Chapter 14. Statistics

Question-1

Find the mean deviation from the mean for the following data:
$4,7,8,9,10,12,13,17$
Solution:
$\bar{x}=\frac{\Sigma x_{i}}{n}=\frac{80}{8}=10$
$\sum_{i=1}^{8}\left|x_{1}-\bar{x}\right|=6+3+2+1+0+2+3+7=24$
M.D. $(\bar{x})=24 / 8=3$

Question-2

Find the mean deviation from the mean for the following data:
$6.5,5,5.25,5.5,4.75,4.5,6.25,7.75,8.5$

Solution:

$\bar{x}=\frac{\Sigma x_{i}}{n}=\frac{54}{9}=6$
$\sum_{i=1}^{8}\left|x_{1}-\bar{x}\right|=0.5+1+0.75+0.5+1.25+1.5+0.25+1.75+2.5=10$
M.D. $(\overline{\mathrm{x}})=10 / 9=1.1$

Question-3

Find the mean deviation from the mean for the following data: $38,70,48,40,42,55,63,46,54,44$

Solution:

$$
\begin{aligned}
& \bar{x}=\frac{\sum x_{i}}{n}=\frac{500}{10}=50 \\
& \sum_{i=1}^{8}\left|x_{1}-\bar{x}\right|=12+20+2+10+8+5+13+4+4+6=84 \\
& \text { M.D. }(\bar{x})=84 / 10=8.4
\end{aligned}
$$

Question-4

Find the mean deviation from the mean for the following data:
$13,17,16,14,11,13,10,16,11,18,12,17$

Solution:

$\bar{x}=\frac{\sum x_{i}}{n}=\frac{168}{12}=14$
$\sum_{i=1}^{8}\left|x_{1}-\bar{x}\right|=1+3+2+0+3+1+4+2+3+4+2+3=28$
M.D. $(\overline{\mathrm{x}})=28 / 12=2.33$

Question-5

Find the mean deviation from the mean for the following data:
$36,72,46,42,60,45,53,46,51,49$

Solution:

$\bar{x}=\frac{\Sigma x_{i}}{n}=\frac{500}{10}=50$
$\sum_{i-1}^{8}\left|x_{1}-\bar{x}\right|=14+22+4+8+10+5+3+4+1+1=72$
M.D. $(\overline{\mathrm{x}})=72 / 10=7.2$

Question-12
Find the mean deviation from the median for the following data: $34,66,30,38,44,50,40,60,42,51$

Solution:

No of observations $\mathrm{n}=10$
Arrangement in ascending order are as follows:
$30,34,38,40,42,44,50,51,60,66$.
Median is 5 th and 6 th term i.e 42 and 44 .

Therefore the median is $(42+44) / 2=43$
$\sum \mid \mathrm{x}_{\mathrm{i}}-$ Median $\mid=13+9+5+3+1+1+7+8+17+23$
Hence M.D (Median) $=\mid \mathrm{X}_{\mathrm{i}}-$ Median $\mid / \mathrm{n}=87 / 10=8.7$

Question-13

Find the mean deviation from the median for the following data:
22, 24, 30, 27, 29, 31, 25, 28, 41, 42

Solution:

No of observations n = 10
Arrangement in ascending order are as follows:
$22,24,25,27,28,29,30,31,41,42$
Median is 5 th and 6th term i.e 28 and 29.

Therefore the median is $(28+29) / 2=28.5$
$\sum \mid \mathrm{x}_{\mathrm{i}}-$ Median $\mid=6.5+4.5+3.5+1.5+0.5+0.5+1.5+2.5+12.5+13.5$
Hence M.D (Median) $=\mid x_{i}-$ Median $\mid / n=47 / 10=4.7$

Question-14

Find the mean deviation from the median for the following data:
$38,70,48,34,63,42,55,44,53,47$

Solution:

No of observations $\mathrm{n}=10$
Arrangement in ascending order are as follows:
$34,38,42,44,47,48,55,53,63,70$,
Median is 5th and 6th term i.e 47 and 48.

Therefore the median is $(47+48) / 2=47.5$
$\sum \mid x_{i}-$ Median $\mid=13.5+9.5+5.5+3.5+0.5+0.5+7.5+5.5+15.5+22.5$
Hence M.D (Median) $=\mid x_{i}-$ Median| $/ n=84 / 10=8.4$

Question-17

Find the arithmetic mean of the series $1,2,2^{2}, \ldots \ldots ., 2^{n-1}$.

Solution:
$\sum_{x}=1+2+2^{2}+\ldots \ldots \ldots+2^{n-1}$
Sum are in G.P

$$
\therefore \sum x=\frac{1\left(2^{n}-1\right)}{2-1}=2^{n}-1
$$

$A \cdot M=\sum \times / n=\left(2^{n}-1\right) / n$

Question-19

Find the mean and variance for the following data:
$6,7,10,12,13,4,8,12$

Solution:

$\bar{x}=\frac{\sum x_{i}}{n}=\frac{6+7+10+12+13+4+8+12}{8}=\frac{72}{8}=9$.
The respective $\left(x_{i}-\bar{x}\right)^{2}$ are $3^{2}, 2^{2}, 1^{2}, 3^{2}, 4^{2}, 5^{2}, 1^{2}, 3^{2}$.
$\sum\left(x_{i}-\bar{x}\right)^{2}=9+4+1+9+16+25+1+9=74$
Hence variance $\left(\sigma^{2}\right)=74 / 8=9.25$

Question-20

Find the mean and variance for the following data:
2, 4, 5, 6, 8, 17

Solution:
$\bar{x}=\frac{\sum x_{i}}{n}=\frac{2+4+5+6+8+17}{6}=\frac{42}{6}=7$.
The respective $\left(x_{i}-\bar{x}\right)^{2}$ are $5^{2}, 3^{2}, 2^{2}, 1^{2}, 1^{2}, 10^{2}$.
$\sum\left(x_{i}-\bar{x}\right)^{2}=25+9+4+1+1+100=140$
Hence variance $\left(\sigma^{2}\right)=140 / 6=23.33$

Question-21

Find the mean for the following data:
First \boldsymbol{n} natural numbers

Solution:

$$
\bar{x}=\frac{\sum x_{i}}{n}=\frac{1+2+3 \ldots \ldots \ldots+n}{n}=\frac{\frac{n(n+1)}{2}}{n}=\frac{n+1}{2}
$$

Question-28

[Hint: First make the data continuous by making the classes as $32.5-36.5$, 36.5-40.5,40.5-44.5,44.5-48.5, 48.5-52.5 and the proceed]

Solution:

Classes	x_{i}	$\mathrm{y}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-42.5\right) / 4$	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$	$\mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}$
$32.5-36.5$	34.5	-2	15	-30	60
$36.5-40.5$	38.5	-1	17	-17	17
$40.5-44.5$	42.5	0	21	0	0
$44.5-48.5$	46.5	1	22	22	22
$48.5-52.5$	50.5	2	25	50	100
Total			100	25	199

Mean diameter of the circles $=\bar{x}=\left[42.5+\frac{25}{100} \times 4\right]=43.5$
Variance $\left(\sigma^{2}\right)=\left[(4)^{2} / 100\right][199-625 / 100]=30.84$

Hence the Standard Deviation is $(\sigma)=\sqrt{30.84}=5.55$

Question-29

[Hint: Compare the variance of two groups. The group with greater variance is more variable]

Solution:

classes	x_{i}	$\mathrm{v}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-45\right) / 10$	Group A				Group B		
			f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$	$\mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}$	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$	$\mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}$	
$10-20$			9	-27	81	18	-54	162	
$20-30$	25	-2	17	-34	68	22	-44	88	
$30-40$	35	-1	32	-32	32	40	-40	40	
$40-50$	45	0	23	0	0	18	0	0	
$50-60$	55	1	40	40	40	32	32	32	
$60-70$	65	2	18	36	72	8	16	32	
$70-80$	75	3	1	3	9	2	6	18	
Total			140	-14	302	140	-84	372	

Group A
Variance $\left(\sigma^{2}\right)=\left[(10)^{2} / 140\right][302-196 / 140]=214.7$

Group B
Variance $\left(\sigma^{2}\right)=\left[(10)^{2} / 140\right][372-7056 / 140]=229.7$
The variance group B is more than group A. Therefore group B has more variable.

Question-31

The mean and variance of 8 observations are 9 and 9.25 , respectively. If six of the observations are $6,7,10,12,12$ and 13 , find the remaining two observations.

Solution:

Let the remaining two observations be x and y .
Then mean $=\frac{6+7+10+12+12+13+x+y}{8}=9$
$60+x+y=72$
$x+y=12$
Variance $=\frac{(6-9)^{2}+(7-9)^{2}+(10-9)^{2}+(12-9)^{2}+(12-9)^{2}+(13-9)^{2}+(x-9)^{2}+(y-9)^{2}}{8}=9.25$
$(-3)^{2}+(-2)^{2}+(1)^{2}+(3)^{2}+(3)^{2}+(4)^{2}+x^{2}+y^{2}-18(x+y)+2 \times 9^{2}=9.25 \times 8$
$x^{2}+y^{2}-216+210=74$
$x^{2}+y^{2}=80$
But from (i)
$x^{2}+y^{2}=144-2 x y$
$\therefore 144-2 x y=80$
$2 x y=64$
Subtracting (iv) from (ii)
$x^{2}+y^{2}-2 x y=80-64$
$(x-y)^{2}=16$
$x-y= \pm 4$
Hence solving (i) and (v)
$x=8, y=4$ and $x=4, y=8$
Therefore the remaining two observations are 4 and 8 .

Question-32

The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are $2,4,10,12,14$, find the remaining two observations.

Solution:

Let the remaining two observations be x and y.
Then mean $=\frac{2+4+10+12+14+x+y}{7}=8$
$42+x+y=56$
$x+y=14$
Variance $=\frac{(2-8)^{2}+(4-8)^{2}+(10-8)^{2}+(12-8)^{2}+(14-8)^{2}+(x-8)^{2}+(y-8)^{2}}{7}=16$
$(-6)^{2}+(-4)^{2}+(2)^{2}+(4)^{2}+(6)^{2}+x^{2}+y^{2}-16(x+y)+2 \times 8^{2}=16 \times 7$
$x^{2}+y^{2}-224+236=112$
$x^{2}+y^{2}=100$
But from (i)
$x^{2}+y^{2}=196-2 x y$
$\therefore 196-2 x y=100$
$2 x y=96$
Subtracting (iv) from (ii)
$x^{2}+y^{2}-2 x y=100-96$
$(x-y)^{2}=4$
$x-y= \pm 2$
Hence solving (i) and (v)
$x=8, y=6$ and $x=6, y=8$
Therefore the remaining two observations are 8 and 6 .

Question-33

The mean and variance of 6 observations are 8 and 4 , respectively. If each observation is multiplied by 3 , find the new mean and new standard deviation of the resulting observations.

Solution:

Let the observations be $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{20}$ and $\overline{\bar{x}}$ be their mean. Then
$8=\frac{1}{6} \sum_{i-1}^{6}\left(x_{i}-\bar{x}\right)^{2}$
or $\sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)^{2}-48$

If each observation is multiplied by 3 , the resulting observations are $3 x_{1}, 3 x_{2}, 3 x_{3}, \ldots, 3 x_{20}$.

Their new mean $\bar{x}=\frac{3\left(x_{1}+x_{2}+x_{3}+\ldots .+x_{n}\right)}{n}=3 \bar{x}=3 \times 8=24$
and new variance $\frac{1}{6} \sum_{i-1}^{6}\left(3 x_{i}-\bar{x}\right)^{2}=\frac{1}{6} \sum_{i=1}^{6}\left(3 x_{i}-3 \bar{x}\right)^{2}=\frac{3}{6} \sum_{i-1}^{6}\left(x_{i}-\bar{x}\right)^{2}=3 \times 48=144$
Therefore the new standard deviation is $\sqrt{144}=12$

Question-34

Given that \bar{x} is the mean and σ^{2} is the variance of n observations x_{1}, x_{2}, x_{3}, $\ldots . . \mathrm{x}_{\mathrm{n}}$. Prove that the mean and variance of the observations $\mathrm{ax}_{1}, \mathrm{ax}_{2}, \mathrm{ax}_{3}$, $\ldots . . a x_{n}$ are $a \bar{x}$ and $a^{2} \sigma^{2}$, respectively, $(a \neq 0)$.

Solution:

Let the observations be $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}$ and $\overline{\mathrm{x}}$ be their mean. Then $\sigma^{2}=$ $\frac{1}{n} \sum_{i=1}^{n}\left(x_{1}-\bar{x}\right)^{2}$

If each observation is multitplied by a, the resulting observations are $\mathrm{ax}_{1}, \mathrm{ax}_{2}, \mathrm{ax}_{3}, \ldots . . \mathrm{ax}_{\mathrm{n}}$
Their new mean $\bar{x}=\frac{a\left(x_{1}+x_{2}+x_{3}+\ldots .+x_{n}\right)}{n}=a \bar{x}$
And new variance $\frac{1}{n} \sum_{i=1}^{n}\left(a x_{-}-\bar{x}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}(a x-\bar{x} \bar{x})^{2}=\frac{a}{n} \sum_{i-1}^{n}\left(x_{i}-\bar{x}\right)^{2}=a \sigma^{2}$
Hence proved.

Question-35

The mean of 20 observations are found to be 10 . On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean in each of the following cases:
(i) If the wrong item is omitted.
(ii) If it is replaced by 12 .

Solution:

Let the observations be $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{20}$ and $\overline{\mathrm{x}}$ be their mean. Then $\overline{\mathrm{x}}=10$
$\left.2=\frac{1}{20} \sum_{i=1}^{20} \sum_{1}^{2}-\bar{x}\right)^{2}$ or $\sum_{i=1}^{20}\left(x_{i}-\bar{x}\right)^{2}=40$
(i) Observation 8 is omitted.

New mean $=\bar{x}=\frac{20 \times 10-8}{19}=10.11$
(ii) Observation 8 is replaced by 12 .

Difference $=12-8=4$
New mean $=\bar{x}=\frac{20 \times 10+4}{20}=10.2$

Question-36

Prove that $\left(x_{1}-\bar{x}\right)+\left(x_{2}-\bar{x}\right)+\ldots . .\left(x_{n}-\bar{x}\right)=0$ where $\bar{x}=\frac{x_{1}+x_{2}+\ldots . .+x_{n}}{n}$

Solution:

$$
\left(x_{1}-\bar{x}\right)+\left(x_{2}-\bar{x}\right)+\ldots \ldots\left(x_{n}-\bar{x}\right)=x_{1}+x_{2}+x_{3} \ldots \ldots x_{n}-n \frac{\left(x_{1}+x_{2}+x_{3}+\ldots \ldots . x_{n}\right)}{n}=0 .
$$

Question-37

Prove the identity $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}=\sum_{i=1}^{n} x^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}$.
Solution:

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =\sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i} \bar{x}+\bar{x}^{2}\right) \\
& =\sum_{i=1}^{n} x_{i}^{2}-2 \bar{x} \sum_{i=1}^{n} x_{i}+\bar{x}^{2} \\
& \quad=\sum_{i=1}^{n} x_{i}^{2}-2 \bar{x} n \bar{x}+n \bar{x}^{2}\left(\text { Since } \sum_{i=1}^{n} x_{i}=n \bar{x}\right) \\
& =\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2} \\
& =\sum_{i=1}^{n} x_{i}^{2}-n\left(\sum_{i=1}^{n} \frac{x_{i}}{n}\right)^{2} \\
& =\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}
\end{aligned}
$$

Question-38

The mean of 9 items is 15 . If one more item is added to this series, the mean becomes 16 . Find the value of the $10^{\text {th }}$ item.

Solution:

Let the value of 9 items be $x_{1}, x, x_{2} \ldots \ldots x_{9}$
$15=\frac{x_{1}+x_{2}+\ldots . . x_{9}}{9} \therefore x_{1}+x_{2}+\ldots \ldots . x_{9}=15 \times 9=135$
Let x_{10} be the $10^{\text {th }}$ item
AM of $x_{1}, x_{2}, \ldots \ldots x_{9}, x_{10}=16$
$16=\frac{x_{1}+x_{2} \ldots \ldots, x_{9}+x_{10}}{10} \therefore x_{1}+x_{2}$ $x_{9}+x_{10}=160$
$135+x_{10}=160$
$\Rightarrow \times 10-25$

Question-39
The average weight of a group of 25 items was calculated to be 78.4 kg . It was later discovered that a weight was misread as 69 kg instead of 96 kg . Calculate correct average.

Solution:
No. of items $=25$

Incorrect average $=78.4 \mathrm{~kg}$
Incorrect reading of weight of an item $=69 \mathrm{~kg}$
Correct reading of weight of an item $=96 \mathrm{~kg}$
Let the variable weight be denoted by ' x '
$\bar{x}-\frac{\sum_{n}}{n}$
Incorrect $\bar{x}-\frac{\text { Incorrect } \sum \times}{25}$
$78.4=\frac{\text { Incorrect } \sum \times}{25}$
Incorrect $\sum \times-78.4 \times 25-196 \mathrm{~kg}$
New correct $\sum \times$ - Incorrect $\sum \times$ - incorrect weight of an item + correct weight
of an item
Correct $\bar{x}-\frac{\text { correct } \sum \times}{25}-\frac{1987}{25}-79.48 \mathrm{~kg}$

Question-40

The mean of 9 items is 15 . If one more item is added to this series, the mean becomes 16 . Find the value of the 10 th item.

Solution:

Let the value of 9 items be $x_{1}, x, x_{2} \ldots \ldots x_{9}$
$15=\frac{x_{1}+x_{2}+\ldots \ldots x_{9}}{9} \therefore x_{1}+x_{2}+\ldots \ldots . x_{9}=15 \times 9=135$

Let x_{10} be the $10^{\text {th }}$ item

AM of $x_{1}, x_{2}, \ldots . . x_{9}, x_{10}=16$
$16=\frac{x_{1}+x_{2} \ldots \ldots, x_{9}+x_{10}}{10} \therefore \mathrm{X}_{1}+\mathrm{X}_{2} \ldots \ldots \ldots . . \mathrm{X}_{9}+\mathrm{X}_{10}=160$
$135+x_{10}=160$

Statistics

1. Find the mean deviation about the mean of the distribution:

Size	20	21	22	23	24
Frequency	6	4	5	1	4

2. Find the mean deviation about the median of the following distribution:

Marks obtained	10	11	12	14	15
No. of students	2	3	8	3	4

3. Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.
4. Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.
5. Find the standard deviation of the first n natural numbers.
6. The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results:
Number of observations $=25$, mean $=18.2$ seconds, standard deviation $=3.25$ seconds.
Further, another set of 15 observations $x_{1}, x_{2}, \ldots, x_{15}$ also in seconds, is now available and we have $\sum_{i=1}^{15} x_{i}=279$ and $\sum_{i=1}^{15} x_{i}^{2}=5524$. Calculate the standard derivation based on all 40 observations.
7. The mean and standard deviation of a set of n_{1} observations are \bar{x}_{1} and s_{1}. respectively while the mean and standard deviation of another set of n_{2} observations are \bar{x}_{2} and s_{3}, respectively. Show that the standard deviation of the combined set of $\left(n_{1}+n_{2}\right)$ observations is given by
S.D. $=\sqrt{\frac{n_{1}\left(s_{1}\right)^{2}+n_{2}\left(s_{2}\right)^{2}}{n_{1}+n_{2}}+\frac{n_{1} n_{2}\left(\bar{x}_{1}-\bar{x}_{2}\right)^{2}}{\left(n_{1}+n_{2}\right)^{2}}}$
8. Two sets each of 20 observations, have the same standard derivation 5 . The first set has a mean 17 and the second a mean 22 . Determine the standard deviation of the set obtained by combining the given two sets.
9. The frequency distribution:

x	A	2 A	3 A	4 A	5 A	6 A
f	2	1	1	1	1	1

where A is a positive integer, has a variance of 160 . Determine the value of A.
10. For the frequency distribution:

x	2	3	4	5	6	7
f	4	9	16	14	11	6

Find the standard distribution.
11. There are 60 students in a class. The following is the frequency distribution of the marks obtained by the students in a test:

Marks	0	1	2	3	4	5
Frequency	$x-2$	x	x^{2}	$(x+1)^{2}$	$2 x$	$x+1$

where x is a positive integer. Determine the mean and standard deviation of the marks.
12. The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.
13. Mean and standard deviation of 100 items are 50 and 4 , respectively. Find the sum of all the item and the sum of the squares of the items.
14. If for a distribution $\sum(x-5)=3, \sum(x-5)^{2}=43$ and the total number of item is 18 , find the mean and standard deviation.
15. Find the mean and variance of the frequency distribution given below:

| \boldsymbol{x} | $1 \leq x<3$ | $3 \leq x<5$ | $5 \leq x<7$ | $7 \leq x<10$ |
| :---: | :---: | :---: | ---: | :---: | :---: |
| f | 6 | 4 | 5 | 1 |

16. Calculate the mean deviation about the mean for the following frequency distribution:

Class interval	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$
Frequency	4	6	8	5	2

17. Calculate the mean deviation from the median of the following data:

Class interval	$0-6$	$6-12$	$12-18$	$18-24$	$24-30$
Frequency	4	5	3	6	2

18. Determine the mean and standard deviation for the following distribution:

Marks	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Frequency	1	6	6	8	8	2	2	3	0	2	1	0	0	0	1

19. The weights of coffee in 70 jars is shown in the following table:
Weight
(in grams) \quad Frequency

$200-201$	13
$201-202$	27
$202-203$	18
$203-204$	10
$204-205$	1
$205-206$	1

Determine variance and standard deviation of the above distribution.
20. Determine mean and standard deviation of first n terms of an A.P whose first term is a and common difference is d.
21. Following are the marks obtained, out of 100 , by two students Ravi and Hashina in 10 tests.

Ravi	25	50	45	30	70	42	36	48	35	60
Hashina	10	70	50	20	95	55	42	60	48	80

Who is more intelligent and who is more consistent?
22. Mean and standard deviation of 100 observations were found to be 40 and 10 . respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
23. While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25 . He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.

CBSE Class 11 Mathematics
 Important Questions
 Chapter 15
 Statistics

1 Marks Questions

1. In a test with a maximum marks 25, eleven students scored 3,9,5,3,12,10,17,4,7,19,21 marks respectively. Calculate the range.

Ans. The marks can be arranged in ascending order as 3,3,4,5,7,9,10,12,17,19,21.
Range $=$ maximum value - minimum value
$=21-3$
$=18$
2. Coefficient of variation of two distributions is 70 and 75, and their standard deviations are 28 and 27 respectively what are their arithmetic mean?

Ans. Given C.V (first distribution) $=70$
Standard deviation $=\sigma_{1}=28$
C.V $\frac{\sigma 1}{\bar{x} 1} \times 100$
$=70=\frac{28}{\bar{x} 1} \times 100$
$\bar{x}=\frac{28}{70} \times 100$
$\bar{x}=40$
Similarly for second distribution
C.V $=\frac{\sigma_{2}}{x_{2}} \times 100$
$75=\frac{27}{\bar{x}_{2}} \times 100$
$\bar{x}_{2}=\frac{27}{75} \times 100$
$\bar{x}_{2}=36$
3. Write the formula for mean deviation.

Ans.MD $(\bar{x})=\frac{\sum f_{i}\left|x_{i}-\bar{x}\right|}{\sum f_{i}}=\frac{1}{x} \sum f_{i}\left|x_{i}-\bar{x}\right|$
4. Write the formula for variance

Ans. Variance $\sigma^{2}=\frac{1}{n} \sum f_{i}\left(x_{i}-\bar{x}\right)^{2}$
5. Find the median for the following data.
$x_{i} 579101215$
$f_{i} 862226$
Ans.

x_{i}	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 5}$
f_{i}	8	6	2	2	2	6
$c . f$	8	14	16	18	20	26

$n=26$. Median is the average of $13^{\text {th }}$ and $14^{\text {th }}$ item, both of which lie in the c.f 14
$\therefore x_{i}=7$
\therefore median $=\frac{13 \text { observation }+14 \text { th observation }}{2}$
$=\frac{7+7}{2}=7$
6. Write the formula of mean deviation about the median

Ans. $M D .(M)=\frac{\sum f_{i}\left|x_{i} M\right|}{\sum f_{i}}=\frac{1}{n} \sum f_{i}\left|x_{i}-M\right|$
7. Find the rang of the following series $\mathbf{6 , 7 , 1 0 , 1 2 , 1 3 , 4 , 8 , 1 2}$

Ans. Range = maximum value - minimum value
$=113-4$
$=9$
8. Find the mean of the following data 3,6,11,12,18

Ans. Mean $=\frac{\text { sun of observation }}{\text { Total no of observation }}$
$=\frac{50}{5}=10$
9. Express in the form of $\mathbf{a}+\mathrm{ib}(3 \mathrm{i}-7)+(7-4 \mathrm{i})-(6+3 i)+\mathrm{i}^{23}$

Ans. Let
$\mathrm{Z}=\nexists j-7+7-4 i-6-\nexists j+\left(i^{4}\right)^{5} \cdot i^{3}$
$=-4 i-6-i\left[\begin{array}{l}\because \mathrm{i}^{4}=1 \\ \mathrm{i}^{3}=-\mathrm{i}\end{array}\right.$
$=-5 i-6$
$=-6+(-5 i)$
10. Find the conjugate of $\sqrt{-3}+4 i^{2}$

Ans. Let $\mathrm{z}=\sqrt{-3}+4 i^{2}$
$=\sqrt{3} \mathrm{i}-4$
$\bar{z}=-\sqrt{3} \mathrm{i}-4$
11. Solve for x and $y, 3 x+(2 x-y) i=6-3 i$

Ans. $3 \mathrm{x}=6$
$x=2$
$2 x-y=-3$
$2 \times 2-y=-3$
$-y=-3-4$
$y=7$
12. Find the value of $1+i^{2}+i^{4}+i^{6}+i^{8}+\ldots-i^{20}$

Ans. $1+i^{2}+\left(i^{2}\right)^{2}+\left(i^{2}\right)^{3}+\left(i^{2}\right)^{4}+----+\left(i^{2}\right)^{10}=1\left[\because \mathrm{i}^{2}=-1\right.$
13. Multiply 3-2i by its conjugate.

Ans. Let $\mathrm{z}=3-2 \mathrm{i}$

$$
\begin{aligned}
\bar{z}= & 3+2 i \\
\bar{z} \bar{z} & =(3-2 i)(3+2 i) \\
& =9+6 j^{\prime}-67-4 i^{2} \\
& =9-4(-1) \\
& =13
\end{aligned}
$$

14. Find the multiplicative inverse 4 - 3 i.

Ans. Let $\mathrm{z}=4-3 \mathrm{i}$
$\bar{z}=4+3 i$
$|z|=\sqrt{16+9}=5$
$z^{-1}=\frac{\bar{z}}{|z|^{2}}$
$=\frac{4+3 i}{25}$
$=\frac{4}{25}+\frac{3}{25} i$
15. Express in term of $\mathbf{a}+\mathbf{i b} \frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})}$

Ans. $=\frac{(3)^{2}-(i \sqrt{5})^{2}}{\sqrt{\frac{\gamma}{\gamma}}+\sqrt{2} i-\sqrt{\gamma}+i \sqrt{2}}$
$=\frac{9+5}{2 \sqrt{2} i}=\frac{147}{2 \sqrt{2} i}$
$=\frac{7}{\sqrt{2} i} \times \frac{\sqrt{2} i}{\sqrt{2} i}=\frac{7 \sqrt{2} i}{-2}$
16. Evaluate $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}$

Ans. $=i^{n}+i^{n} \cdot i^{1}+i^{n} \cdot i^{2}+i^{n} \cdot i^{3}$
$=i^{n}+i^{n} \cdot i-i^{n}+i^{n} \cdot(-i) \quad\left[\begin{array}{l}i^{3}=-i \\ i^{2}=-1\end{array}\right.$
$=0$
17. If $1, w, w^{2}$ are three cube root of unity, show that $\left(1-w+w^{2}\right)\left(1+w-w^{2}\right)=4$

Ans. $\left(1-\mathrm{w}+\mathrm{w}^{2}\right)\left(1+\mathrm{w}-\mathrm{w}^{2}\right)$
$\left(1+\mathrm{w}^{2}-\mathrm{w}\right)\left(1+\mathrm{w}-\mathrm{w}^{2}\right)$
$(-w-w)\left(-w^{2}-w^{2}\right)\left[\begin{array}{l}\because 1+w=-w^{2} \\ 1+w^{2}=-w\end{array}\right.$
$(-2 w)\left(-2 w^{2}\right)$
$4 w^{3}\left[w^{3}=1\right.$
4×1
$=4$
18. Find that sum product of the complex number $-\sqrt{3}+\sqrt{-2}$ and $2 \sqrt{3}-i$

Ans. $z_{1}+z_{2}=-\sqrt{3}+\sqrt{2} i+2 \sqrt{3}-i$
$=\sqrt{3}+(\sqrt{2}-1) i$
$z_{1} z_{2}=(-\sqrt{3}+\sqrt{2} i)(2 \sqrt{3}-i)$
$=-6+\sqrt{3} i+2 \sqrt{6} i-\sqrt{2} i^{2}$
$=-6+\sqrt{3} i+2 \sqrt{6} i+\sqrt{2}$
$=(-6+\sqrt{2})+(\sqrt{3}+2 \sqrt{6})_{i}^{i}$
19. Write the real and imaginary part $1-2 \mathbf{i}^{2}$

Ans. Let $\mathrm{z}=1-2 \mathrm{i}^{2}$
$=1-2(-1)$
$=1+2$
$=3$
$=3+0 . \mathrm{i}$
$\operatorname{Re}(z)=3, \operatorname{Im}(z)=0$
20. If two complex number z_{1}, z_{2} are such that $\left|z_{1}\right|=\left|z_{2}\right|$, is it then necessary that $z_{1}=$ Z_{2}

Ans. Let $\mathrm{z}_{1}=\mathrm{a}+\mathrm{ib}$
$\left|z_{1}\right|=\sqrt{a^{2}+b^{2}}$
$z_{2}=b+i a$
$\left|z_{2}\right|=\sqrt{b^{2}+a^{2}}$
Hence $\left|z_{1}\right|=\left|z_{2}\right|$ but $z_{1} \neq z_{2}$
21. Find the conjugate and modulus of $\overline{9-i}+\overline{6+i^{3}}-\overline{9+i^{2}}$

Ans. Let $z=\overline{9-i}+\overline{6-i}-\overline{9-1}$

$$
\begin{aligned}
& =9+i+6+i-0 \\
& =5+2 i
\end{aligned}
$$

$\bar{z}=5-2 i$
$|z|=\sqrt{(5)^{2}+(-2)^{2}}$
$=\sqrt{25+4}$
$=\sqrt{29}$
22. Find the number of non zero integral solution of the equation $|1-i|^{x}=2^{x}$

Ans. $|1-i|^{x}=2^{x}$
$\left(\sqrt{(1)^{2}+(-1)^{2}}\right)^{x}=2^{x}$
$(\sqrt{2})^{x}=2^{x}$
(2) ${ }^{\frac{1}{2} x}=2^{x}$
$\frac{1}{2} x=x$
$\frac{1}{2}=1$
$1=2$
Which is false no value of x satisfies.
23. If $(a+i b)(c+i d)(e+i f)(g+i h)=A+i B$ then show that
$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}$
Ans. $(a+i b)(c+i d)(e+i f)(g+i h)=A+i B$
$\Rightarrow|(a+i b)(c+i d)(e+i f)(g+i h)|=|A+i B|$
$|a+i b||c+i d||e+i f||g+i h|=|A+i B|$

$$
\left(\sqrt{a^{2}+b^{2}}\right)\left(\sqrt{c^{2}+d^{2}}\right)\left(\sqrt{e^{2}+f^{2}}\right)\left(\sqrt{g^{2}+h^{2}}\right)=\sqrt{A^{2}+B^{2}}
$$

sq. both side

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}
$$

CBSE Class 12 Mathematics

Important Questions

Chapter
Statistics

4 Marks Questions

1.The mean of $2,7,4,6,8$ and p is 7 . Find the mean deviation about the median of these observations.

Ans.Observations are 2, 7, 4, 6, 8 and p which are 6 in numbers $\therefore n=6$
The near of these observations is 7
$\frac{2+7+4+6+8+p}{6}=7$
$=27+p=42$
$=p=15$
Arrange the observations in ascending order 2,4,6,7,8,15
\therefore Medias $(M)=\frac{\frac{n}{2} \text { th observation }+\left(\frac{n}{2}+1\right) \text { th observation }}{2}$
$=\frac{3 \text { rd observation }+4 \text { th observation }}{2}$
$=\frac{6+7}{2}=\frac{13}{2}$
$=6.5$
Calculation of mean deviation about Median.

xi	xi-M	$\|x i-M\|$

$\mathbf{2}$	-4.5	4.5
$\mathbf{4}$	-2.5	2.5
$\mathbf{6}$	-0.5	0.5
$\mathbf{7}$	0.5	0.5
$\mathbf{8}$	1.5	1.5
$\mathbf{1 5}$	8.5	8.5
Total		18

\therefore Media's deviation about median $=\frac{318}{6}=3$.
2.Find the mean deviation about the mean for the following data!
$x_{i} 1030507090$

$f_{i} 42428168$

Ans. To calculate mean, we require $f_{i} x i$ values then for mean deviation, we require $\mid x i-\bar{x}$ \mid values and $f_{i}|x i-\bar{x}|$ values.

$x i$	f_{i}	$f_{i} x i$	$\|x i-\bar{x}\|$	$f i\|x i-\bar{x}\|$
$\mathbf{1 0}$	4	4	40	160
$\mathbf{3 0}$	24	720	20	480
$\mathbf{5 0}$	28	1400	0	0
70	16	1120	20	320
$\mathbf{9 0}$	8	720	40	320
	80	4000		1280

$n=\sum f_{i}=80 \quad \sigma d \sum f_{i} x i=4000$
$\bar{x}=\frac{\sum f_{i} x i}{n}=\frac{4000}{80}=50$
Mean deviation about the mean
$\operatorname{MD}(\bar{x})=\frac{\sum f_{i}|x i-\bar{x}|}{n}=\frac{1280}{80}=16$
3.Find the mean, standard deviation and variance of the first n natural numbers.

Ans. The given numbers are 1, 2, 3, n

Mean

$$
\bar{x}=\frac{\sum n}{n}=\frac{n(n+1)}{\frac{2}{n}}=\frac{n+1}{2}
$$

Variance
$\sigma 2=\frac{\sum x i^{2}}{n}-\bar{x}$
$=\frac{\sum n^{2}}{n}-\left(\frac{n+1}{2}\right)^{2}$
$=\frac{n(n+1)(2 n+1)}{6 n}-\frac{(n+1)^{2}}{4}$
$=(n+1)\left[\frac{2 n+1}{6}-\frac{n+1}{4}\right]$
$=(n+1)\left(\frac{n-1}{12}\right)=\frac{n^{2}-1}{12}$
\therefore Standard deviation $\sigma=\frac{\sqrt{n^{2}-1}}{12}$
4.Find the mean variance and standard deviation for following data

Ans.

x_{i}	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{1 1}$	$\mathbf{1 7}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 2}$
f_{i}	3	5	9	5	4	3	1

Note: $-4^{\text {th }}, 5^{\text {th }}$ and $6^{\text {th }}$ columns are filled in after calculating the mean.

$x i$	f_{i}	$f_{i} x_{i}$	$x i-\bar{x}$	$(x i-\bar{x})^{2}$	$f_{i} x_{i}(x i-\bar{x}$
$\mathbf{4}$	3	12	-10	100	300
$\mathbf{8}$	5	40	-6	36	180
$\mathbf{1 1}$	9	99	-3	9	81
$\mathbf{1 7}$	5	85	3	9	45
$\mathbf{2 0}$	4	80	6	36	144
$\mathbf{2 4}$	3	72	10	100	300
$\mathbf{3 2}$	1	32	18	324	324
Total	30	402			1374

Here $n=\sum f_{i}=30, \quad \sum f_{i} x_{i}=420$
\therefore Mean $\bar{x}=\frac{\sum f_{i} x_{i}}{n}=\frac{420}{30}=14$
\therefore Variance $\sigma^{2}=\frac{1}{n} \sum f_{i}\left(x_{i}-\bar{x}\right)^{2}$
$=\frac{1}{30} \times 1374$
$=45.8$
\therefore Standard deviation $\sigma=\sqrt{45.8}$
$=6.77$
5.The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.

Ans. Let $x_{i}, x_{2} \ldots \ldots x_{6}$ be the six given observations
Then $\bar{x}=8$ and $\sigma=4$
$\bar{x}=\frac{\sum x_{i}}{n}=8=\frac{x_{1}+x_{2}+\ldots \ldots+x_{6}}{6}$
$x_{1}+x_{2}+\ldots \ldots x_{6}=48$
Also $\sigma^{2} \frac{\sum x_{1}^{2}}{n}-(\bar{x})^{2}$
$=4^{2}=\frac{x_{1}{ }^{2}+x_{2}{ }^{2} \ldots \ldots+x_{6}{ }^{2}}{6}-(8)^{2}$
$=x_{1}^{2}+x_{2}^{2}+\ldots \ldots x_{6}^{2}$
$=6 \times(16+64)=480$

As each observation is multiplied by 3, new observations are
$3 x_{1}, 3 x_{2}, \ldots \ldots 3 x_{6}$
New near $\bar{X}=\frac{3 x_{1}+3 x_{2}+\ldots \ldots 3 x_{6}}{6}$
$=\frac{3\left(x_{1}+x_{2}+\ldots x_{6}\right)}{6}$
$=\frac{3 \times 48}{6}$
$=24$
Let σ_{1} be the new standard deviation, then
$\sigma_{1}^{2}=\frac{\left(3 x_{1}\right)^{2}+\left(3 x_{2}\right)^{2}+\ldots \ldots+\left(3 x_{6}\right)^{2}}{6}-(\bar{X})^{2}$
$=\frac{9\left(x_{1}^{2}+x_{2}^{2}+\ldots \ldots x_{6}{ }^{2}\right)}{6}-(24)^{2}$
$=\frac{9 \times 480}{6}-576$
$=720-576$
$=144$
$\sigma_{1}=12$
6.Prove that the standard deviation is independent of any change of origin, but is dependent on the change of scale.

Ans. Let us use the transformation $u=a x+b$ to change the scale and origin
Now $u=a x+b$
$=\sum u=\sum(a x+b)=a \sum x+b \cdot n$
Also $\sigma u^{2}=\frac{\sum(u-\bar{u})^{2}}{n}=\frac{\sum(a x+b-a \bar{x}-b)^{2}}{n}$
$=\frac{\sum a^{2}(x-\bar{x})^{2}}{n}=\frac{a^{2} \sum(x-\bar{x})^{2}}{n}$
$=a^{2} \sigma x^{2}$
$\therefore \quad \sigma^{2} u=a 2 \sigma^{2} u$
$=\sigma u=|a| \sigma x$
Both $\sigma u, \sigma x$ are positive which shows that standard deviation is independent of choice of origin, but depends on the scale.
7.Calculate the mean deviation about the mean for the following data Expenditure0-100100-200200-300300-400400-500500-600600-700700-800 persons 489107543

Ans.

Expenditure	No. of persons f_{i}	Mid point x_{i}	$f_{i} x_{i}$	$\left\|x_{i}-\bar{x}\right\|$	$f_{i}\left\|x_{i}-\bar{x}\right\|$
$\mathbf{0 - 1 0 0}$	4	50	200	308	1232
$\mathbf{1 0 0 - 2 0 0}$	8	150	1200	208	1664
$\mathbf{2 0 0 - 3 0 0}$	9	250	2250	108	972
$\mathbf{3 0 0 - 4 0 0}$	10	350	3500	8	80
$\mathbf{4 0 0 - 5 0 0}$	7	450	3150	92	644
$\mathbf{5 0 0 - 6 0 0}$	5	550	2750	192	960
$\mathbf{6 0 0 - 7 0 0}$	4	650	2600	292	1168
$\mathbf{7 0 0 - 8 0 0}$	3	750	2250	392	1176
	50		17900		7896

$n=\sum f_{i}=50$
$\sum f_{i} x_{i}=17900$
\therefore mean $=\frac{1}{n} \sum f_{i} x_{i}=\frac{17900}{50}=358$
$M D(\bar{x})=\frac{1}{n} \sum f\left|x_{i}-\bar{x}\right|$
$=\frac{7896}{50}=157.92$
8.Find the mean deviation about the median for the following data

Marks 0-1010-2020-3030-4040-5050-60

No. of boys 810101642

Ans.

Marks	No. of boys	Cumulative Frequency	Mid points	$\left\|x_{i}-M\right\|$	$f_{i}\left\|x_{i}-M\right\|$
$\mathbf{0 - 1 0}$	8	8	5	22	176
$\mathbf{1 0 - 2 0}$	10	18	15	12	120
$\mathbf{2 0 - 3 0}$	10	28	25	2	20
$\mathbf{3 0 - 4 0}$	16	44	35	8	128
$\mathbf{4 0 - 5 0}$	4	48	45	18	72
$\mathbf{5 0 - 6 0}$	2	50	55	28	56
total	50			572	

$\frac{n^{\text {th }}}{2}$ or $25^{\text {th }}$ item $=20-30$, which is the median class.

Median $=l+\frac{\frac{n}{2}-c}{f} \times c=20+\frac{25-18}{10} \times 10$
$=27$
$M D(M)=\frac{1}{n} \sum f_{i}\left|x_{i}-M\right|=\frac{572}{50}=11.44$
9.An analysis of monthly wages point to workers in two firms A and B, belonging to the same industry, given the following result. Find mean deviation about median.

Firm AFirm B

No of wages earns586648
Average monthly wagesRs 5253Rs 5253
Ans.For firm A, number of workers $=586$

Average monthly wage is Rs 5253

Total wages $=$ Rs 5253×586
= Rs 3078258

For firm B, total wages $=$ Rs 253×648
=Rs 3403944

Hence firm B pays out amount of monthly wages.
10.Find the mean deviation about the median of the following frequency distribution

Class 0-66-1212-1818-2424-30

Frequency8101295

Ans.

Class	Mid value	Frequency	$C \cdot f$	$\left\|x_{i}-14\right\|$	$f_{i}\left\|x_{i}-14\right\|$
$\mathbf{0 - 6}$	3	8	8	11	88
$\mathbf{6 - 1 2}$	9	10	18	5	50
$\mathbf{1 2 - 1 8}$	15	12	30	1	12
$\mathbf{1 8 - 2 4}$	21	9	39	7	63
$\mathbf{2 1 - 3 0}$	27	5	44	13	65
			$N=\sum f_{i}=44$		$\sum f_{i}\left\|x_{i}-14\right\|=278$

$N=44=\frac{N}{2}$
$12-18$ is the medias class
Medias $=l+\frac{\frac{N}{2}-F}{f} \times h$
$h=6, l=12, f=12, F=18$
Medias
$=12+\frac{22-18}{12} \times 6$
$=12+\frac{4 \times 6}{12}$
$=14$
Mean deviation about median $=\frac{1}{N} \sum f_{i}\left|x_{i}-14\right|$
$=\frac{278}{74}=6.318$
11.Calculate the mean deviation from the median from the following data

Salary per week(in Rs) 10-2020-3030-4040-5050-6060-70
no. of workers 461020106
Ans.

Salary per Week (in Rs)	Mid value x_{i}	Frequency f_{i}	$C f$	$\left\|d_{i}\right\|=x_{i}-45$	$f\left\|d_{i}\right\|$
$\mathbf{1 0 - 2 0}$	15	4	4	30	120
$\mathbf{2 0 - 3 0}$	25	6	10	20	120
$\mathbf{3 0 - 4 0}$	35	10	20	10	100
$\mathbf{4 0 - 5 0}$	45	20	40	0	0
$\mathbf{5 0 - 6 0}$	55	10	50	10	100
$\mathbf{6 0 - 7 0}$	65	6	56	20	120
$\mathbf{7 0 - 8 0}$	75	4	60	30	120
		$N=\sum f_{i}=60$			$\sum f_{i}\left\|d_{i}\right\|=680$

$$
N=60 \quad=\frac{N}{2}=30
$$

$40-50$ is the median class
$l=40, f=20, h=10, \quad F=20$
Medias $=\frac{l-\frac{N}{2}-F}{f} \times h$
$=\frac{40+30-20}{20} \times 10=45$
Mean deviation $=\frac{\sum f_{i}\left|d_{i}\right|}{N}=\frac{680}{60}=11.33$
12.Let $x_{1}, x_{2} \ldots \ldots x_{n}$ values of a variable \mathbf{Y} and let ' \mathbf{a} ' be a non zero real number. Then prove that the variance of the observations $a y_{1}, a y_{2} \ldots \ldots a y_{n}$ is $a^{2} \operatorname{var}(Y)$. also, find their standard deviation.

Ans.Let $v_{1}, v_{2} \ldots \ldots v_{n}$ value of variables v such that $v_{1}=\alpha y_{i}, 1,2 \ldots \ldots n$, then

$$
\begin{aligned}
& \bar{V}=\frac{1}{n} \sum_{i=1}^{n} v_{i}=\frac{1}{n} \sum_{i=1}^{n}(a y i)=a\left(\frac{1}{n} \sum_{i=1}^{n} y_{i}\right)=a \bar{y} \\
& v_{i}-\bar{V}=a y_{i}-a \bar{y} \\
& v_{i}-\bar{V}=a\left(y_{i}-\bar{Y}\right) \\
& \left(v_{i}-\bar{V}\right)^{2}=a^{2}\left(y_{i}-\bar{Y}\right)^{2} \\
& \sum_{i=1}^{n}\left(v_{i}-\bar{V}\right)^{2}=a^{2} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{Y}\right)^{2}
\end{aligned}
$$

$$
\operatorname{Var}(V)=a^{2} \operatorname{Var}(Y)
$$

$$
\sigma_{u}=\sqrt{\operatorname{var}(v)}=\sqrt{a^{2} \operatorname{var}(Y)}=|a| \sqrt{\operatorname{var}(Y)}
$$

$$
=|a| \sigma_{y}
$$

13.If $a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$ Prove that $\mathrm{a}^{2}+\mathrm{b}^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$

Ans. $a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$ (i) (Given)
Taking conjugate both side
$a-i b=\frac{(x-i)^{2}}{2 x^{2}+1}$
(i) \times (ii)
$(a+i b)(a-i b)=\left(\frac{(x+i)^{2}}{2 x^{2}+1}\right) \times\left(\frac{(x-i)^{2}}{2 x^{2}+1}\right)$
$(a)^{2}-(i b)^{2}=\frac{\left(x^{2}-i^{2}\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$
$a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$ proved.
14.If $(x+i y)^{3}=u+i v$ then show that $\frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)$

Ans. $(x+i y)^{3}=4+i v$
$x^{3}+(i y)^{3}+3 x^{2}(i y)+3 x(i y)^{2}=u+i v$
$x^{3}-i y^{3}+3 x^{2} y i-3 x y^{2}=u+i v$
$x^{3}-3 x y^{2}+\left(3 x^{2} y-y^{3}\right) i=u+i v$
$x\left(x^{2}-3 y^{2}\right)+y\left(3 x^{2}-y^{2}\right) i=u+i v$
$x\left(x^{2}-3 y^{2}\right)=u, \mathrm{y}\left(3 x^{2}-y^{2}\right)=v$
$x^{2}-3 y^{2}=\frac{u}{x}$ (i) $3 x^{2}-y^{2}=\frac{v}{y}$ (ii)
(i) + (ii)
$4 \mathrm{x}^{2}-4 \mathrm{y}^{2}=\frac{u}{x}+\frac{v}{y}$
$4\left(x^{2}-y^{2}\right)=\frac{u}{x}+\frac{v}{y}$
15.Solve $\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$

Ans. $\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$
$\mathrm{a}=\sqrt{3}, b=-\sqrt{2}, c=3 \sqrt{3}$
$D=b^{2}-4 a c$
$=(-\sqrt{2})^{2}-4 \times \sqrt{3}(3 \sqrt{3})$
$=2-36$
$=-34$
$x=\frac{-b \pm \sqrt{D}}{2 a}$
$=\frac{-(-\sqrt{2}) \pm \sqrt{-34}}{2 \times \sqrt{3}}$
$=\frac{\sqrt{2} \pm \sqrt{34} \mathrm{i}}{2 \sqrt{3}}$
16.Find the modulus $i^{25}+(1+3 i)^{3}$

Ans. $.^{25}+(1+3 i)^{3}$
$=\left(i^{4}\right)^{6} i+1+27 i^{3}+3(1)(3 i)(1+3 i)$
$=i+\left(1-27 i+9 i+27 i^{2}\right)$
$=i+1-18 i-27$
$=-26-17 i$
$\left|i^{25}+(1+3 i)^{3}\right|=|-26-17 i|$
$=\sqrt{(-26)^{2}+(-17)^{2}}$
$=\sqrt{676+289}$
$=\sqrt{965}$
17.If $a+i b=\frac{(x+i)^{2}}{2 x-i}$ prove that $\mathrm{a}^{2}+\mathrm{b}^{2}=\frac{\left(x^{2}+1\right)^{2}}{4 x^{2}+1}$

Ans. $a+i b=\frac{(x+i)^{2}}{2 x-i} \quad$ (i) (Given)

$$
\mathrm{a}-\mathrm{ib}=\frac{(x-i)^{2}}{2 x+i} \text { (ii) [taking conjugate both side }
$$

(i) \times (ii)
$(a+i b)(a-i b)=\frac{(x+i)^{2}}{(2 x-i)} \times \frac{(x-i)^{2}}{(2 x+i)}$
$a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{4 x^{2}+1}$ proved.
18.Evaluate $\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}$

Ans. $\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}$
$\left[\left(i^{4}\right)^{4} \cdot i^{2}+\frac{1}{i^{25}}\right]^{3}$
$\left[i^{2}+\frac{1}{\left(i^{4}\right)^{6} i}\right]^{3}$
$\left[-1+\frac{1}{i}\right]^{3}$
$\left[-1+\frac{i^{3}}{i^{4}}\right]^{3}$
$[-1-i]^{3}=-(1+i)^{3}$
$=-\left[1^{3}+i^{3}+3.1 \cdot i(1+i)\right]$
$=-\left[1-i+3 i+3 i^{2}\right]$
$=-[1-i+3 i-3]$
$=-[-2+2 i]=2-2 i$
19.Find that modulus and argument $\frac{1+i}{1-i}$

Ans. $\frac{1+i}{1-i}=\frac{1+i}{1-i} \times \frac{1+i}{1+i}$
$=\frac{(1+i)^{2}}{1^{2}-i^{2}}$
$=\frac{1+i^{2}+2 i}{1+1}$
$=\frac{2 i}{2}$
$=i$
$z=0+i$
$r=|z|=\sqrt{(0)^{2}+(1)^{2}}=1$
Let α be the acute $\angle \mathrm{s}$
$\tan \alpha=\left|\frac{1}{0}\right|$
$\alpha=\pi / 2$
$\arg (z)=\pi / 2$
$r=1$
20.For what real value of x and y are numbers equal $(1+i) y^{2}+(6+i)$ and $(2+i) x$

Ans. $(1+i) y^{2}+(6+i)=(2+i) x$
$y^{2}+i y^{2}+6+i=2 x+x i$
$\left(y^{2}+6\right)+\left(y^{2}+1\right) i=2 x+x i$
$y^{2}+6=2 x$
$y^{2}+1=x$
$y^{2}=x-1$
$x-1+6=2 x$
$5=x$
$y= \pm 2$
21.If $\mathbf{x}+\mathbf{i y}=\sqrt{\frac{1+i}{1-i}}$, prove that $\mathrm{x}^{2}+\mathrm{y}^{2}=1$

Ans. $x+i y=\sqrt{\frac{1+i}{1-i}} \quad$ (i) (Given)
taking conjugate both side
$x-i y=\sqrt{\frac{1-i}{1+i}}$
(i) \times (ii)
$(x+i y)(x-i y)=\sqrt{\frac{1+i}{1-i}} \times \sqrt{\frac{1-i}{1+i}}$
$(x)^{2}-(i y)^{2}=1$
$x^{2}+y^{2}=1$

Proved.
22.Convert in the polar form $\frac{1+7 i}{(2-i)^{2}}$

Ans. $\frac{1+7 i}{(2-i)^{2}}=\frac{1+7 i}{4+i^{2}-4 i}=\frac{1+7 i}{3-4 i}$
$=\frac{1+7 i}{3-4 i} \times \frac{3+4 i}{3+4 i}$
$=\frac{3+4 i+21 i+28 i^{2}}{9+16}$
$=\frac{25 i-25}{25}=i-1$
$=-1+i$
$r=|z|=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2}$
Let α be the acute $\angle \mathrm{s}$
$\operatorname{ten} \alpha=\left|\frac{1}{-1}\right|$
$\alpha=\pi / 4$
since $\operatorname{Re}(z)<0, \operatorname{Im}(z)>0$
$\theta=\pi-\alpha$
$=\pi-\frac{\pi}{4}=3 \pi / 4$
$z=r(\operatorname{Cos} \theta+\mathrm{i} \operatorname{Sin} \theta)$
$=\sqrt{2}\left(\operatorname{Cos} \frac{3 \pi}{4}+i \operatorname{Sin} \frac{3 \pi}{4}\right)$
23.Find the real values of x and y if ($x-i y$) (3+5i) is the conjugate of $-6-24 i$

Ans.
$(x-i y)(3+5 i)=-6+24 i$
$3 x+5 x i-3 y i-5 y i^{2}=-6+24 i$
$(3 x+5 y)+(5 x-3 y) i=-6+24 i$
$3 x+5 y=-6$
$5 x-3 y=24$
$x=3$
$y=-3$
24.If $\left|z_{1}\right|=\left|z_{2}\right|=1$, prove that $\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}\right|=\left|z_{1}+z_{2}\right|$

Ans. If $\left|z_{1}\right|=\left|z_{2}\right|=1 \quad$ (Given)
$\Rightarrow\left|z_{1}\right|^{2}=\left|z_{2}\right|^{2}=1$
$\Rightarrow z_{1} \overline{z_{1}}=1$
$\overline{z_{1}}=\frac{1}{z_{1}}$
$z_{2} \overline{z_{2}}=1$
$\overline{z_{2}}=\frac{1}{z_{2}}$
$\left[\because z \bar{z}=|z|^{2}\right.$

$$
\begin{aligned}
& \left|\frac{1}{z_{1}}+\frac{1}{z_{2}}\right|=\left|\overline{z_{1}}+\overline{z_{2}}\right| \\
& =\left|\overline{z_{1}+z_{2}}\right| \\
& =\left|z_{1}+z_{2}\right| \\
& {[\because|\bar{z}|=|z| \text { proved. }}
\end{aligned}
$$

CBSE Class 12 Mathematics

Important Questions

Chapter
Statistics

6 Marks Questions

1.Calculate the mean, variance and standard deviation of the following data:

Classes	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
Frequency	3	7	12	15	8	3	2

Ans.

Classes	Frequency	Mid Point	$f_{i} x i$	$\left(x_{i}-\bar{x}\right)^{2}$	$f_{i}\left(x_{i}-\bar{x}\right)^{2}$
$\mathbf{3 0 - 4 0}$	3	35	105	729	2187
$\mathbf{4 0 - 5 0}$	7	45	315	289	2023
$\mathbf{5 0 - 6 0}$	12	55	660	49	588
$\mathbf{6 0 - 7 0}$	15	65	975	9	135
$\mathbf{7 0 - 8 0}$	8	75	600	169	1352
$\mathbf{8 0 - 9 0}$	3	85	255	529	1587
$\mathbf{9 0 - 1 0 0}$	2	95	190	1089	2178
Total	50		3100		10050

Here $n=\sum f_{i}=50, \sum f_{i} x_{i}=3100$
\therefore Mean $\bar{x}=\frac{\sum f_{i} x_{i}}{n}=\frac{3100}{50}=62$
Variance $\sigma^{2}=\frac{1}{n} \sum f_{i}(x i-\bar{x})^{2}$
$=\frac{1}{50} \times 10050$
$=201$

Standard deviation $\sigma=\sqrt{201}=14.18$
2.The mean and the standard deviation of 100 observations were calculated as $\mathbf{4 0}$ and 5.1 respectively by a student who mistook one observation as 50 instead of 40 . What are the correct mean and standard deviation?

Ans. Given that $n=100$
Incorrect mean $\bar{x}=40$,
Incorrect S.D $(\sigma)=5.1$
As $\bar{x}=\frac{\sum x_{i}}{n}$
$40=\frac{\sum x_{i}}{100}=\sum x_{i}=4000$
= incorrect sum of observation $=4000$
$=$ correct sum of observations $=4000-50+40$
$=3990$

So correct mean $=\frac{3990}{100}=39.9$
Also $\sigma=\sqrt{\frac{1}{n} \sum x_{i}^{2}-(\bar{x})^{2}}$
Using incorrect values,
$5.1=\sqrt{\frac{1}{100} \sum x_{i}^{2}-(40)^{2}}$
$=26.01=\left[\frac{1}{100} \Sigma x_{i}^{2}-1600\right]$
$=\sum x_{i}^{2}=2601+160000$
$=162601$
$=$ incorrect $\sum x_{i}^{2}=162601$
$=$ correct $\sum x_{i}^{2}=162601-(50)^{2}+(40)^{2}$
$=162601-2500+1600=161701$
\therefore Correct $\sigma=\sqrt{\frac{1}{100} \text { correct } \sum x_{i}^{2}-(\text { correct } \bar{x})^{2}}$
$=\sqrt{\frac{1}{100}(161701)-(39.9)^{2}}=\sqrt{1617.01-1592.01}$
$=\sqrt{25}=5$
Hence, correct mean is 39.9 and correct standard deviation is 5 .
3.200 candidates the mean and standard deviation was found to be 10 and 15 respectively. After that if was found that the scale 43 was misread as 34 . Find the correct mean and correct S.D

Ans. $n=200, \bar{X}=40, \sigma=\overline{15}$
$\bar{X}=\frac{1}{n} \sum x_{i}=\sum x_{i}=n \bar{X}=200 \times 40=8000$
Corrected $\sum x_{i}=$ Incorrect $\sum x_{i}-($ sum of incorrect + sum of correct value $)$
$=8000-34+43=8009$
\therefore Corrected mean $=\frac{\text { corrected } \sum x_{i}}{n}=\frac{8009}{200}=40.045$
$\sigma=15$
$15^{2}=\frac{1}{200}\left(\sum x_{i}^{2}\right)-\left(\frac{1}{200} \sum x_{i}\right)^{2}$
$225=\frac{1}{200}\left(\sum x_{i}^{2}\right)-\left(\frac{8000}{200}\right)^{2}$
$225=\frac{1}{200} \times 1825=365000$
Incorrect $\sum x_{i}{ }^{2}=365000$
Corrected $\sum x_{i}{ }^{2}=\left(\right.$ incorrect $\left.\sum x_{i}{ }^{2}\right)$ - (sum of squares of incorrect values) + (sum of square of correct values)
$=365000-(34)^{2}+(43)^{2}=365693$
Corrected $\sigma=\sqrt{\frac{1}{n} \sum x_{i}{ }^{2}-\left(\frac{1}{n} \sum x_{i}\right)^{2}}=\sqrt{\frac{365693}{200}-\left(\frac{8009}{200}\right)^{2}}$
$\sqrt{1828.465-1603.602}=14.995$

4.Find the mean deviation from the mean 6,7,10,12,13,4,8,20

Ans.Let \bar{X} be the mean

$$
\bar{X}=\frac{6+7+10+12+13+4+8+20}{8}=10
$$

x_{i}	$\left\|d_{i}\right\|=\left\|x_{i}-\bar{X}\right\|=\left\|x_{i}-10\right\|$
6	4
7	3
10	0

12	2
13	3
4	6
8	2
20	10
Total	$\sum d_{i}=30$

$\sum d_{i}=30$ and $\mathrm{n}=8$
$\therefore M D=\frac{1}{n} \sum\left|d_{i}\right|=\frac{30}{8}=3.75$
$\therefore M D=3.75$
5.Find two numbers such that their sum is 6 and the product is 14 .

Ans.Let x and y be the no.
$x+y=6$
$x y=14$

$$
\begin{aligned}
x^{2} & -6 x+14=0 \\
D & =-20 \\
x & =\frac{-(-6) \pm \sqrt{-20}}{2 \times 1} \\
& =\frac{6 \pm 2 \sqrt{5} \mathrm{i}}{2} \\
& =3 \pm \sqrt{5} \mathrm{i} \\
\mathrm{x} & =3+\sqrt{5} \mathrm{i} \\
y & =6-(3+\sqrt{5} \mathrm{i}) \\
& =3-\sqrt{5} \mathrm{i}
\end{aligned}
$$

when $\mathrm{x}=3-\sqrt{5} \mathrm{i}$

$$
\begin{aligned}
y & =6-(3-\sqrt{5} \mathrm{i}) \\
& =3+\sqrt{5} \mathrm{i}
\end{aligned}
$$

6.Convert into polar form $z=\frac{i-1}{\cos \frac{\pi}{3}+i \operatorname{Sin} \frac{\pi}{3}}$

Ans. $z=\frac{i-1}{\frac{1}{2}+\frac{\sqrt{3}}{2} i}$
$=\frac{2(i-1)}{1+\sqrt{3} i} \times \frac{1-\sqrt{3} i}{1-\sqrt{3} i}$
$z=\frac{\sqrt{3}-1}{2}+\frac{\sqrt{3}+1}{2} i$
$r=|z|=\left(\frac{\sqrt{3}-1}{2}\right)^{2}+\left(\frac{\sqrt{3}+1}{2}\right)^{2}$
$r=2$
Let α be the acule $\angle \mathrm{s}$
$\tan \alpha=\left|\frac{\frac{\sqrt{3}+1}{z}}{\frac{\sqrt{3}-1}{2}}\right|$
$=\left|\frac{\sqrt{z}\left(1+\frac{1}{\sqrt{3}}\right)}{\sqrt{z}\left(1-\frac{1}{\sqrt{3}}\right)}\right|$
$=\left|\frac{\tan \frac{\pi}{4}+\tan \frac{\pi}{6}}{1-\tan \frac{\pi}{4} \tan \frac{\pi}{6}}\right|$
$\tan \alpha=\left|\tan \left(\frac{\pi}{4}+\frac{\pi}{6}\right)\right|$
$\alpha=\frac{\pi}{4}+\frac{\pi}{6}=\frac{5 \pi}{12}$
$z=2\left(\operatorname{Cos} \frac{5 \pi}{12}+i \operatorname{Sin} \frac{5 \pi}{12}\right)$
7.If $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are different complex number with $|\boldsymbol{\beta}|=\boldsymbol{1}$ Then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$

Ans. $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|^{2}=\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right)\left(\frac{\overline{\beta-\alpha}}{1-\bar{\alpha} \beta}\right) \quad\left[\because|z|^{2}=z \bar{z}\right.$

$$
\begin{aligned}
& =\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right)\left(\frac{\bar{\beta}-\bar{\alpha}}{1-\alpha \bar{\beta}}\right) \\
& =\left(\frac{\beta \bar{\beta}-\beta \bar{\alpha}-\alpha \bar{\beta}+\alpha \bar{\alpha}}{1-\alpha \bar{\beta}-\bar{\alpha} \beta+\alpha \bar{\alpha} \bar{\beta}}\right) \\
& \left.\left.=\frac{|\beta|^{2}-\beta \bar{\alpha}-\alpha \bar{\beta}+|\alpha|^{2}}{1-\alpha \bar{\beta}-\bar{\alpha} \beta+|\alpha|^{2}} \right\rvert\, \overline{\left.\beta^{2}\right|^{2}}\right) \\
& \left.=\frac{1-\alpha \bar{\alpha}-\alpha \overline{\bar{\beta}} \overline{\bar{\beta}}+|\alpha|^{2}}{\bar{\alpha} \beta \beta+|\alpha|^{2}}\right)[\because|\beta|=1 \\
& =1 \\
& \left|\frac{\beta-\alpha}{1-\alpha \beta}\right|=\sqrt{1} \\
& \left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=1
\end{aligned}
$$

