Unit 15 (Statistics)

Short Answer Type Questions
Q1. Find the mean deviation about the mean of the distribution:

Size	20	21	22	23	24
Frequency	6	4	5	1	4

Sol.

Size	Frequency	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}=\left\|\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{x}}\right\|$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{d}_{\boldsymbol{i}}$
20	6	120	1.65	9.90
21	4	84	0.65	2.60
22	5	110	0.35	1.75
23	1	23	1.35	1.35
24	4	96	2.35	9.40
Total	20	433		25

Now, $\bar{x}=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{433}{20}=21.65$

$$
\therefore \quad \mathrm{MD}=\frac{\Sigma f_{i}\left|x_{i}-\bar{x}\right|}{\Sigma f_{i}}=\frac{25}{20}=1.25
$$

Q2. Find the mean deviation about the median of the following distribution:

Sol.

Marks obtained	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{c f}$	$\boldsymbol{d}_{\boldsymbol{i}}=\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{M}_{\boldsymbol{e}}\right\|$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{d}_{\boldsymbol{i}}$
10	2	2	2	4
11	3	5	1	3
12	8	13	0	0
14	3	16	2	6
15	4	20	3	12
Total	$\Sigma f_{i}=20$			$\Sigma f_{i} d_{i}=25$

Now, $\quad M_{e}=\left(\frac{20+1}{2}\right)$ item $=\left(\frac{21}{2}\right)=10.5^{\text {th }}$ item
$\therefore \quad M_{e}=12$
$\therefore \quad \mathrm{MD}=\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}=\frac{25}{20}=1.25$

Q3. Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.
Sol: Consider first natural number when n is an odd i.e., $1,2,3,4, \ldots, n$ [odd].
Mean $\bar{x}=\frac{1+2+3+\cdots+n}{n}=\frac{n(n+1)}{2 n}=\frac{n+1}{2}$
$\therefore \mathrm{MD}=\frac{\left|1-\frac{n+1}{2}\right|+\left|2-\frac{n+1}{2}\right|+\left|3-\frac{n+1}{2}\right|+\cdots+\left|n-\frac{n+1}{2}\right|}{n}$

$$
\begin{aligned}
& =\frac{+\left|\frac{n+1}{2}-\frac{n+1}{2}\right|+\left|\frac{n+1}{2}\right|+\left|2-\frac{n+1}{2}\right|+\cdots+\left|\frac{n-1}{2}-\frac{n+1}{2}\right|}{n}\left|\cdots+\left|\frac{2 n-2}{2}-\frac{n+1}{2}\right|+\left|n-\frac{n+1}{2}\right|\right. \\
& = \\
& =\frac{2}{n}\left[1+2+\cdots+\frac{n-3}{2}+\frac{n-1}{2}\right]\left(\frac{n-1}{2}\right) \text { terms } \\
& = \\
& =\frac{2}{n}\left[\frac{\left(\frac{n-1}{2}\right)\left(\frac{n-1}{2}+1\right)}{2}\right] \quad\left[\begin{array}{l}
\because \text { Sum of first } n \text { natrual } \\
\text { numbers }=\frac{n(n+1)}{2}
\end{array}\right] \\
& =\frac{2}{n} \cdot \frac{1}{2}\left[\left(\frac{n-1}{2}\right)\left(\frac{n+1}{2}\right)\right]=\frac{1}{n}\left(\frac{n^{2}-1}{4}\right)=\frac{n^{2}-1}{4 n}
\end{aligned}
$$

Q4. Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.
Sol: Consider first \mathbf{n} natural number, when \mathbf{n} is even i.e., 1, 2, 3,4..n.
$\therefore \quad$ Mean $\bar{x}=\frac{1+2+3+\cdots+n}{n}=\frac{n(n+1)}{2 n}=\frac{n+1}{2}$

$$
\begin{aligned}
M D= & \frac{1}{n}\left[\left|1-\frac{n+1}{2}\right|+\left|2-\frac{n+1}{2}\right|+\left|3-\frac{n+1}{2}\right|\right]+\left|\frac{n-2}{2}-\frac{n+1}{2}\right| \\
& +\left|\frac{n}{2}-\frac{n+1}{2}\right|+\left|\frac{n+2}{2}-\frac{n+1}{2}\right|+\cdots+\left|n-\frac{n 1}{2}\right| \\
= & \frac{1}{n}\left[\left|\frac{1-n}{2}\right|+\left|\frac{3 n-n}{2}\right|+\left|\frac{5-n}{2}\right|+\cdots+\left|\frac{-3}{2}\right|+\left|\frac{1}{2}\right|+\cdots+\left|\frac{n-1}{2}\right|\right] \\
= & \frac{2}{n}\left[\frac{1}{2}+\frac{3}{2}+\cdots+\frac{n-1}{2}\right]\left(\frac{n}{2}\right) \text { terms } \\
= & \frac{1}{n} \cdot\left(\frac{n}{2}\right)^{2} \quad\left[\because \text { Sum of first } n \text { natural numbers }=n^{2}\right]
\end{aligned}
$$

Q5. Find the standard deviation of the first n natural numbers.

Sol.

x_{i}	1	2	3	4	5	\ldots	\ldots	n
$x_{i}{ }^{2}$	1	4	9	16	25	\ldots	\ldots	n^{2}

Now, $\quad \Sigma x_{i}=1+2+3+4+\ldots+n=\frac{n(n+1)}{2}$
and $\quad \Sigma x_{\mathrm{i}}^{2}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
$\therefore \quad \alpha=\sqrt{\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2}}=\sqrt{\frac{n(n+1)(2 n+1)}{6 n}-\frac{n^{2}(n+1)^{2}}{4 n^{2}}}$
$=\sqrt{\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{4}}=\sqrt{\frac{2\left(2 n^{2}+3 n+1\right)-3\left(n^{2}+2 n+1\right)}{12}}$
$=\sqrt{\frac{4 n^{2}+6 n+2-3 n^{2}-6 n-3}{12}}=\sqrt{\frac{n^{2}-1}{12}}$

Q6. The mean and standard deviation of some data for the time taken to complete . a test are calculated with the following results:
Number of observations $=25$, mean $=18.2$ seconds, standard deviation $=3.25 \mathrm{~s}$.

Further, another set of 15 observations $x_{1}, x_{2}, \ldots, x_{15}$, also in seconds, is now available and we have $\sum_{i=1}^{15} x_{i}=279$ and $\sum_{i=1}^{15} x_{i}^{2}=5524$. Calculate the standard deviation based on all 40 observations.

Sol. Given, $n_{1}=25, \bar{x}_{i}=18.2, \sigma_{1}=3.25$,

$$
n_{2}=15, \sum_{i=1}^{15} x_{i}=279 \text { and } \sum_{i=1}^{15} x_{i}^{2}=5524
$$

For first set $\Sigma x_{i}=25 \times 18.2=455$

$$
\begin{array}{ll}
\therefore & \sigma_{1}^{2}=\frac{\Sigma x_{i}^{2}}{25}-(18.2)^{2} \\
\Rightarrow & (3.25)^{2}=\frac{\Sigma x_{i}^{2}}{25}-(18.2)^{2} \Rightarrow 10.5625+331.24=\frac{\Sigma x_{i}^{2}}{25} \\
\Rightarrow & \Sigma x_{i}^{2}=25 \times(10.5625+331.24)=25 \times 341.8025=8545.0625
\end{array}
$$

For combined SD of the 40 observations, $n=40$.
Now $\quad \sum_{i=1}^{40} x_{i}^{2}=5524+8545.0625=14069.0625$
and $\quad \sum_{i=1}^{40} x_{i}=455+279=734$

$$
\begin{aligned}
\therefore \quad \mathrm{SD} & =\sqrt{\frac{14069.0625}{40}-\left(\frac{734}{40}\right)^{2}}=\sqrt{351.1726-(18.35)^{2}} \\
& =\sqrt{351.726-336.7225}=\sqrt{15.0035}=3.87
\end{aligned}
$$

7. The mean and standard deviation of a set of n_{1} observations are \bar{x}_{1} and s_{1}, respectively while the mean and standard deviation of another set of n_{2} observations are \bar{x}_{2} and s_{2}, respectively. Show that the standard deviation of the combined set of ($n_{1}+n_{2}$) observations is given by

$$
\therefore \quad \mathrm{SD}=\sqrt{\frac{n_{1}\left(s_{1}\right)^{2}+n_{2}\left(s_{2}\right)^{2}}{n_{1}+n_{2}}+\frac{n_{1} n_{2}\left(\bar{x}_{1}-\bar{x}_{2}\right)^{2}}{\left(n_{1}+n_{2}\right)^{2}}}
$$

Sol. We have two sets of observations,

$$
\begin{array}{ll}
& x_{i}, i=1,2,3 \ldots, n_{1} \text { and } y_{j}, j=1,2,3, \ldots, n_{2} \\
\therefore & \bar{x}_{1}=\frac{1}{n_{i}} \sum_{i=1}^{n_{1}} x_{i} \text { and } \bar{x}_{2}=\frac{1}{n_{2}} \sum_{j=1}^{n_{2}} y_{j} \\
\Rightarrow & \sigma_{1}^{2}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}}\left(x_{i}-\bar{x}_{1}\right)^{2} \text { and } \sigma_{2}^{2}=\frac{1}{n_{2}} \sum_{j=1}^{n_{2}}\left(y_{i}-\bar{x}_{2}\right)^{2}
\end{array}
$$

Now, mean \bar{x} of the given series is given by

$$
\bar{x}=\frac{1}{n_{1}+n_{2}}\left[\sum_{i=1}^{n_{1}} x_{i}+\sum_{j=1}^{n_{2}} y_{j}\right]=\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}}
$$

The variance σ^{2} of the combined series is given by

$$
\sigma^{2}=\frac{1}{n_{1}+n_{2}}\left[\sum_{i=1}^{n_{1}}\left(x_{i}-\bar{x}\right)^{2}+\sum_{j=1}^{n_{2}}\left(y_{j}-\bar{x}\right)^{2}\right]
$$

Now, $\sum_{i=1}^{n_{1}}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n_{1}}\left(x_{i}-\bar{x}_{j}+\bar{x}_{j}-\bar{x}\right)^{2}$
But $\sum_{i=1}^{n_{1}}\left(x_{i}-\bar{x}_{i}\right)=0 \quad$ [Algebraic sum of the deviation of values of first series from their mean is zero]

Also, $\sum_{i=1}^{n_{1}}\left(x_{i}-\bar{x}\right)^{2}=n_{1} s_{1}^{2}=n_{1}\left(\bar{x}_{1}-\bar{x}\right)^{2}=n_{1} s_{1}^{2}+n_{1} d_{1}^{2}$

Where, $d_{1}=\left(\bar{x}_{1}-\bar{x}\right)$
Similarly, $\sum_{j=1}^{n_{2}}\left(y_{j}-\bar{x}\right)^{2}=\sum_{j=1}^{n_{2}}\left(y_{j}-\bar{x}_{i}+\bar{x}_{i}-\bar{x}\right)^{2}=n_{2} s_{2}^{2}+n_{2} d_{2}^{2}$
where, $d_{2}=\bar{x}_{2}-\bar{x}$
Combined SD, $\sigma=\sqrt{\frac{\left[n_{1}\left(s_{1}^{2}+d_{1}^{2}\right)+n_{2}\left(s_{2}^{2}+d_{2}^{2}\right)\right]}{n_{1}+n_{2}}}$
where, $d_{1}=\bar{x}_{1}-\bar{x}=\bar{x}_{1}-\left(\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}}\right)=\frac{n_{2}\left(\bar{x}_{1}-\bar{x}_{2}\right)}{n_{1}+n_{2}}$
and $d_{2}=\bar{x}_{2}-\bar{x}=\bar{x}_{2}-\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}}=\frac{n_{1}\left(\bar{x}_{2}-\bar{x}_{1}\right)}{n_{1}+n_{2}}$
$\therefore \quad \sigma^{2}=\frac{1}{n_{1}+n_{2}}\left[n_{1} s_{1}^{2}+n_{2} s_{2}^{2}+\frac{n_{1} n_{2}\left(\bar{x}_{1}+\bar{x}_{2}\right)^{2}}{\left(n_{1}+n_{2}\right)^{2}}+\frac{n_{2} n_{1}\left(\bar{x}_{2}-\bar{x}_{1}\right)^{2}}{\left(n_{1}+n_{2}\right)^{2}}\right]$
Also, $\sigma=\sqrt{\frac{n_{1} s_{2}^{2}+n_{2} s_{2}^{2}}{n_{1}+n_{2}}+\frac{n_{1} n_{2}\left(\bar{x}_{1}-\bar{x}_{2}\right)^{2}}{\left(n_{1}+n_{2}\right)^{2}}}$

Q8. Two sets each of 20 observations, have the same standard derivation 5 . The first set has a mean 17 and the second a mean 22. Determine the standard deviation of the set obtained by combining the given two sets.
Sol. Given, $n_{1}=20, \sigma_{1}=5, \bar{x}_{1}=17$ and $n_{2}=20, \sigma_{2}=5, \bar{x}_{2}=22$
We know that, $\sigma=\sqrt{\frac{n_{1} s_{1}^{2}+n_{2} s_{2}^{2}}{n_{1}+n_{2}}+\frac{n_{1} n_{2}\left(\bar{x}_{1}-\bar{x}_{2}\right)^{2}}{\left(n_{1}+n_{2}\right)^{2}}}$

$$
\begin{aligned}
& =\sqrt{\frac{20 \times(5)^{2}+20 \times(5)^{2}}{20+20}+\frac{20 \times 20(17-22)^{2}}{(20+20)^{2}}} \\
& =\sqrt{\frac{1000}{40}+\frac{400 \times 25}{1600}}=\sqrt{25+\frac{25}{4}}=\sqrt{\frac{125}{4}}=\sqrt{31.25}=5.59
\end{aligned}
$$

Q9. The frequency distribution:

X	A	$2 A$	3 A	4 A	5 A	6 A
f	2	1	1	1	1	1

where A is a positive integer, has a variance of 160 . Determine the value of A.

Sol.

\boldsymbol{x}	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\mathbf{1}} \boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}{ }^{\mathbf{2}}$
A	2	$2 A$	$2 A^{2}$
$2 A$	1	$2 A$	$4 A^{2}$
$3 A$	1	$3 A$	$9 A^{2}$
$4 A$	1	$4 A$	$16 A^{2}$
$5 A$	1	$5 A$	$25 A^{2}$
$6 A$	1	$6 A$	$36 A^{2}$
Total	$n=7$	$\Sigma f_{i} x_{i}=22 A$	$\Sigma f_{i} x_{i}^{2}=92 A^{2}$

$$
\begin{array}{ll}
\therefore & \sigma^{2}=\frac{\Sigma f_{i} x_{i}^{2}}{n}-\left(\frac{\Sigma f_{i} x_{i}}{n}\right)^{2} \\
\Rightarrow & 160=\frac{92 A^{2}}{7}-\left(\frac{22 A}{7}\right)^{2} \Rightarrow 160=\frac{92 A^{2}}{7}-\frac{484 A^{2}}{49} \\
\Rightarrow & 160=(644-484) \frac{A^{2}}{49} \Rightarrow 160=\frac{160 A^{2}}{49} \\
\Rightarrow & A^{2}=49 \quad \therefore A=7
\end{array}
$$

Q10. For the frequency distribution:

x	2	3	4	5	6	7
f	4	9	16	14	11	6

Find the standard deviation.
Sol.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{4}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{d}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{d}_{\boldsymbol{i}}{ }^{\mathbf{2}}$
2	4	-2	-8	16
3	9	-1	-9	9
4	16	0	0	0
5	14	1	14	14
6	11	2	22	44
7	6	3	18	54
Total	$n=60$		$\Sigma f_{i}=37$	$\Sigma f_{i} d_{i}^{2}=137$

$$
\begin{aligned}
\therefore \quad \mathrm{SD} & =\sqrt{\frac{\Sigma f_{i} d_{i}^{2}}{n}-\left(\frac{\Sigma f_{i} d_{i}}{n}\right)^{2}}=\sqrt{\frac{137}{60}-\left(\frac{37}{60}\right)^{2}}=\sqrt{2.2833-(0.616)^{2}} \\
& =\sqrt{2.2833-0.3794}=\sqrt{1.9037}=1.38
\end{aligned}
$$

Q11. There are 60 students in a class. The following is the frequency distribution of the marks obtained by the students in a test:

Marks	0	i	2	3	4	5
Frequency	$x-2$	x	x^{2}	$(x+1)^{2}$	$2 x$	$x+1$

where x is a positive integer. Determine the mean and standard deviation of the marks.

Sol. Sum of frequencies,

$x-2+x+x^{2}+(x+1)^{2}+2 x+x+1=60 \quad$ (given)				
$\Rightarrow \quad 2 x^{2}+7 x-60=0$				
\Rightarrow	$(2 x+15)(x-4)=0$			
$x=4$				
x_{i}	f_{i}	$d_{i}=x_{i}-3$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{d}_{\boldsymbol{i}}$	$f_{i} d_{i}^{2}$
0	2	-3	-6	18
1	4	-2	-8	16
2	16	-1	-16	16
$A=3$	25	0	0	0
4	8	1	8	8
5	5	2	10	20
Total	$\Sigma f_{i}=60$		$\Sigma f d_{i}=-12$	$\Sigma f_{i} d_{i}^{2}=78$

$$
\text { Mean }=A+\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}=3+\left(\frac{-12}{60}\right)=2.8
$$

Standard Deviation,

$$
\sigma=\sqrt{\frac{\Sigma f_{i} d_{i}^{2}}{\Sigma f_{i}}-\left(\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}\right)^{2}}=\sqrt{\frac{78}{60}-\left(\frac{-12}{60}\right)^{2}}=\sqrt{1.3-0.04}=\sqrt{1.26}=1.12
$$

Q12. The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.
Sol. Here, $n_{1}=60, \bar{x}_{1}=650, s_{1}=8$ and $n_{2}=80, \bar{x}_{2}=660, s_{2}=7$

$$
\begin{aligned}
\therefore \quad \sigma & =\sqrt{\frac{n_{1} s_{1}^{2}+n_{2} s_{2}^{2}}{n_{1}+n_{2}}+\frac{n_{1} n_{2}\left(\bar{x}_{1}-\bar{x}_{2}\right)^{2}}{\left(n_{1}+n_{2}\right)^{2}}} \\
& =\sqrt{\frac{60 \times(8)^{2}+80 \times(7)^{2}}{60+80}+\frac{60 \times 80(650-660)^{2}}{(60+80)^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\frac{6 \times 64+8 \times 49}{14}+\frac{60 \times 80 \times 100}{140 \times 140}} \\
& =\sqrt{\frac{192+196}{7}+\frac{1200}{49}}=\sqrt{\frac{388}{7}+\frac{1200}{49}} \\
& =\sqrt{\frac{2716+1200}{49}}=\sqrt{\frac{3915}{49}}=\sqrt{79.9}=8.9
\end{aligned}
$$

Q13. Mean and standard deviation of 100 items are 50 and 4, respectively. Then find the sum of all the item and the sum of the squares of the items.

Sol. Here, $\bar{x}=50, n=100$ and $\sigma=4$

$$
\begin{array}{ll}
\therefore & \frac{\Sigma x_{i}}{100}=50 \\
\Rightarrow & \Sigma x_{i}=5000 \\
\text { and } & \sigma^{2}=\frac{\Sigma f_{i} x_{i}^{2}}{\Sigma f_{i}}-\left(\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}\right)^{2} \\
\Rightarrow & (4)^{2}=\frac{\Sigma f_{i} x_{i}^{2}}{100}-(50)^{2} \\
\Rightarrow & 16=\frac{\Sigma f_{i} x_{i}^{2}}{100}-2500 \\
\Rightarrow & \frac{\Sigma f_{i} x_{i}^{2}}{100}=16+2500=2516 \\
\therefore & \Sigma f_{i} x_{i}^{2}=251600
\end{array}
$$

Q14. If for a distribution $\Sigma(x-5)=3, \Sigma(x-5)^{2}=43$ and the total number of item is 18 , find the mean and standard deviation.
Sol: Given, $n=18, \Sigma(x-5)=3$ and $\Sigma(x-5)^{2}=43$
$\therefore \quad$ Mean $=A+\frac{\Sigma(x-5)}{18}=5+\frac{3}{18}=5+0.1666=5.1666=5.17$
and

$$
\begin{aligned}
\mathrm{SD} & =\sqrt{\frac{\Sigma(x-5)^{2}}{n}-\left(\frac{\Sigma(x-5)}{n}\right)^{2}}=\sqrt{\frac{43}{18}-\left(\frac{3}{18}\right)^{2}} \\
& =\sqrt{2.3889-(0.166)^{2}}=\sqrt{2.3889-0.0277}=1.53
\end{aligned}
$$

Q15. Find the mean and variance of the frequency distribution given below:

\boldsymbol{x}	$1 \leq x<3$	$3 \leq x<5$	$5 \leq x<7$	$7 \leq x<10$
\boldsymbol{f}	6	4	5	1

Sol.

\boldsymbol{x}	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}{ }^{2}$
$1-3$	6	2	12	24
$3-5$	4	4	16	64
$5-7$	5	6	30	180
$7-10$	1	8.5	8.5	72.25
Total	$n=16$		$\Sigma f_{i} x_{i}=66.5$	$\Sigma f_{i} x_{i}^{2}=340.25$

$\therefore \quad$ Mean $=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{66.5}{16}=4.13$
And

$$
\text { variance }=\sigma^{2}=\frac{\Sigma f_{i} x_{i}^{2}}{\Sigma f_{i}}-\left(\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}\right)^{2}=\frac{340.25}{16}-(4.13)^{2}
$$

$$
=21.2656-17.0569=4.21
$$

Long Answer Type Questions
Q16. Calculate the mean deviation about the mean for the following frequency distribution:

Class interval	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$
Frequency	4	6	8	5	2

Sol.

Class interval	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{r}} \boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}=\left\|\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{x}}\right\|$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{d}_{\boldsymbol{i}}$
$0-4$	4	2	8	7.2	28.8
$4-8$	6	6	36	3.2	19.2
$8-12$	8	10	80	0.8	6.4
$12-16$	5	14	70	4.8	24.0
$16-20$	2	18	36	8.8	17.6
Total	$\Sigma f_{i}=25$		$\Sigma f_{i} x_{i}=230$		$\Sigma f_{i} d_{i}=96$

$\therefore \quad$ Mean, $\bar{x}=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{230}{25}=9.2$
And \quad Mean deviation $=\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}=\frac{96}{25}=3.84$

Q17. Calculate the mean deviation from the median of the following data

Class interval	$0-6$	$6-12$	$12-18$	$18-24$	$24-30$
Frequency	4	5	3	6	2

Sol.

Class interval	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{c f}$	$\boldsymbol{d}_{\boldsymbol{i}}=\left\|\boldsymbol{x}_{\boldsymbol{i}}-\bar{m}_{\boldsymbol{d}}\right\|$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{d}_{\boldsymbol{i}}$
$0-6$	4	3	4	11	44
$6-12$	5	9	9	5	25
$12-18$	3	15	12	1	3
$18-24$	6	21	18	7	42
$24-30$	2	27	20	13	26
Total	$N=20$		$\Sigma f_{f} x_{i}=230$		$\Sigma f_{i} d_{i}=140$

$$
\because \quad \frac{N}{2}=\frac{20}{2}=10
$$

So, the median class is $12-18$

$$
\begin{aligned}
\therefore \quad & \text { Median }=l+\frac{\frac{N}{2}-C}{f} \times h=12+\frac{10-9}{3} \times 6=12+\frac{6}{3}(10-9)=14 \\
& \mathrm{MD}=\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}=\frac{140}{20}=7
\end{aligned}
$$

Q18. Determine the mean and standard deviation for the following distribution:

Marks	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Frequency	1	6	6	8	8	2	2	3	0	2	1	0	0	0	1

Sol.

Marks	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{x}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{d}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{d}_{\boldsymbol{i}}^{2}$
2	1	2	-4	-4	16
3	6	18	-3	-18	54
4	6	24	-2	-12	24
5	8	40	-1	-8	8
6	8	48	0	0	0
7	2	14	1	2	2
8	2	16	2	4	8
9	3	27	3	9	27
10	0	0	4	0	0
11	2	22	5	10	50
12	1	12	6	6	36
13	0	0	7	0	0
14	0	0	8	0	0
15	0	0	9	0	0
16	1	16	10	10	100
Total	$\Sigma f_{i}=40$	$\Sigma f_{i} x_{i}=239$		$\Sigma f_{i} d_{i}=-1$	$\Sigma f_{i} x_{i}^{2}=325$

$\therefore \quad$ Mean $\bar{x}=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{239}{40}=5.975 \approx 6$
and $\quad \sigma=\sqrt{\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}-\left(\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}\right)^{2}}=\sqrt{\frac{325}{40}-\left(\frac{-1}{40}\right)^{2}}$

$$
=\sqrt{8.125-0.000625}=\sqrt{8.124375}=2.85
$$

Q19. The weights of coffee in 70 jars are shown in the following table:

Weight (in grams)	Frequency
$200-201$	13
$201-202$	27
$202-203$	18
$203-204$	10
$204-205$	1
$205-206$	1

Determine variance and standard deviation of the above distribution.

Sol.

Class interval	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{x}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{d}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{d}_{\boldsymbol{i}}^{2}$
$200-201$	13	200.5	-2	-26	52
$201-202$	27	201.5	-1	-27	27
$202-203$	18	202.5	0	0	0
$203-204$	10	203.5	1	10	10
$204-205$	1	204.5	2	2	4
$205-206$	1	205.5	3	3	9
Total	$\Sigma f_{i}=70$			$\Sigma f_{i} d_{i}=-38$	$\Sigma f_{i} d_{i}^{2}=102$

$$
\begin{array}{ll}
\therefore & \sigma^{2}=\frac{\Sigma f_{i} d_{i}^{2}}{\Sigma f_{i}}-\left(\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}\right)^{2}=\frac{102}{70}-\left(\frac{-38}{70}\right)^{2}=1.4571-0.2916=1.1655 \\
\therefore & \sigma=\sqrt{1.1655}=1.08 \mathrm{~g}
\end{array}
$$

Q20. Determine mean and standard deviation of first n terms of an A.P. whose first term is a and common difference is d .
Sol.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{a}$	$\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{a}\right)^{\mathbf{2}}$
a	0	0
$a+d$	d	d^{2}
$a+2 d$	$2 d$	$4 d^{2}$

\ldots	\ldots	$\bullet 9 d^{2}$
\ldots	\ldots	\ldots
\ldots	\ldots	\ldots
$\Sigma x_{i}=\frac{n}{2}[2 a+(n-1) \mathrm{d}]$		$(n-1)^{2} d^{2} d$

$\because \quad$ Mean $=\frac{\Sigma x_{i}}{n}=\frac{1}{n}\left[\frac{n}{2}(2 a+(n-1) d]=a+\frac{(n-1)}{2} d\right.$
$\therefore \quad \Sigma\left(x_{i}-a\right)=d[1+2+3+\ldots+(n-1) d]=d \frac{(n-1) n}{2}$
and $\quad \Sigma\left(x_{i}-a\right)^{2}=d^{2} \cdot\left[1^{2}+2^{2}+3^{2}+\ldots+(n-1)^{2}\right]=\frac{d^{2} n(n-1)(2 n-1)}{6}$

$$
\begin{aligned}
\sigma & =\sqrt{\frac{\left(x_{i}-a\right)^{2}}{n}-\left(\frac{x_{i}-a}{n}\right)^{2}} \\
& =\sqrt{\frac{d^{2} n(n-1)(2 n-1)}{6 n}-\left[\frac{d(n-1) n}{2 n}\right]^{2}}=\sqrt{\frac{d^{2}(n-1)(2 n-1)}{6}-\frac{d^{2}(n-1)^{2}}{4}} \\
& =d \sqrt{\frac{(n-1)}{2}\left(\frac{2 n-1}{3}-\frac{n-1}{2}\right)}=d \sqrt{\frac{(n-1)}{2}\left[\frac{4 n-2-3 n+3}{6}\right]} \\
& =d \sqrt{\frac{(n-1)(n+1)}{12}}=d \sqrt{\frac{n^{2}-1}{12}}
\end{aligned}
$$

Q21. Following are the marks obtained, out of 100, by two students Ravi and Hashinain 10 tests.

| Ravi | 25 | 50 | 45 | 30 | 70 | 42 | 36 | 48 | 35 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Hashina	10	70	50	20	95	55	42	60	48	80

Who is more intelligent and who is more consistent?
Sol. For Ravi,

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{4 5}$	$\boldsymbol{d}_{\boldsymbol{i}}^{2}$
25	-20	400
50	5	25
45	0	0
30	-15	225
70	25	625
42	-3	9
36	-9	81

48	3	9
35	-10	100
60	15	225
Total	$\Sigma d_{i}=-9$	$\Sigma d^{2} i=1699$

$$
\begin{aligned}
\sigma & =\sqrt{\frac{\Sigma d_{i}^{2}}{n}-\left(\frac{\Sigma d_{i}}{n}\right)^{2}}=\sqrt{\frac{1699}{10}-\left(\frac{-9}{10}\right)^{2}} \\
& =\sqrt{169.9-0.81}=\sqrt{169.09}=13.003
\end{aligned}
$$

Now,

$$
\bar{x}=A+\frac{\Sigma d_{i}}{\Sigma f_{i}}=45-\frac{14}{10}=43.6
$$

For Hashina,

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{5 5}$	$\boldsymbol{d}_{\boldsymbol{i}}^{2}$
10	-45	2025
70	15	225
50	-5	25
20	-35	1225
95	40	1600
55	0	0
42	-13	169
60	5	25
48	-7	49
80	25	625
Total	$\Sigma d_{i}=-20$	$\Sigma d^{2} i=5968$

$\therefore \quad \sigma=\sqrt{\frac{5968}{10}-\left(\frac{-20}{10}\right)^{2}}=\sqrt{596.8-4}=\sqrt{592.8}=24.46$
For Ravi, $\mathrm{CV}=\frac{\sigma}{\bar{x}} \times 100=\frac{13.003}{43.6} \times 100=29.82$
For Hashina, $\mathrm{CV}=\frac{\sigma}{\bar{x}} \times 100=\frac{24.46}{55} \times 100=44.47$
Hence, Hashina is more consistent and intelligent.

Q22. Mean and standard deviation of 100 observations were found to be 40 and
10 ,respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.

Sol. Given, $n=100, \bar{x}=40$ and $\sigma=10$

$$
\begin{array}{ll}
\therefore & \frac{\Sigma x_{i}}{n}=40 \\
\Rightarrow & \frac{\Sigma x_{i}}{100}=40
\end{array}
$$

$$
\Rightarrow \quad \Sigma x_{i}=4000
$$

Now, Corrected $\Sigma x_{i}=4000-30-70+3+27=3930$

$$
\text { Corrected mean }=\frac{2930}{100}=39.3
$$

Now, $\quad \sigma^{2}=\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2}=\frac{\Sigma x_{i}^{2}}{n}-(40)^{2}$

$$
\Rightarrow \quad 100=\frac{\Sigma x_{i}^{2}}{100}-1600
$$

$$
\Rightarrow \quad \Sigma x_{i}^{2}=170000
$$

Now, Corrected $\Sigma x_{i}^{2}=170000-(30)^{2}-(70)^{2}+3^{2}+(27)^{2}=164938$

$$
\begin{aligned}
\therefore \quad \text { Corrected } \sigma=\sqrt{\frac{164938}{100}-(39.3)^{2}}=\sqrt{1649.38-1544.49} & =\sqrt{104.9} \\
& =10.24
\end{aligned}
$$

Q23. While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25 . He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.
Sol. Given $n=10, \bar{x}=45$ and $\sigma^{2}=16$

$$
\begin{array}{ll}
& \bar{x}=45 \Rightarrow \frac{\Sigma x_{i}}{n}=45 \\
\Rightarrow & \frac{\Sigma x_{i}}{10}=45 \Rightarrow \Sigma x_{i}=450 \\
& \text { Corrected } \Sigma x_{i}=450-52+25=423 \\
\therefore & \text { Corrected mean, } \bar{x}=\frac{423}{10}=42.3 \\
\Rightarrow \quad & \sigma^{2}=\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2} \\
\Rightarrow \quad & 16=\frac{\Sigma x_{i}^{2}}{10}-(45)^{2} \\
\Rightarrow \quad & \Sigma x_{i}^{2}=20410 \\
\therefore \quad & \text { Corrected } \Sigma x_{i}^{2}=20410-(53)^{2}+(25)^{2}=18331 \\
\text { And } \quad & \text { Corrected } \sigma^{2}=\frac{18331}{10}-(42.3)^{2}=43.81
\end{array}
$$

Objective Type Questions
Q24. The mean deviation of the data 3,10, 10,4, 7, 10, 5 from the mean is (a) 2 (b) 2.57 (c) 3
(d) 3.75

Sol: (b) Given, observations are 3, 10, 10, 4, 7, 10 and 5.

$$
\therefore \quad \bar{x}=\frac{3+10+10+4+7+10+5}{7}=\frac{49}{7}=7
$$

$\boldsymbol{x}_{\mathbf{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}=\left\|x_{i}-\overline{\boldsymbol{x}}\right\|$
3	4
10	3
10	3
4	3
7	0
10	3
5	2
Total	$\Sigma d_{i}=18$

Now, MD $=\frac{\Sigma d_{i}}{N}=\frac{18}{7}=2.57$
25. Mean deviation for n observations $x_{1}, x_{2}, \ldots, x_{n}$ from their mean \bar{x} is given by
(a) $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)$
(b) $\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-\bar{x}\right|$
(c) $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
(d) $\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$

Sol. (b) $\mathrm{MD}=\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-\bar{x}\right|$

Q26. When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623 The mean deviations (in hours) from their mean is (a) 178 (b) 179 (c) 220 (d) 356
Sol. (a) Since, the lives of 5 bulbs are 1357, 1090, 1666, 1494 and 1623

$$
\therefore \quad \text { Mean }=\frac{1357+1090+1666+1494+1623}{5}=\frac{7230}{5}=1446
$$

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}=\left\|\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{x}}\right\|$
1357	89
1090	356
1666	220
1494	48
1623	177
Total	$\Sigma d_{i}=890$

$$
\mathrm{MD}=\frac{\Sigma d_{i}}{N}=\frac{890}{5}=178
$$

Q27. Following are the marks obtained by 9 students in a mathematics test: $50,69,20,33,53,39,40,65,59$ The mean deviation from the median is:
(a) 9 (b) 10.5 (c) 12.67 (d) 14.76

Sol: (c) Since, marks obtained by 9 students in Mathematics are 50,69,20,33,53, 39,40, 65 and 59.

Rewrite the given data in ascending order
20, 33, 39,40, 50, 53, 59, 65, 69,
Here, n = 9 [odd]
$\therefore \quad$ Median $=5^{\text {th }}$ term

$M_{e}=50$	
x_{i}	$\boldsymbol{d}_{\boldsymbol{i}}=\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{M}_{\boldsymbol{e}}\right\|$
20	30
33	17
39	11
40	10
50	0
53	3
59	9
65	15
69	19
$N=2$	$\Sigma d_{i}=114$

$\therefore \quad \mathrm{MD}=\frac{114}{9}=12.67$
28. The standard deviation of the data $6,5,9,13,12,8,10$ is
(a) $\sqrt{\frac{52}{7}}$
(b) $\frac{52}{7}$
(c) $\sqrt{6}$
(d) 6

Sol. (a) Given, data are 6,5,9,13, 12, 8, and 10

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}^{2}$
6	36
5	25
9	81
13	169
12	144
8	64
10	100
$\Sigma x_{i}=63$	$\Sigma x_{i}^{2}=619$

$$
\begin{aligned}
\therefore \quad \mathrm{SD} & =\sigma=\sqrt{\frac{\Sigma x_{i}^{2}}{N}-\left(\frac{\Sigma x_{i}}{N}\right)^{2}}=\sqrt{\frac{619}{7}-\left(\frac{63}{7}\right)^{2}} \\
& =\sqrt{\frac{7 \times 619-3969}{49}}=\sqrt{\frac{4333-396}{49}}=\sqrt{\frac{396}{49}}=\sqrt{\frac{52}{7}}
\end{aligned}
$$

29. Let $x_{1}, x_{2}, \ldots, x_{n}$ be n observations and x be their arithmetic mean. The formula for the standard deviation is given by
(a) $\Sigma\left(x_{i}-\bar{x}\right)^{2}$
(b) $\frac{\Sigma\left(x_{i}-\bar{x}\right)^{2}}{n}$
(c) $\sqrt{\frac{\Sigma\left(x_{i}-\bar{x}\right)^{2}}{n}}$
(d) $\sqrt{\frac{\Sigma x_{i}^{2}}{n}+\bar{x}^{2}}$

Sol. (c) SD is given by $\sigma=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}}$

Q30. The mean of 100 observations is 50 and their standard deviation is 5 . The sum of all squares of all the observations is
(a) 50000
(b) 250000
(c) 252500
(d) 255000

Sol. (c) Given, $\bar{x}=50, n=100$ and $\sigma=5$

$$
\begin{array}{ll}
\Rightarrow & 50=\frac{\Sigma x_{i}}{100} \\
\Rightarrow & \Sigma x_{i}=50 \times 100=5000 \\
\text { Now, } & \sigma^{2}=\frac{\Sigma x_{i}^{2}}{n}-(\bar{x})^{2} \\
\Rightarrow & 25=\frac{\Sigma x_{i}^{2}}{100}-(50)^{2} \\
\Rightarrow & 2525=\frac{\Sigma x_{i}^{2}}{100} \\
\therefore & \Sigma x_{i}^{2}=252500
\end{array}
$$

Q31. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$ be the observations with mean m and standard deviation V . The standard deviation of the observations $a+k, b+k, c+k, d+k, e+k$ is
(a) s
(b) $k s$
(c) $s+k$
(d) $\frac{s}{k}$

Sol. (a) Given observations are a, b, c, d and e.

$$
\begin{aligned}
& \text { Mean }=m=\frac{a+b+c+d+e}{5} \\
& \begin{aligned}
\Sigma x_{i} & =a+b+c+d+e=5 \mathrm{~m} \\
\text { Now, mean } & =\frac{a+k+b+k+c+k+d+k+e+k}{5} \\
& =\frac{(a+b+c+d+e)+5 k}{5}=m+k \\
\therefore \quad \text { SD } & =\sqrt{\frac{\Sigma\left(x_{i}^{2}+k^{2}+2 k x_{i}\right)}{n}-\left(m^{2}+k^{2}+2 m k\right)} \\
& =\sqrt{\frac{\Sigma x_{i}^{2}}{n}-m^{2}+\frac{2 k \Sigma x_{i}}{n}-2 m k} \\
& =\sqrt{\frac{\Sigma x_{i}^{2}}{n}-m^{2}+2 k m-2 m k} \quad\left[\because \frac{\Sigma x_{i}}{n}=m\right] \\
& =\sqrt{\frac{\Sigma x_{i}^{2}}{n}-m^{2}} \\
& =s
\end{aligned}
\end{aligned}
$$

32. Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ be the observations with mean m and standard deviation s. The standard deviation of the observations $k x_{1}, k x_{2}, k x_{3}, k x_{4}, k x_{5}$ is
(a) $k+s$
(b) $\frac{s}{k}$
(c) $k s$
(d) s

Sol. (c) Here, $m=\frac{\Sigma x_{i}}{5}, s=\sqrt{\frac{\Sigma x_{i}^{2}}{5}-\left(\frac{\Sigma x_{i}}{5}\right)^{2}}$
So, for observations $k x_{1}, k x_{2}, k x_{3}, k x_{4}, k x_{5}$

$$
\begin{aligned}
\therefore \quad \mathrm{SD} & =\sqrt{\frac{k^{2} \Sigma x_{i}^{2}}{5}-\left(\frac{k \Sigma x_{i}}{5}\right)^{2}}=\sqrt{\frac{k^{2} \Sigma x_{i}^{2}}{5}-k^{2}\left(\frac{\Sigma x_{i}}{5}\right)^{2}} \\
& =k \sqrt{\left(\frac{\Sigma x_{i}^{2}}{5}\right)-\left(\frac{\Sigma x_{i}}{5}\right)^{2}}=k s
\end{aligned}
$$

33. Let $x_{1}, x_{2}, \ldots, x_{n}$ be n observations. Let $w_{i}=l x_{\mathrm{i}}+k$ for $i=1,2, \ldots n$, where l and k are constants. If the mean of x_{i} 's is 48 and their standard deviation is 12 ,the mean of w_{i} 's is 55 and standard deviation of w_{i} 's is 15 , the values of l and k should be
(a) $l=1.25, k=-5$
(b). $l=-1.25, k=5$
(c) $l=2.5, k=-5$
(d) $l=2.5, k=5$

Sol. (a) Given, $w_{i}=l x_{\mathrm{i}}+k, \bar{x}_{i}=48, s x_{i}=12, w_{i}=55$ and $s w_{i}=15$
Then, $\bar{w}_{i}=l \bar{x}_{i}+k$
[where \bar{w}_{i} is mean w_{i} 's and \bar{x}_{i} is mean of x_{i} 's]
$\Rightarrow \quad 55=l \times 48+k$
Now, SD of $w_{i}=l\left(\mathrm{SD}\right.$ of $\left.x_{\mathrm{i}}\right)$
$\Rightarrow \quad 15=l \times 12$
$\Rightarrow \quad l=\frac{15}{12}=12.5$
From Eq. (i), we get $k=55-1.25 \times 48=-5$

Q34. Standard deviations for first 10 natural numbers is
(a) 5.5 (b)
(b) 3.87 (c) 2.97
(d) 2.87

Sol. (d) We know that, SD of first n natural number $=\sqrt{\frac{n^{2}-1}{12}}$

$$
\therefore \quad \text { SD of first } 10 \text { numbers }=\sqrt{\frac{10^{2}-1}{12}}=\sqrt{\frac{100-1}{12}}=\sqrt{\frac{99}{12}}=\sqrt{8.25}=2.87
$$

Q35. Consider the numbers $1,2,3,4,5,6,7,8,9,10$. If 1 is added to each number, the variance of the numbers so obtained is
(a) 6.5 (b) 2.87 (c) 3.87 (d) 8.25

Sol: (d) Given numbers are $1,2,3,4,5,6,7,8,9$ and 10
If 1 is added to each number, then observations will be $2,3,4,5,6,7,8,9,10$ and 11 .

$$
\begin{aligned}
\therefore \quad \Sigma x_{i} & =2+3+4+\ldots+11 \\
& =\frac{10}{2}[2 \times 2+9 \times 1]=5[4+9]=65
\end{aligned}
$$

and $\Sigma x_{i}^{2}=2^{2}+3^{2}+4^{2}+5^{2}+\ldots+11^{2}=\left(1^{2}+2^{2}+3^{2}+\ldots+11^{2}\right)-\left(1^{2}\right)$

$$
=\frac{11 \times 12 \times 23}{6}-1=505
$$

$\therefore \quad s^{2}=\frac{\Sigma x_{i}^{2}}{m}-\left(\frac{\Sigma x_{i}}{u}\right)^{2}=\frac{505}{10}-\left(\frac{65}{1 n}\right)^{2}=50.5-(6.5)^{2}=50.5-42.35=8.25$

Q36. Consider the first 10 positive integers. If we multiply each number by -1 and then add 1 to each number, the variance of the numbers so obtained is (a) 8.25 (b) 6.5 (c) 3.87 (d) 2.87 Sol: (a) Since, the first 10 positive integers are $1,2,3,4,5,6,7,8,9$ and 10.
On multiplying each number by -1 , we get
$-1,-2,-3,-4,-5,-6,-7,-8,-9,-10$ On adding 1 in each number, we get
$0,-1,-2,-3,-4,-5,-6,-7,-8,-9$

$$
\therefore \quad \Sigma x_{i}=-\frac{9 \times 10}{2}=-45
$$

and

$$
\Sigma x_{i}^{2}=0^{2}+(-1)^{2}+(-2)^{2}+\cdots+(9)^{2}=\frac{9 \times 10 \times 19}{6}=285
$$

$$
\therefore \quad \mathrm{SD}=\sqrt{\frac{285}{10}-\left(\frac{-45}{10}\right)^{2}}=\sqrt{\frac{285}{10}-\frac{2025}{100}}=\sqrt{\frac{2850-2025}{100}}=\sqrt{8.25}
$$

Now, variance $=(\mathrm{SD})^{2}=\left({\sqrt{8.25})^{2}}^{2}=8.25\right.$
37. The following information relates to a sample of size 60: $\Sigma x^{2}=18000$, $\Sigma x=960$. The variance is
(a) 6.63
(b) 16
(c) 22
(d) 44

Sol. (d) Variance $=\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2}=\frac{18000}{60}-\left(\frac{960}{60}\right)^{2}=300-256=44$

Q38. Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is
(a) 0 (b) 1 (c) 1.5 (d) 2.5

Sol. (a) Here $\mathrm{CV}_{1}=50, \mathrm{CV}_{2}=60, \bar{x}_{1}=30$ and $\bar{x}_{2}=25$

$$
\begin{array}{ll}
\therefore & \mathrm{CV}_{1}=\frac{\sigma_{1}}{\bar{x}_{1}} \times 100 \Rightarrow 50=\frac{\sigma_{1}}{30} \times 100 \\
\therefore & \sigma_{1}=\frac{30 \times 50}{100}=15 \\
\text { and } & \mathrm{CV}_{2}=\frac{\sigma_{2}}{\bar{x}_{2}} \times 100 \\
\Rightarrow & 60=\frac{\sigma_{2}}{25} \times 100 \\
\therefore & \sigma_{2}=\frac{60 \times 25}{100}=15
\end{array}
$$

Now, $\sigma_{1}-\sigma_{2}=15-15=0$

Q39. The standard deviation of some temperature data in ${ }^{\circ} \mathrm{C}$ is 5 . If the data were converted into ${ }^{\circ} \mathrm{F}$, the variance would be
(a) 81 (b) 57 (c) 36 (d) 25

Sol. (A) Given, $\sigma_{C}=5$
Now $F=\frac{9 C}{5}+32$

$$
\therefore \quad \sigma_{F}=\frac{9}{5} \sigma_{C}=\frac{9}{5} \times 5=9
$$

Here, $\sigma_{F}^{2}=(9)^{2}=81$

Fill in the Blanks
40. Coefficient of variation $=\frac{\cdots}{\text { Mean }} \times 100$

Sol. $\mathrm{CV}=\frac{\mathrm{SD}}{\text { Meam }} \times 100$
41. If x is the mean of n values of x, then $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)$ is always equal to \qquad .

If a has any value other than \bar{x}, then $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ is \qquad than $\Sigma\left(x_{i}-a\right)^{2}$.

Sol. If \bar{x} is the mean of n values of x, then $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$ and if a has any value other than \bar{x}, then $\sum_{i=1}^{n}\left(x_{i}-x\right)^{2}$ is less than $\Sigma\left(x_{i}-a\right)^{2}$.
42. If the variance of a data is 121 , then the standard deviation of the data is
\qquad _.
Sol. If the variance of a data is 121 , then $S D=\sqrt{\text { Variance }}=\sqrt{121}=11$

Q43. The standard deviation of a data is \qquad of any change in origin, but is \qquad on the change of scale.
Sol: The standard deviation of a data is independent of any change in origin but is dependent of charge of scale.
Q44. The sum of the squares of the deviations of the values of the variable is \qquad when taken about their arithmetic mean.
Sol: The sum of the squares of the deviations of the values of the variable is minimum when taken about their arithmetic mean.
Q45. The mean deviation of the data is \qquad when measured from the median.
Sol: The mean deviation of the data is least when measured from the median.
Q46. The standard deviation is \qquad to the mean deviation taken from the arithmetic mean.
Sol: The standard deviation is greater than or equal to the mean deviation taken from the arithmetic mean.

