16-x^{2}}$.
As square root of real number is always non-negative, $y \geq 0$
Squaring (i)we get
$y^{2}=16-x^{2}$
$\Rightarrow x^{2}=16-y^{2}$ but $x^{2} \geq 0$ for all $x \in D_{f}$
$\Rightarrow 16-y^{2} \geq 0 \Rightarrow-\left(y^{2}-16\right) \geq 0 \Rightarrow y^{2}-16 \leq 0$
$\Rightarrow(y+4)(y-4) \leq 0 \Rightarrow-4 \leq y \leq 4$ but $y \geq 0$
$\Rightarrow R_{F}=[0,4]$
(iii) Given $f(x)=\frac{1}{\sqrt{9-x^{2}}}$

For $D_{F}, f(x)$ must be a real number
$\Rightarrow \frac{1}{\sqrt{9-x^{2}}}$ must be a real number
$\Rightarrow 9-x 2>0 \Rightarrow-\left(x^{2}-9\right)>0 \Rightarrow x^{2}-9<0$
$\Rightarrow(x+3)(x-3)<0 \Rightarrow-3<x<3 \Rightarrow D_{F}=(-3,3)$
For $R_{f_{f}}$ let $y=\frac{1}{\sqrt{9-x^{2}}}, y \neq 0$
Also as the square root of a real number is always non-negative, $y>0$.
on squaring (i)we get
$y 2=\frac{1}{9-x^{2}} \Rightarrow 9-x^{2}=\frac{1}{y^{2}} \Rightarrow x^{2}=9-\frac{1}{y^{2}}$
But $x^{2} \geq 0$ for all $x \in D_{F} \Rightarrow 9-\frac{1}{y^{2}} \geq 0$
$y^{2}>0$
(Multiply bath sides by y^{2}, a positive real number)
$\Rightarrow 9 y^{2}-1 \geq 0 \Rightarrow y^{2}-\frac{1}{9} \geq 0$
$\Rightarrow\left(y+\frac{1}{3}\right)\left(y-\frac{1}{3}\right) \geq 0$
\Rightarrow either $y \leq-\frac{1}{3}$ or $y \geq \frac{1}{3}$
$y>0 \Rightarrow y \geq \frac{1}{3}$
$\Rightarrow R_{F}=\left[\frac{1}{3}, \infty\right)$.
8.Draw the graphs of the following real functions and hence find range: $f(x)=x^{2}$

Ans.

Given $f(x)=x^{2} \Rightarrow D_{F}=R$
Let $y=f(x)=x^{2}, x \in R$

x	$\mathbf{- 4}$	$\mathbf{- 3}$	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$y=x^{2}$	16	9	4	1	0	1	4	9	16

Plot the points

$$
(-4,16),(-3,9),(-2,4),(-1,1),(0,0),(1,1)(2,4),(3,9),(4,16) \ldots \ldots
$$

And join these points by a free hand drawing. A portion of the graph is shown in sigma (next)

From the graph, it is clear that y takes all non-negative real values, if follows that $R_{F}=[0, \infty)$
9.Define polynomial function. Draw the graph of $f(x)=x^{3}$ find domain and range

Ans. A function $f: R \rightarrow R$ define by
$f(x)=a_{0}+a_{1} x+a_{2} x^{2}+---+a_{n} x^{n}$
where $a_{0}, a_{1}, a_{2},---a_{n} \in R$
And n is non negative integer is called polynomial function
Graph of $f(x)=x^{3}$

x	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{- 1}$	$\mathbf{- 2}$
$f(x)$	0	1	8	-1	-8

Domain of $f=R$
Range of $f=R$

10.(a) If A, B are two sets such that $n(A \times B)=6$ and some elements of $A \times B$ are $(-1,2),(2,3),(4,3)$, than find $A \times B$ and $B \times A$
(b) Find domain of the function $f(x)=\frac{1}{\sqrt{x+[x]}}$

Ans. (a)Given A and B are two sets such that
$n(A \times B)=6$

Some elements of $A \times B$ are

$$
(-1,2),(2,3) \text { and }(4,3)
$$

then $A=\{-1,2,4\}$ and $B=\{2,3\}$
$A \times B=\{(-1,2),(-1,3),(2,2),(2,3),(4,2),(4,3)\}$
$B \times A=\{(2,-1),(3,-1),(2,2),(3,2),(2,4),(3,4)\}$
(b)
$f(x)=\frac{1}{\sqrt{x+[x]}}$
we knowe that
$x+[x]>0$ for all $x>0$
$x+[x]=0$ for all $x=0$
$x+[x]<0$ for all $x<0$
also $f(x)=\frac{1}{\sqrt{x+[x]}}$ is defined for all
x satisfying $x+[x]>0$
Hence, Domain $(f)=(0, \infty)$

