Chapter 10. Straight Lines

Question-1

Determine the equation of the straight line passing through the point (-1 , -2) and having slope 4/7.

Solution:

The point - slope form is $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$

$$
\begin{aligned}
& y+2=(4 / 7)(x+1) \\
& 7 y+14=4 x+4 \\
& 4 x-7 y=10
\end{aligned}
$$

Question-2

Determine the equation of the line with slope 3 and $y-$ intercept 4.

Solution:

The slope - intercept form is $y=m x+c$.
Therefore the equation of the straight line is $y=3 m+4$.

Question-3

A straight line makes an angle of 45° with $x-$ axis and passes through the point (3, -3). Find its equation.

Solution:

$\mathrm{m}=\tan 45^{\circ}=1$
The slope - intercept form is $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.
$\begin{aligned}(-3) & =1(3)+c \\ c & =-6\end{aligned}$
Therefore the equation of the straight line is $y=x-6$.

Question-3

A straight line makes an angle of 45° with x - axis and passes through the point (3, -3). Find its equation.

Solution:

$\mathrm{m}=\tan 45^{\circ}=1$
The slope - intercept form is $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.
$(-3)=1(3)+c$
$c=-6$
Therefore the equation of the straight line is $y=x-6$.

Question-4

Find the equation of the straight line joining the points $(3,6)$ and $(2,-5)$.

Solution:

The equation of a straight line passing through two points is $\frac{y-y_{1}}{y_{1}-y_{2}}=\frac{x-x_{1}}{x_{1}-x_{2}}$.
Substituting the points $(3,6)$ and $(2,-5)$,
$\frac{y-6}{6+5}=\frac{x-3}{3-2}$
$\frac{y-6}{11}=\frac{x-3}{1}$
$y-6=11(x-3)$
$y-6=11 x-33$
$11 x-y=27$ is the required equation of the straight line.
The equation of a straight line passing through two points is $\frac{y-y_{1}}{y_{1}-y_{2}}=\frac{x-x_{1}}{x_{1}-x_{2}}$.
Substituting the points $(3,6)$ and $(2,-5)$,

$$
\begin{aligned}
& \frac{y-6}{6+5}=\frac{x-3}{3-2} \\
& \frac{y-6}{11}=\frac{x-3}{1} \\
& y-6=11(x-3) \\
& y-6=11 x-33
\end{aligned}
$$

$11 x-y=27$ is the required equation of the straight line.

Question-5

Find the equation of the straight line passing through the point $(2,2)$ and having intercepts whose sum is 9 .

Solution:

The intercept form is $\frac{x}{a}+\frac{y}{b}=1$ where ' a ' and ' b ' are x and y intercepts respectively.

$$
\begin{equation*}
a+b=9 \text { (Given) } \tag{i}
\end{equation*}
$$

$$
\frac{x}{a}+\frac{y}{b}=1
$$

Since $(2,2)$ lies on the equation, $\frac{2}{3}+\frac{2}{b}=1$

$$
\begin{aligned}
2(a+b) & =a b \\
a b & =18(\text { from } i) \\
a & =18 / b
\end{aligned}
$$

Substituting in (i)

$$
18+b^{2}=9 b
$$

$$
b^{2}-9 b+18=0
$$

$$
b^{2}-6 b-3 b+18=0
$$

$$
b(b-6)-3(b-6)=0
$$

$$
(b-3)(b-6)=0
$$

$b=3$ or 6
Therefore $\mathrm{a}=6$ or 3 .

Therefore the required equation of straight line is $\frac{x}{3}+\frac{y}{6}=1$ or $\frac{x}{6}+\frac{y}{3}=1$.

Question-6

Find the equation of the straight line whose intercept on the x-axis is 3 times its intercept on the y-axis and which passes through the point $(-1,3)$.

Solution:

The intercept form is $\frac{x}{a}+\frac{y}{b}=1$ where ' a ' and ' b ' are x and y intercepts respectively.

$$
\begin{equation*}
\mathrm{a}=3 \mathrm{~b} \text { (Given) } \tag{i}
\end{equation*}
$$

$\frac{x}{3 b}+\frac{y}{b}=1$
Since $(2,2)$ lies on the equation, $\frac{2}{3 b}+\frac{2}{b}=1$
$b=\frac{2}{3}+\frac{2}{1}=\frac{2+6}{3}=\frac{8}{3}$
$\therefore \mathrm{a}=8$.
\therefore The required equation of straight line is $\frac{x}{8}+\frac{3 y}{8}=1$ i.e., $x+3 y=8$.

Question-7

Find the equations of the medians of the triangle formed by the point $(2,4)$, $(4,6)$ and $(-6,-10)$.

Solution:

Let $A(2,4), B(4,6)$ and $C(-6,-10)$ be the given vertices of a $\triangle A B C$. D, E, F re the mid-points of the sides $B C, C A, A B$ respectively.

$\therefore \mathrm{D}=\left(\frac{4-6}{2}, \frac{6-10}{2}\right)=\left(\frac{-2}{2}, \frac{-4}{2}\right)=(-1,-2)$
$E=\left(\frac{2-6}{2}, \frac{4-10}{2}\right)=\left(\frac{-4}{2}, \frac{-6}{2}\right)=(-2,-3)$
$F=\left(\frac{2+4}{2}, \frac{4+6}{2}\right)=\left(\frac{6}{2}, \frac{10}{2}\right)=(3,5)$
\therefore Equation of $A D$ is

$$
\begin{aligned}
\frac{y-2}{2+1} & =\frac{x-4}{4+2} \\
6(y-2) & =3(x-4) \\
2(y-2) & =(x-4) \\
2 y-6 & =x-4 \\
2 y-x & =0
\end{aligned}
$$

\therefore Equation of BE is
$\frac{y-6}{6+3}=\frac{x-4}{4+2}$
$6(y-6)=9(x-4)$
$2(y-6)=3(x-4)$
$2 y-12=3 x-12$
$3 y-3 x=0$
\therefore Equation of CF is
$\frac{y+10}{-10-5}=\frac{x+6}{-6-3}$
$-9(y+10)=-15(x+6)$
$3(y+10)=5(x+6)$
$3 y+30=5 x+30$
$3 y-5 x=0$

Question-8

Find the length of the perpendicular from $(3,2)$ to the straight line $3 x+2 y+$ $1=0$.

Solution:

The perpendicular distance from $\left(x_{1}, y_{1}\right)$ to the straight line $a x+b y+c=0$ is given by $\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right| \therefore$ The length of the perpendicular from $(3,2)$ to the straight line $3 x+2 y+1=0$ is $\left|\frac{3(3)+2(2)+1}{\sqrt{3^{2}+2^{2}}}\right|=\frac{14}{\sqrt{13}}--$

Question-9

The portion of straight line between the axes is bisected at the point (-3,2). Find its equation.

Solution:
The intercept form is $\frac{x}{3}+\frac{y}{b}=1$ where ' a ' and ' b ' are x and y intercepts respectively.
The straight line make the x intercept $O A=a$, and y intercept $O B=b$.
Then, A is $(0, a)$ and B is $(b, 0)$.
$\frac{x}{a}+\frac{y}{b}=1$ \qquad
Mid-point of $A B$ is $\left(\frac{b}{2}, \frac{3}{2}\right)=(-3,2)$
$b=-6$ and $a=4$.
\therefore The equation of straight line is $\frac{x}{4}+\frac{y}{-6}=1$.

Question-10

Find the equation of the diagonals of quadrilateral whose vertices are (1, 2), ($-2,-1$), (3, 6) and (6, 8).

Solution:

Let $A(1,2), B(-2,-1), C(3,6)$ and $D(6,8)$ be the vertices of quadrilateral $A B C D$. Equation of the diagonal $A C$ is $\frac{y-2}{2-6}=\frac{x-1}{1-3}$

$$
\begin{aligned}
-2(y-2) & =-4(x-1) \\
-2 y+4 & =-4 x+1 \\
4 x-2 y+3 & =0
\end{aligned}
$$

Equation of the diagonal BD is $\frac{y+1}{-1-8}=\frac{x+2}{-2-8}$

$$
\begin{aligned}
-16(y+1) & =-9(x+2) \\
-16 y-16 & =-9 x-18 \\
9 x-16 y+2 & =0
\end{aligned}
$$

Question-11

Find the equation of the straight line, which cut of intercepts on the axes whose sum and product are 1 and $\mathbf{- 6}$ respectively.

Solution:

The intercept form is $\frac{x}{a}+\frac{y}{b}=1$ where ' a ' and ' b ' are x and y intercepts respectively.

$$
\begin{align*}
a+b & =1 \tag{i}\\
a b & =-6 \tag{ii}
\end{align*}
$$

$$
\begin{align*}
(a-b)^{2} & =4 a b-(a+b)^{2}=4(-6)-(1)^{2}=-24-1=25 \\
a-b & =5 \ldots \ldots \ldots \ldots \text { (iii) } \tag{iii}
\end{align*}
$$

Adding (i) and (iii)

$$
\begin{aligned}
2 a & =6 \\
a & =3 \\
\therefore b & =-2
\end{aligned}
$$

\therefore The equation of the straight line is $\frac{x}{3}+\frac{y}{-2}=1$.

Question-12

Find the intercepts made by the line $7 x+3 y-6=0$ on the coordinate axis.

Solution:

If $y=0$ then $x=6 / 7$
If $x=0$ then $y=6 / 3=2$
x - intercept is $6 / 7$ and y - intercept is 2 .

Question-13

What are the points on x-axis whose perpendicular distance from the straight line $\frac{x}{3}+\frac{y}{4}=1$ is 4 ?

Solution:

$\frac{x}{3}+\frac{y}{4}=1$
$4 x+3 y=12$
Any point on $x-$ axis will have y coordinate as 0 .
Let the point on x-axis be $P\left(x_{1}, 0\right)$.
The perpendicular distance from the point P to the given straight line is $\left|\frac{4\left(x_{1}\right)+3(0)-12}{\sqrt{4^{2}+3^{2}}}\right|=4$
$\left|\frac{4 x_{1}-12}{5}\right|=4 \quad$ or $\quad\left|\frac{4 x_{1}-12}{5}\right|=-4$
$4 \mathrm{x}_{1}-12=20$ or $4 \mathrm{x}_{1}-12=-20$
$4 x_{1}=32$ or $4 x_{1}=-8$
$\mathrm{x}_{1}=8 \quad$ or $\quad \mathrm{x}_{1}=-2$
Thus the required points are (8,0) and ($-2,0$).

Question-14

Find the distance of the line $4 x-y=0$ from the point $(4,1)$ measured along the straight line making an angle of 135° with the positive direction of the x -axis.

Solution:

$m=\tan 135^{\circ}=-1$
Equation of a straight line having slope $m=-1$ and passing through $(4,1)$ is
$y-y_{1}=m\left(x-x_{1}\right)$
$y-1=(-1)(x-4)$
$y-1=-x+4$
$x+y=5$
$4 x-y=0$
Solving (i) and (ii),
$x=1$ and $y=4$
\therefore The distance between the points $(1,4)$ and $(4,1)$ is
$=\sqrt{(4-1)^{2}+(1-4)^{2}}=\sqrt{3^{2}+(-3)^{2}}=\sqrt{9+9}=3 \sqrt{2}$ units

Question-15

Find the angle between the straight lines $2 x+y=4$ and $x+3 y=5$

Solution:

Slope of the line $2 x+y=4$ is $m_{1}=-2$.
and slope of the line $x+3 v=5$ is $m_{2}=-1 / 3$
$\theta=\tan ^{-1}\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|=\tan ^{-1}\left|\frac{-2+\frac{1}{3}}{1+(-2)\left(-\frac{1}{3}\right)}\right|=\tan ^{-1}\left|\frac{\frac{-6+1}{3}}{1+\frac{2}{3}}\right|=\tan ^{-1}\left|\frac{\frac{-5}{3}}{\frac{5}{3}}\right|=\tan ^{-1}(-1)=135^{\circ}$

Question-16

Show that the straight lines $2 x+y=5$ and $x-2 y=4$ are at right angles.

Solution:

Slope of the line $2 x+y=5$ is $m_{1}=-2$.
and slope of the line $x-2 y=4$ is $m_{2}=1 / 2$
$m_{1} m_{2}=-2(1 / 2)=-1$
\therefore The two straight lines are at right angles.

Question-17

Find the equation of the straight line passing through the point $(1,-2)$ and parallel to the straight line $3 x+2 y-7=0$.

Solution:

The straight line parallel to $3 x+2 y-7=0$ is of the form $3 x+2 y+k=0$

The point $(1,-2)$ satisfies the equation (i)
Hence $3(1)+2(-2)+k=0$
$\Rightarrow 3-4+k=0 \Rightarrow k=1$
$\therefore 3 x+2 y+1=0$ is the equation of the required straight line.

Question-18

Find the equation of the straight line passing through the point $(2,1)$ and perpendicular to the straight line $x+y=9$.

Solution:

The equation of the straight line perpendicular to the straight line $x+y=9$ is of the form $\mathrm{x}-\mathrm{y}+\mathrm{k}=0$.
The point $(2,1)$ lies on the straight line $x-y+k=0$.
$2-1+\mathrm{k}=0$
$\mathrm{k}=-1$
\therefore The equation of the required straight line is $\mathrm{x}-\mathrm{y}-1=0$.

Question-19

Find the point of intersection of the straight lines $5 x+4 y-13=0$ and $3 x+$ $y-5=0$.

Solution:

Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be the point of intersection. Then $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ lies on both the straight lines.

$$
\begin{align*}
\therefore 5 x_{1}+4 y_{1}-13 & =0 \tag{i}\\
3 x_{1}+y_{1}-5 & =0 . \tag{ii}
\end{align*}
$$

(ii) $\times 412 x_{1}+4 y_{1}-20=0$

$$
\text { (i) } \begin{gather*}
- \text { (iii) }-7 \mathrm{x}_{1}+7=0 \tag{iii}\\
\mathrm{x}_{1}=1
\end{gather*}
$$

Substituting $x_{1}=1$ in (i) $5(1)+4 y_{1}-13=0$
$5+4 \mathrm{y}_{1}-13=0$
$4 \mathrm{y}_{1}-8=0$

$$
y_{1}=2
$$

\therefore The point of intersection is $(1,2)$.

Question-20

If the two straight lines $2 x-3 y+9=0,6 x+k y+4=0$ are parallel, find k.

Solution:

The two given equations are parallel.

$$
\begin{equation*}
2 x-3 y+9=0 \tag{i}
\end{equation*}
$$

$6 x+k y+4=0$
\therefore The coefficients of x and y are proportional $\frac{2}{6}=\frac{-3}{\mathrm{k}} \therefore \mathrm{k}=-9$.

Question-21

Find the distance between the parallel lines $2 x+y-9=0$ and $4 x+2 y+7=$ 0.

Solution:

The distance between the parallel lines is $\left|\frac{-9-\frac{7}{2}}{\sqrt{2^{2}+1^{2}}}\right|=\left|\frac{-25}{2}\right|=\left|\frac{-25}{\sqrt{5}}\right|=\frac{5 \sqrt{5}}{2}$ units

Question-22

Find the values of p for which the straight lines $8 p x+(2-3 p) y+1=0$ and $p x+8 y-7=0$ are perpendicular to each other.

Solution:

Slope of the line $8 p x+(2-3 p) y+1=0$ is $m_{1}=8 p /(2-3 p)$.
and slope of the line $p x+8 y-7=0$ is $m_{2}=-p / 8$
$m_{1} m_{2}=-1$
$\frac{s_{p}}{2-{ }^{2}} \times \frac{-p}{8}=-1$
$-p^{2}=-(2-3 p)$
$p^{2}+3 p-2=0$
$p^{2}+2 p+p-2=0$
$(p+1)(p-2)=0$
\therefore The two straight lines are at right angles.

Question-23

Find the equation of the straight line which passes through the intersection of the straight lines $2 x+y=8$ and $3 x-2 y+7=0$ and is parallel to the straight line $4 x+y-11=0$.

Solution:
$2 x+y-8=0$ \qquad
$3 x-2 y+7=0$
(i) $\times 2$
$4 x+2 y-16=0$
(ii) + (iii)
$7 x-9=0$

$$
x=9 / 7
$$

Substituting $x=9 / 7$ in (i)

$$
\begin{aligned}
2(9 / 7)+y-8 & =0 \\
18 / 7+y-8 & =0 \\
y=8-18 / 7 & =38 / 7
\end{aligned}
$$

Point of intersection of $2 x+y=8$ and $3 x-2 y+7=0$ is $(9 / 7,38 / 7)$.
The equation of lines parallel the straight line $4 x+y-11=0$ is $4 x+y+k=$
0.
$4\left(\frac{9}{7}\right)+\frac{38}{7}+k=0$
$k=-\frac{74}{7}:$: The required equation of straight line is $4 x+y-\frac{74}{7}=0$ i.e.,
$28 x+7 y-74=0$.

Question-24

Find the equation of the straight line passing through intersection of the straight lines $5 x-6 y=1$ and $3 x+2 y+5=0$ and perpendicular to the straight line $3 x-5 y+11=0$.

Solution:

Equation of line through the intersection of straight lines $5 x-6 y=1$ and $3 x+2 y+5=0$ is

$$
(5 x-6 y-1)+k(3 x+2 y+5)=0
$$

$(5+3 k) x+(-6+2 k) y+(-1+5 k)=0$
Slope of the above equation is $-(5+3 k) /(-6+2 k)$.
Above equation is perpendicular to $3 x-5 y+11=0$.

Question-25

Find the equation of the straight line joining ($4,-3$) and the intersection of the straight lines $2 x-y+7=0$ and $x+y-1=0$.

Solution:
$2 x-y+7=0$
$x+y-1=0$

$$
\begin{aligned}
& \text { (i) }+ \text { (ii) } \\
& 3 x+6=0 \\
& x=-2
\end{aligned}
$$

Substituting $x=-2$ in (i)

$$
\begin{array}{r}
2(-2)-y+7=0 \\
-4-y+7=0 \\
y=3
\end{array}
$$

The equation of the line joining ($4,-3$) and $(-2,3)$ is $\frac{y+3}{-3-3}=\frac{x-4}{4+2}$
$6(y+3)=-6(x-4)$
$y+3+x-4=0$
$x+y=1$

Question-26

Find the equation of the straight line joining the point of the intersection of the straight lines $3 x+2 y+1=0$ and $x+y=3$ to the point of intersection of the straight lines $y-x=1$ and $2 x+y+2=0$.

Solution:
$3 x+2 y+1=0$
$x+y=3$
(ii) $\times-2$
$-2 x-2 y+6=0$

$$
\begin{align*}
& \text { (i) }+(\text { iii) } \tag{iii}\\
& x+7=0 \\
& x=-7
\end{align*}
$$

Substituting $x=-7$ in (ii)

$$
\begin{array}{r}
x+y-3=0 \\
-7+y-3=0 \\
y=10
\end{array}
$$

\therefore The point of intersection of lines $3 x+2 y+1=0$ and $x+y=3$ is $(-7,10)$.

$$
\begin{gather*}
y-x-1=0 \tag{i}\\
2 x+y+2=0 \tag{ii}
\end{gather*}
$$

(i) - (ii)
$\begin{aligned}-3 x-3 & =0 \\ x & =-1\end{aligned}$

Substituting $x=-1$ in (ii)

$$
\begin{gathered}
y+1-1=0 \\
y=0
\end{gathered}
$$

\therefore The point of intersection of lines $\mathrm{y}-\mathrm{x}=1$ and $2 \mathrm{x}+\mathrm{y}+2=0$ is $(-1,0)$.
The equation of the line joining $(-7,10)$ and $(-1,0)$ is
$\frac{y-10}{10-0}=\frac{x+7}{-7+1}$
$-6(y-10)=10(x+7)$
$-3(y-10)=5(x+7)$
$-3 y+30=5 x+35$
$5 x+3 y+5=0$.
\therefore The required equation of straight line is $5 x+3 y+5=0$.

Question-27

Show that the angle between $3 x+2 y=0$ and $4 x-y=0$ is equal to the angle between $2 x+y=0$ and $9 x+32 y=41$.

Solution:

Slope of the line $3 x+2 y=0$ is $m_{1}=-3 / 2$.
Slope of the line $4 x-y=0$ is $m_{2}=4$.
Angle between the straight line $3 x+2 y=0$ and $4 x-y=0$ is $\tan \theta_{1}$
$=\left|\frac{\frac{-3}{2}-4}{1+\left(\frac{-3}{2}\right) \times 4}\right|=\left|\frac{\frac{-3-8}{2}}{1-6}\right|=\left|\frac{\frac{-11}{2}}{\frac{-5}{}}\right|=11 / 10$
Slope of the line $2 x+y=0$ is $m_{1}=-2$.
Slope of the line $9 x+32 y=41$ is $m_{2}=-9 / 32$.
Angle between the straight line $2 x+y=0$ and $9 x+32 y=41$ is $\tan \theta_{2}=$
$\left|\frac{-2+\frac{9}{32}}{1+(-2)\left(-\frac{9}{32}\right)}\right|$
$\left.=\left|\frac{\frac{-64+9}{32}}{1+\frac{18}{32}}\right|=\left|\frac{-55}{32}\right| \frac{50}{32} \right\rvert\,=11 / 10 \therefore \tan \theta_{1}=\tan \theta_{2} \therefore \theta_{1}=\theta_{2}$

Question-28

Show that the triangle whose sides are $y=2 x+7, x-3 y-6=0$ and $x+2 y$ $=8$ is right angled. Find its other angles.

Solution:

Slope of the line $y=2 x+7$ is $\mathrm{m}_{1}=2$.
Slope of the line $x-3 y-6=0$ is $m_{2}=1 / 3$.
Slope of the line $x+2 y=8$ is $m_{3}=-1 / 2$.
Angle between the straight line $y=2 x+7$ and $x-3 y-6=0$ is
$\tan \theta_{1}=\left|\frac{2-\frac{1}{3}}{1+(2)\left(\frac{1}{3}\right)}\right|=\left|\frac{\frac{6-1}{3}}{\frac{3+2}{3}}\right|=\left|\frac{\frac{5}{3}}{\frac{5}{3}}\right|=1 \backslash \theta_{1}=45^{\circ}$
Angle between the straight line $x-3 y-6=0$ and $x+2 y=8$ is
$\tan \theta_{2}=\left|\frac{\frac{1}{3}+\frac{1}{2}}{1+\left(\frac{1}{3}\right)\left(-\frac{1}{2}\right)}\right|=\left|\frac{\frac{2+3}{6}}{\left.\frac{6-1}{6} \right\rvert\,}\right|=\left|\frac{\frac{5}{6}}{\frac{5}{6}}\right|=1$
$\therefore \theta_{2}=45^{\circ}$
Angle between the straight line $x+2 y=8$ and $y=2 x+7$ is
$\tan \theta_{3}=\left|\frac{2+\frac{1}{2}}{1+(2)\left(-\frac{1}{2}\right)}\right|=\left|\frac{\frac{4+1}{2}}{\frac{2-2}{2}}\right|=\left|\begin{array}{c}\frac{5}{2} \\ \frac{0}{2}\end{array}\right| \quad \theta_{3}=90^{\circ}$
\therefore The triangle is right angled isosceles.

Question-29

Show that the straight lines $3 x+y+4=0,3 x+4 y-15=0$ and $24 x-7 y-3$ $=0$ form an isosceles triangle.

Solution:

Slope of the line $3 x+y+4=0$ is $m_{1}=-3$.
Slope of the line $3 x+4 y-15=0$ is $m_{2}=-3 / 4$.
Slope of the line $24 x-7 y-3=0$ is $m_{3}=24 / 7$.
Angle between the straight line $3 x+y+4=0$ and $3 x+4 y-15=0$ is
$\tan \theta_{1}=\left|\frac{-3+\frac{3}{4}}{1+(-3)\left(-\frac{3}{4}\right)}\right|=\left|\frac{-12+3}{4}\right| \frac{\frac{4+9}{4}}{}\left|=\left|\frac{9}{13}\right|=9 / 13\right.$
Angle between the straight line $3 x+4 y-15=0$ and $24 x-7 y-3=0$ is
$\tan \theta_{2}=\left|\frac{-\frac{3}{4}-\frac{24}{7}}{1+\left(-\frac{3}{4}\right)\left(\frac{24}{7}\right)}\right|=\left|\frac{\frac{-21-96}{28}}{\frac{28-72}{28}}\right|=\left|\frac{-117}{28}\right|=117 / 44$
Angle between the straight line $24 x-7 y-3=0$ and $3 x+y+4=0$ is
$\tan \theta_{3}=\left|\frac{\frac{24}{7}+3}{1+\left(\frac{24}{7}\right)(-3)}\right|=\left|\frac{\frac{24+21}{7}}{\left\lvert\, \frac{7-72}{7}\right.}\right|=\left|\frac{\frac{45}{7}}{\frac{-65}{7}}\right|=9 / 13$
$\tan \theta_{1}=\tan \theta_{3}$
\therefore The triangle is isosceles.

Question-30

Show that the straight lines $3 x+4 y=13,2 x-7 y+1=0$ and $5 x-y=14$ are concurrent.

Solution:

$3 x+4 y=13$

$$
\begin{equation*}
2 x-7 y+1=0 \tag{i}
\end{equation*}
$$

$$
5 x-y=14
$$

(iii) $\times 4$
$20 x-4 y=56$
(i) + (iv)
$23 x=69$
$x=3$
Substitute $x=3$ in (iii)

$$
\begin{gathered}
15-y=14 \\
y=1
\end{gathered}
$$

\therefore The point of intersection is $(3,1)$.

$$
\begin{gathered}
3(3)+4(1)=13 \\
9+4=13
\end{gathered}
$$

The point $(3,1)$ satisfies equation (i). Hence they are concurrent.

Question-31

Find ' a ' so that the straight lines $x-6 y+a=0,2 x+3 y+4=0$ and $x+4 y+$ 1 = 0 may be concurrent.

Solution:

$$
\begin{gather*}
x-6 y+a=0 \tag{i}\\
2 x+3 y+4=0 \tag{ii}\\
x+4 y+1=0 \tag{iii}\\
2 \times \text { (iii) } \\
2 x+8 y+2=0 \tag{iv}\\
\text { (ii) }- \text { (iv) } \\
-5 y+2=0 \\
y=2 / 5
\end{gather*}
$$

Substituting $y=2 / 5$ in (iii)

$$
\begin{aligned}
x+4(2 / 5)+ & =0 \\
x & =-13 / 5
\end{aligned}
$$

Substituting ($-13 / 5,2 / 5$) in (i),

$$
\begin{gathered}
\frac{-13}{5}-6 \times \frac{2}{5}+a=0 \\
-25+5 a=0 \\
a=5
\end{gathered}
$$

Question-32

Find the values of ' a ' for which the straight lines $x+y-4=0,3 x+2=0$ and $x-y+3 a=0$ are concurrent.

Solution:

$$
\begin{gather*}
x+y-4=0 \ldots \ldots \tag{i}\\
3 x+2=0 \ldots \ldots \tag{ii}\\
x-y+3 a=0 \ldots \tag{iii}\\
x=-2 / 3 \ldots \tag{iv}\\
(-2 / 3)+y-4=0 \\
y=4+2 / 3=14 / 3
\end{gather*}
$$

Substituting $(-2 / 3,14 / 3)$ in (iii),
$(-2 / 3)-(14 / 3)+3 a=0$

$$
\begin{aligned}
(-16 / 3)+3 a & =0 \\
a & =16 / 9
\end{aligned}
$$

Question-33

Find the coordinates of the orthocentre of the triangle whose vertices are the points $(-2,-1),(6,-1)$ and $(2,5)$.

Solution:

Let $A(-2,-1), B(6,-1)$ and $C(2,5)$ be the vertices of the triangle $A B C$.
Line $A B$ is $\frac{y+1}{-1+1}=\frac{x+2}{-2-6}$

$$
\begin{equation*}
x+2=0 \tag{i}
\end{equation*}
$$

Line perpendicular to $\mathrm{x}+2=0$ is $\mathrm{x}+\mathrm{k}=0$
If it passes through $(2,5)$, then $2+k=0, k=-2$
$\therefore \mathrm{x}-2=0$ is one altitude.

Line $B C$ is $\frac{y+1}{-1-5}=\frac{x-6}{6-2}$

$$
\begin{align*}
\frac{y+1}{-6} & =\frac{x-6}{4} \\
2(y+1) & =-3(x-6) \\
2 y+3 x & =16 \tag{iii}
\end{align*}
$$

Line perpendicular to $2 y+3 x=16$ is $2 x-3 y+k=0$.
If it passes through $(-2,-1)$, then $2(-2)-3(-1)+k=0$ i.e., $-4+3+k=0$ i.e., k
$=1$
$\therefore 2 x-3 y+1=0$ is another altitude.

Solving (ii) and (iv)

$$
x=2
$$

$2(2)-3 y+1=0$
$4-3 y+1=0$

$$
\begin{aligned}
-3 y & =-5 \\
y & =5 / 3
\end{aligned}
$$

\therefore Orthocentre is $(2,5 / 3)$.

Question-34

If $a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0$ are concurrent, show that $a^{3}+b^{3}+c^{3}=3 a b c$.

Solution:

The condition for three lines concurrency is $\left.\begin{array}{lll}a & b & d \\ b & c & 0 \\ c & a & 0\end{array} \right\rvert\,=0$

$$
\begin{gathered}
a\left(c b-a^{2}\right)-b\left(b^{2}-c a\right)+c\left(a b-c^{2}\right)=0 \\
a b c-a^{3}-b^{3}+a b c+a b c-c^{3}=0 \\
a b c-a^{3}-b^{3}+a b c+a b c-c^{3}=0 \\
\backslash a^{3}+b^{3}+c^{3}=3 a b c .
\end{gathered}
$$

Question-35

Find the coordinates of the orthocentre of the triangle formed by the straight lines $x+y-1=0, x+2 y-4=0$ and $x+3 y-9=0$.

Solution:

Let the equation of sides $A B, B C$ and $C A$ of a $\triangle B C$ be represented by
$x+y-1=0$
$x+2 y-4=0$
$x+3 y-9=0$
(i) $\times 2$
$2 x+2 y-2=0$
(ii) - (iv)
$-x-2=0$

$$
x=-2
$$

Substituting $x=-2$ in (ii)
$-2+2 y-4=0$

$$
\begin{aligned}
2 y & =6 \\
y & =3
\end{aligned}
$$

The vertex A is $(-2,3)$.
The equation of the straight line CA is $x+3 y-9=0$. The straight line perpendicular to its is of the form $3 x-y+k=0$
$A(-2,3)$ satisfies the equation (v)
$\therefore 3 \mathrm{x}-\mathrm{y}+\mathrm{k}=0$
$3(-2)-3+k=0$

$$
\begin{equation*}
k=9 \tag{vi}
\end{equation*}
$$

The equation of $A D$ is $3 x-y+9=0$.
(ii) - (iii)
$-y+5=0$
$y=5$
Substituting $y=5$ in (ii)
$x+2(5)-4=0$
$x+10-4=0$
$x=-6$
The vertex C is $(-6,5)$.
The equation of the straight line $A B$ is $x+y-1=0$. The straight line perpendicular to its is of the form $x-y+k=0$
$C(-6,5)$ satisfies the equation (vii)

$$
\begin{align*}
\therefore x-y+ & =0 \\
-6-5+k & =0 \\
k & =11 \tag{viii}
\end{align*}
$$

The equation of $C E$ is $x-y+11=0$.

$$
\begin{gathered}
(v i)-(\text { viii }) \\
2 x-2=0 \\
x=1
\end{gathered}
$$

Substituting $x=1$ in (viii)

$$
1-y+11=0
$$

$$
y=12
$$

\therefore The orthocentre 0 is $(1,12)$.

Question-36

The equation of the sides of a triangle are $x+2 y=0,4 x+3 y=5$ and $3 x+y$ $=0$. Find the coordinates of the orthocentre of the triangle.

Solution:

Let the equation of sides $A B, B C$ and $C A$ of a $\triangle B C$ be represented by

$$
\begin{array}{r}
x+2 y=0 \\
4 x+3 y=5 \\
3 x+y=0 \tag{iii}
\end{array}
$$

Substituting $x=-2 y$ (ii)
$4(-2 y)+3 y=5$

$$
-8 y+3 y=5
$$

$$
y=-1
$$

$$
\therefore \mathrm{x}=2
$$

The vertex B is $(2,-1)$.

The equation of the straight line $A C$ is $3 x+y=0$. The straight line perpendicular to its is of the form $x-3 y+k=0$
$B(2,-1)$ satisfies the equation (iv)

$$
\begin{align*}
\therefore 2-3(-1)+ & k=0 \\
2+3+k & =0 \\
k & =-5 \tag{v}
\end{align*}
$$

The equation of $B D$ is $x-3 y-5=0$.
Substituting $x=-2 y$ (iii)
$3(-2 y)+y=0$
$-6 y+y=0$

$$
-5 y=0
$$

$$
y=0
$$

$$
\therefore \mathrm{x}=0
$$

The vertex A is $(0,0)$. The equation of the straight line $B C$ is $4 x+3 y=5$. The straight line perpendicular to its is of the form $3 x-4 y+k=0$ \qquad (vi)
$A(0,0)$ satisfies the equation (vi)

$$
\begin{array}{r}
\therefore 3(0)-4(0)+\mathrm{k}=0 \\
\mathrm{k}=0 \tag{vii}
\end{array}
$$

The equation of $A E$ is $3 x-4 y=0$
$3 \times(\mathrm{v})-(\mathrm{vii})$
$3 \mathrm{x}-9 \mathrm{y}-15=0$

$$
\therefore-5 y-15=0
$$

$$
y=-15 / 5=-3
$$

Substitute $y=-3$ in (vii)

$$
\begin{aligned}
3 x-4(-3) & =0 \\
3 x+12 & =0 \\
x & =-4 .: \text { The orthocentre } 0 \text { is }(-4,-3) .
\end{aligned}
$$

CBSE Class 11 Mathematics

Important Questions
Chapter 10
Straight Lines

1 Marks Questions

1. Find the slope of the lines passing through the point $(3,-2)$ and $(-1,4)$

Ans. Slope of line through (3,-2) and (-1, 4)

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{4-(-2)}{-1-3} \\
& =\frac{6}{-4}=\frac{-3}{2}
\end{aligned}
$$

2. Three points $P(h, k), Q\left(x_{1}, y_{1}\right)$ and $R\left(x_{2}, y_{2}\right)$ lie on a line. Show that $\left(h-x_{1}\right)\left(y_{2}-y_{1}\right)=\left(k-y_{1}\right)\left(x_{2}-x_{1}\right)$

Ans. Since P, Q, R are collinear
Slope of $\mathrm{PQ}=$ slope of QR
$\frac{y_{1}-k}{x_{1}-h}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\frac{\searrow\left(k-y_{1}\right)}{\lambda\left(h-x_{1}\right)}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\left(h-x_{1}\right)\left(y_{2}-y_{1}\right)=\left(k-y_{1}\right)\left(x_{2}-x_{1}\right)$
3. Write the equation of the line through the points $(1,-1)$ and $(3,5)$

Ans. Req. eq. $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$
$y+1=\frac{5+1}{2}(x-1)$
$-3 x+y+4=0$
4. Find the measure of the angle between the lines $x+y+7=0$ and $x-y+1=0$

Ans. $x+y+7=0$
$m_{1}=\frac{-1}{1}$
$x-y+1=0$
$m_{2}=\frac{-1}{-1}=1$

Slopes of the two lines are 1 and -1 as product of these two slopes is -1 , the lines are at right angles.
5. Find the equation of the line that has y-intercept 4 and is \qquad to the line $y=3 x-2$

Ans. $y=3 x-2$
Slope $(m)=\frac{-3}{-1}=3$, slope of any line \perp it is $-\frac{1}{3}$
$C=4$
Req. eq. is $y=m x+c$
$y=\frac{-1}{3} x+4$
6. Find the equation of the line, which makes intercepts -3 and 2 on the x and y-axis respectively.

Ans. Req. eq. $\frac{x}{a}+\frac{y}{b}=1$
$a=-3, b=2$
$\therefore \frac{x}{-3}+\frac{y}{2}=1$
$2 x-3 y+6=0$
7. Equation of a line is $3 x-4 y+10=0$ find its slope.

Ans. $m=\frac{- \text { coff. of } x}{\text { coff. of } y}$
$=\frac{-3}{-4}=\frac{3}{4}$
8. Find the distance between the parallel lines $3 x-4 y+7=0$ and $3 x-4 y+5=0$

Ans. $A=3, B=-4, C_{1}=7$ and $C_{2}=5$

$$
\begin{aligned}
& d=\frac{\left|C_{1}-C_{2}\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{|7-5|}{\sqrt{(3)^{2}+(-4)^{2}}} \\
& =\frac{2}{5}
\end{aligned}
$$

9. Find the equation of a straight line parallel to y-axis and passing through the point

Ans. Equation of line parallel to y-axis is $x=a \ldots \ldots(i)$
Eq. (i) passing through (-4,2)
$a=-4$
So $x=-4$
$x+4=0$
10. If $3 x-b y+2=0$ and $9 x+3 y+a=0$ represent the same straight line, find the values of a and b.

Ans. ATQ
$\frac{3}{9}=\frac{-b}{3}=\frac{2}{a}$
$b=-1$
$\Rightarrow a=6$
11. Find the distance between $P\left(x_{1} y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ when $P Q$ is parallel to the y-axis.

Ans. When PQ is parallel to the y-axis,
Then $x_{1}=x_{2}$
$\therefore P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{\left(x_{2}-x_{2}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\left|y_{2}-y_{1}\right|$
12. Find the slope of the line, which makes an angle of 30° with the positive direction of
y-axis measured anticlockwise.

Ans. Let θ be the inclination of the line
$\theta=120^{\circ}$
$m=\tan 120^{\circ}$
$=\tan (90+30)$
$=-\sqrt{3}$

13. Determine x so that the inclination of the line containing the points $(x,-3)$ and $(2,5)$ is 135.

Ans.
$\frac{5-(-3)}{2-x}=\tan 135$
$\left[\begin{array}{l}\because m=\tan \theta \\ m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\end{array}\right]$
$\frac{5+3}{2-x}=-1$
$x=10$
14. Find the distance of the point $(4,1)$ from the line $3 x-4 y-9=0$

Ans. Let d be the req. distance
$d=\frac{|3 \cdot(4)-4(1)-9|}{\sqrt{(3)^{2}+(-4)^{2}}}$
$=\frac{|-1|}{5}=\frac{1}{5}$
15. Find the value of x for which the points $(x,-1),(2,1)$ and $(4,5)$ are collinear.

Ans. Let $A(x,-1), B(2,1), C(4,5)$

Slope of $A B=$ Slope of $B C$
$\frac{1+1}{2-x}=\frac{5-1}{4-2}$
$\frac{2}{2-x}=\frac{4^{2}}{2}$
$2-x=1$
$-x=-1$
$x=1$
16. Find the angle between the x-axis and the line joining the points $(3,-1)$ and $(4,-2)$

Ans. $m_{1}=0 \quad$ [Slope of x-axis]
$m_{2}=$ slope of line joining points $(3,-1)$ and $(4,-2)$
$=\frac{-2-(-1)}{4-3}=-1$
$\tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|$
$\tan \theta=\left|\frac{0+1}{1+0 \times(-1)}\right|$
$\tan \theta=1$
$\theta=45^{\circ}$
17. Using slopes, find the value of x for which the points $(x,-1),(2,1)$ and $(4,5)$ are collinear.

Ans. Since the given points are collinear slope of the line joining points $(x,-1)$ and $(2,1)$ $=$ slope of the line joining points $(2,1)$ and $(4,5)$
$\Rightarrow \frac{2}{2-x}=\frac{2}{1}$
$x=1$
18. Find the value of K so that the line $2 x+k y-9=0$ may be parallel to $3 x-4 y+7=0$

Ans. ATQ
Slope of 1st line = slope of 2nd line
$\frac{-2}{k}=\frac{-3}{-4}$
$\Rightarrow k=\frac{-8}{3}$
19. Find the value of K, given that the distance of the point $(4,1)$ from the line $3 x-4 y+K=0$ is 4 units.

Ans. We are given that distance of $(4,0)$ from the line $3 x-4 y+k=0$ is 4

$$
\frac{|3(4)-4(1)+k|}{\sqrt{(3)^{2}+(-4)^{2}}}=4
$$

$|k+8|=4 \times 5$
$k=12,-28$
20. Find the equation of the line through the intersection of $3 x-4 y+1=0$
$5 x+y-1=0$ which cuts off equal intercepts on the axes.

Ans. Slope of a line which makes equal intercept on the axes is -1any line through the intersection of given lines is
$(3 x-4 y+1)+K(5 x-y-1)=0$
$(3+5 K) x+y(K-4)+1-K=0$
$m=-\frac{(3+5 K)}{K-4}=-1$
$K=\frac{-7}{4}$
21. Find the distance of the point $(2,3)$ from the line $12 x-5 y=2$

Ans. $d=\frac{|12 x-5 y-2|}{\sqrt{(12)^{2}+(-5)^{2}}}$
$d=\frac{|12 \times 2-5 \times 3-2|}{\sqrt{169}}$
$=\frac{|-41|}{13}=\frac{41}{13}$
22. Find the equation of a line whose perpendicular distance from the origin is 5 units and angle between the positive direction of the X-axis and the perpendicular is 30°.

Ans. $p=5, \alpha=30^{\circ}$
Req. eq. $x \cos \alpha+y \sin \alpha=p$
$x \cos 30^{\circ}+y \sin 30^{\circ}=5$
$\sqrt{3} x+y-10=0$
23. Write the equation of the lines for which $\tan \theta=\frac{1}{2}$, where \mathbf{Q} is the inclination of the line and x intercept is 4 .

Ans. $m=\tan \theta=\frac{1}{2}$ and $d=4$
$y=\frac{1}{2}(x-4)[\because y=m(x-d)]$
$2 y-x+4=0$
24. Find the Angle between the x-axis and the line joining the points $(3,-1)$ and $(4,-2)$

Ans. Let $A(3,-1) \quad B(4,-2)$
Slope of $A B=\frac{-2-(-1)}{4-2}$
$=-1$
$\tan \theta=-1$
$\theta=135\left[\begin{array}{l}\text { where } \theta \text { is the angle which } \mathrm{AB} \text { makes } \\ \text { with positive direction of } x \text {-axis }\end{array}\right]$
25. Find the equation of the line intersecting the x-axis at a distance of 3 unit to the left of origin with slope -2 .

Ans. The line passing through $(-3,0)$ and has slope $=-2$
Req. eq. is

$$
\begin{aligned}
& y-0=-2(x+3) \\
& 2 x+y+6=0
\end{aligned}
$$

CBSE Class 12 Mathematics

Important Questions

Chapter 10

Straight Lines

4 Marks Questions

1. If p is the length of the \perp from the origin on the line whose intercepts on the axes are a and b. show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

Ans. Equation of the line is $\frac{x}{a}+\frac{y}{b}=1$
$\Rightarrow \frac{x}{a}+\frac{y}{b}-1=0$
The distance of this line from the origin is P
$\therefore P=\frac{\left|\frac{0}{a}+\frac{0}{b}-1\right|}{\sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}}}$

$$
\left[d=\frac{|a x+b y+c|}{\sqrt{a^{2}+b^{2}}}\right]
$$

$\frac{P}{1}=\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}$
$\frac{1}{P}=\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}$
Sq. both side
$\frac{1}{P^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
2.Find the value of p so that the three lines $3 x+y-2=0, p x+2 y-3=0$ and $2 x-y-3=0$ may intersect at one point.

Ans. $3 x+y-2=0$. \qquad
$p x+2 y-3=0$.
$2 x-y+3=0$ \qquad

On solving eq. (i) and (iii)
$x=1$ And $y=-1$
Put x, y in eq. (ii)
$P(1)+2(-1)-3=0$
$p-2-3=0$
$p=5$
3.Find the equation to the straight line which passes through the point $(3,4)$ and has intercept on the axes equal in magnitude but opposite in sign.

Ans. Let intercept be a and -a the equation of the line is
$\frac{x}{a}+\frac{y}{-a}=1$
$\Rightarrow x-y=a$.

Since it passes through the point $(3,4)$
$3-4=a$
$a=-1$
Put the value of a in eq. (i)
$x-y=-1$
$x-y+1=0$
4.By using area of Δ. Show that the points $(a, b+c),(b, c+a)$ and $(c, a+b)$ are collinear.

Ans. Area of $\Delta=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
$=\frac{1}{2}|a(c+a)-b(b+c)+b(a+b)-c(c+a)+c(b+c)-a(a+b)|$
$=\frac{1}{2} \cdot 0=0$
5. Find the slope of a line, which passes through the origin, and the midpoint of the line segment joining the point $p(0,-4)$ and $Q(8,0)$

Ans. Let m be the midpoint of segment PQ then $M=\left(\frac{0+8}{2}, \frac{-4+0}{2}\right)$
$=(4,-2)$
Slope of $O M=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=\frac{-2-0}{4-0}=\frac{-1}{2}$

6.Find equation of the line passing through the point $(2,2)$ and cutting off intercepts on the axes whose sum is 9

Ans. Req. eq. be $\frac{x}{a}+\frac{y}{b}=1 \ldots \ldots$ (i)
$a+b=9$
$b=9-a$
$\Rightarrow \frac{x}{a}+\frac{y}{9-a}=1$
This line passes through $(2,2)$
$\therefore \frac{2}{a}+\frac{2}{9-a}=1$
$a^{2}-9 a+18=0$
$a^{2}-6 a-3 a+18=0$
$a(a-6)-3(a-6)=0$
$(a-6)(a-3)=0$
$a=6,3$
$a=6 \quad a=3$
$b=3 \quad b=6$

$$
\frac{x}{6}+\frac{y}{3}=1 \quad \frac{x}{3}+\frac{y}{6}=1
$$

7.Reduce the equation $\sqrt{3} x+y-8=0$ into normal form. Find the values \mathbf{p} and ω.

Ans. $\sqrt{3} x+y-8=0$
$\sqrt{3} x+y=8$.
$\sqrt{(\sqrt{3})^{2}+(1)^{2}}=2$
Dividing (i) by 2
$\frac{\sqrt{3}}{2} x+\frac{y}{2}=4$
$x \cos 30^{\circ}+y \cdot \sin 30=4 \ldots \ldots$ (ii)
Comparing (ii) with
$x \cos \omega+y \sin \omega=p$
$p=4$
$\omega=30^{\circ}$
8. Without using the Pythagoras theorem show that the points $(4,4),(3,5)$ and $(-1,-1)$ are the vertices of a right angled Δ.

Ans. The given points are $A(4,4), B(3,5)$ and $C(-1,-1)$
Slope of $A B=\frac{5-4}{3-4}=-1$

Slope of $B C=\frac{-1-5}{-1-3}=\frac{-6}{-4}=\frac{3}{2}$
Slope of $A C=\frac{-1-4}{-1-4}=+1$
Slope of $A B \times$ slope of $A C=-1$
$\Rightarrow A B \perp A C$
Hence $\triangle \mathrm{ABC}$ is right angled at A .
9.The owner of a milk store finds that, he can sell 980 liters of milk each week at 14 liter and 1220 liter of milk each week at Rs 16 liter. Assuming a linear relationship between selling price and demand how many liters could he sell weekly at Rs 17 liter?

Ans. Assuming sell along x-axis and cost per litre along y-axis, we have two points $(980,14)$ and $(1220,16)$ in $x y$ plane
$y-14=\frac{16-14}{1220-980}(x-980)$
$y-14=\frac{2}{120} 240 .(x-980)$
$120 y-14 \times 120=x-980$
$120 y-1680=x-980$
$x-120 y=-700$
When $y=17$
$x-120 \times 17=-700 \Rightarrow x=1340$ litres.
10.The line through the points $(\mathbf{h}, \mathbf{3})$ and $(\mathbf{4}, \mathbf{1})$ intersects the line $7 x-9 y-19=0$ at right angle. Find the value of h.

Ans. Slope of line joining (h,3) and (4,1)
$=\frac{1-3}{4-h}=\frac{-2}{4-h}$
Given line is $7 x-9 y-19=0$
Slope of this line $=\frac{-7}{-9}$
ATV
$\left(\frac{-2}{4-h}\right) \times\left(\frac{7}{9}\right)=-1$
$\Rightarrow h=\frac{22}{9}$
11. Find the equations of the lines, which cut off intercepts on the axes whose sum and product are 1 and -6 respectively.

Ans. ATQ $a+b=1$ \qquad (i)
$a b=-6$
$b=1-a \quad[\operatorname{from}(i)]$
Put b in eq. (ii)
$a(1-a)=-6$
$a-a^{2}=-6$
$a^{2}-a-6=0$
$(a-3)(a+2)=0$
$a=3,-2$

When $a=3$
$b=-2$

Eq. of the line is
$\frac{x}{3}+\frac{y}{-2}=1$
$2 x-3 y-6=0$

When $a=-2$
$b=3$
Eq. of the line is
$\frac{x}{-2}+\frac{y}{3}=1$
$3 x-2 y+6=0$
12. The slope of a line is double of the slope of another line. If tangent of the angle between them is $\frac{1}{3}$, find the slopes of the lines.

Ans. Let the slope of one line is m and other line is $2 m$
$\frac{1}{3}=\left|\frac{2 m-m}{1+(2 m)(m)}\right|$
$\frac{1}{3}=\left|\frac{m}{1+2 m^{2}}\right|$
$\pm \frac{1}{3}=\frac{m}{1+2 m^{2}}$

$$
\begin{aligned}
& \frac{1}{3}=\frac{m}{1+2 m^{2}} \\
& 2 m^{2}-3 m+1=0 \\
& 2 m^{2}-2 m-m+1=0 \\
& 2 m(m-1)-1(m-1)=0 \\
& (m-1)(2 m-1)=0 \\
& m=1, m=\frac{1}{2} \\
& \frac{-1}{3}=\frac{m}{1+2 m^{2}} \\
& -1-2 m^{2}=3 m \\
& 2 m^{2}+3 m+1=0 \\
& 2 m^{2}+2 m+m+1=0 \\
& 2 m(m+1)+1(m+1)=0 \\
& (m+1)(2 m+1)=0 \\
& m=-1 \\
& m=\frac{-1}{2}
\end{aligned}
$$

13.Point $R(h, k)$ divides a line segment between the axes in the ratio 1:2. Find equation of the line.

Ans. Let eq. be $\frac{x}{a}+\frac{y}{b}=1$
It is given that $R(h, k)$ divides AB in the ratio 1:2
$\therefore(h, k)=\left(\frac{2 a}{3}, \frac{b}{3}\right)$
$\frac{2 a}{3}=h$
$a=\frac{3 h}{2}$

$k=\frac{b}{3}$
$b=3 k$
Put a and b in eq.
$\frac{x}{\frac{3 h}{2}}+\frac{y}{3 k}=1$
$\frac{2 x}{h}+\frac{y}{k}=3$
14.The Fahrenheit temperature F and absolute temperature K satisfy a linear equation. Given that $K=273$ when $F=32$ and that $K=373$ when $F=212$ Express K in terms of F and find the value of F when $K=0$

Ans. Let F along x-axis and K along y-axis
$K-273=\frac{373-273}{212-32}(F-32)\left[\because y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)\right]$
$K-273=\frac{10 Q}{18 Q}(F-32)$
$K=\frac{5}{9}(F-32)+273$
15. If three points $(h, 0)(a, b)$ and $(0, k)$ lie on a line, show that $\frac{a}{h}+\frac{b}{k}=1$

Ans. Let $A(h, 0) B(a, b)$ and $\mathrm{C}(0, k)$
Slope of AB = slope of BC
$\frac{b-0}{a-h}=\frac{k-b}{0-a}$
$\frac{b}{a-h}=\frac{h-b}{-a}$
$(a-h)(k-b)=-a b$
$a k-a k-h k+h b=-\partial k$
$a k+h b=h k$
$\frac{a k}{h k}+\frac{h b}{h k}=1$
$\frac{a}{h}+\frac{b}{k}=1$
16. $p(a, b)$ is the mid point of a line segment between axes. Show that equation of the
line is $\frac{x}{a}+\frac{y}{b}=2$

Ans. Req. eq. be
$\frac{x}{c}+\frac{y}{d}=1$.
P is the mid point

Coordinate of $p=\left(\frac{c}{2}, \frac{d}{2}\right)$
$(a, b)=\left(\frac{c}{2}, \frac{d}{2}\right)$
$\frac{a}{1}=\frac{c}{2}$
$c=2 a$
$\frac{b}{1}=\frac{d}{2}$
$d=2 b$
Put the value of C and D in eq. (i)
$\frac{x}{2 a}+\frac{y}{2 b}=1$
$\frac{x}{a}+\frac{y}{b}=2$
17.The line \perp to the line segment joining the points $(1,0)$ and $(2,3)$ divides it in the ratio $1: n$ find the equation of the line.

Ans. Coordinate of $c\left(\frac{2+n}{1+n}, \frac{3}{1+n}\right)$
$m_{A B}=3$
$m_{P \underline{O}}=-\frac{1}{3}$

Eq. of $P Q$ is
$\frac{y}{1}-\frac{3}{1+n}=-\frac{1}{3}\left(\frac{x}{1}-\frac{2+n}{1+n}\right)$
$(n+1) x+3(n+1) y-(n+11)=0$

CBSE Class 12 Mathematics

Important Questions
Chapter 10
Straight Lines

6 Marks Questions

1. Find the values of k for the line $(k-3) x-\left(4-k^{2}\right) y+k^{2}-7 k+6=0$
(a). Parallel to the x-axis
(b). Parallel to y-axis
(c). Passing through the origin

Ans.
(a) The line parallel to x-axis if coeff. Of $x=0$
$k-3=0$
$k=3$
(b) The line parallel to y-axis if coeff. Of $y=0$
$4-k^{2}=0$
$k= \pm 2$
(c)Given line passes through the origin if $(0,0)$ lies on given eq.
$(k-3) \cdot(0)-\left(4-k^{2}\right)(0)+k^{2}-7 k+6=0$
$(k-6)(k-1)=0$
$k=6,1$
2. If p and q are the lengths of \perp from the origin to the lines.
$x \cos \theta-y \sin \theta=k \cos 2 \theta$, and $x \sec \theta+y \operatorname{cosec} \theta=k$ respectively, prove that $p^{2}+4 q^{2}=k^{2}$

Ans.

$P=\frac{|0 \cdot \cos \theta-0 \sin \theta-k \cos 2 \theta|}{\sqrt{(\cos \theta)^{2}+(-\sin \theta)^{2}}}\left[\begin{array}{l}\perp \text { from origin } \\ \because(0,0)\end{array}\right.$
$P=K \cos 2 \theta$.
$q=\frac{|0 \cdot \sec \theta+0 \operatorname{cosec} \theta-k|}{\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}}$
$=\frac{K}{\sqrt{\frac{1}{\cos ^{2} \theta}+\frac{1}{\sin ^{2} \theta}}}$
$=\frac{k \cos \theta \cdot \sin \theta}{\sqrt{\sin ^{2} \theta+\cos ^{2} \theta}}=\frac{1}{2} k \cdot \sin \theta \cdot \cos \theta$
$2 q=k \cdot \sin 2 \theta$.
Squaring (i) and (ii) and adding
$P^{2}+(2 q)^{2}=K^{2} \cos ^{2} 2 \theta+K^{2} \sin ^{2} 2 \theta$
$P^{2}+4 q^{2}=K^{2}\left(\cos ^{2} 2 \theta+\sin ^{2} 2 \theta\right)$
$p^{2}+4 q^{2}=k^{2}$
3.Prove that the product of the \perp drawn from the points $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to the line $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ is b^{2}.

Ans. Let
$p_{1}=\frac{\left|\frac{\sqrt{a^{2}-b^{2}}}{a} \cdot \cos \theta-1\right|}{\sqrt{\left(\frac{\cos \theta}{a}\right)^{2}+\left(\frac{\sin \theta}{b}\right)^{2}}}\left[\because \perp\right.$ from the points $\left.\sqrt{a^{2}-b^{2}}, 0\right]$
Similarly p_{2} be the distance from $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to given line
$p_{2}=\frac{\left|-\frac{\sqrt{a^{2}-b^{2}}}{a} \cos \theta-1\right|}{\sqrt{\left(\frac{\cos \theta}{a}\right)^{2}+\left(\frac{\sin \theta}{b}\right)^{2}}}$
$p_{1} p_{2}=\frac{\left|\left(\frac{\sqrt{a^{2}-b^{2}}}{a} \cos \theta-1\right)\left(-\frac{\sqrt{a^{2}-b^{2}}}{a} \cos \theta-1\right)\right|}{\frac{\cos ^{2} \theta}{a^{2}}+\frac{\sin ^{2} \theta}{b^{2}}}$
$=\frac{\left.\left\lvert\, \frac{a^{2}-b^{2}}{a^{2}}\right.\right) \cdot \cos ^{2} \theta-1 \mid}{\frac{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}{a^{2} b^{2}}}$
$=\frac{\left|a^{2} \cos ^{2} \theta-b^{2} \cos ^{2} \theta-a^{2}\right| a^{2} b^{2}}{a^{2}\left(a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta\right)}$
$=\frac{\left|-\left(a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta\right)\right| b^{2}}{a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta} \quad\left[\because a^{2} \cos ^{2} \theta-a^{2}=a^{2}\left(\cos ^{2} \theta-1\right)\right.$
$=\frac{\left(a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta\right) b^{2}}{a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta}$
$=b^{2}$
4. Find equation of the line mid way between the parallel lines $9 x+6 y-7=0$ and $3 x+2 y+6=0$

Ans. The equations are

$$
9 x+6 y-7=0
$$

$3\left(3 x+2 y-\frac{7}{3}\right)=0$
$3 x+2 y-\frac{7}{3}=0$
$3 x+2 y+6=0 \ldots$.

Let the eq. of the line mid way between the parallel lines (i) and (ii) be
$3 x+2 y+k=0$ \qquad (iii)

ATQ
Distance between (i) and (iii) = distance between (ii) and (iii)
$\left|\frac{K+\frac{7}{3}}{\sqrt{9+4}}\right|=\left|\frac{K-6}{\sqrt{9+4}}\right|\left[\because d=\frac{\left|c_{1}-c_{2}\right|}{\sqrt{a^{2}+b^{2}}}\right]$
$K+\frac{7}{3}=K-6$
$K=\frac{11}{6}$
Req. eq. is
$3 x+2 y+\frac{11}{6}=0$
5. Assuming that straight lines work as the plane mirror for a point, find the image of the point $(1,2)$ in the line $x-3 y+4=0$

Ans.Let $Q(h, k)$ is the image of the point $p(1,2)$ in the line.
$x-3 y+4=0$.
Coordinate of midpoint of $P Q=\left(\frac{h+1}{2}, \frac{k+2}{2}\right)$
This point will satisfy the eq.
$\left(\frac{h+1}{2}\right)-3\left(\frac{k+2}{2}\right)+4=0$
$h-3 k=-3$
$($ Slope of line $P Q) \times($ slope of line $x-3 y+4=0)=-1$
$\left(\frac{k-2}{h-1}\right)\left(\frac{-1}{-3}\right)=-1$
$3 h+k=5 \ldots \ldots(i i)$
On solving (i) and (ii)
$h=\frac{6}{5}$ and $k=\frac{7}{5}$

6.A person standing at the junction (crossing) of two straight paths represented by the equations $2 x-3 y+4=0$ and $3 x+4 y-5=0$ wants to reach the path whose equation is $6 x-7 y+8=0$ in the least time. Find equation of the path that he should follow.

Ans. $2 x-3 y-4=0$
$3 x+4 y-5=0 \ldots \ldots$ (ii)
$6 x-7 y+8=0 \ldots \ldots .(i i i)$

On solving eq. (i) and (ii)
We get $\left(\frac{31}{17}, \frac{-2}{17}\right)$
To reach the line (iii) in least time the man must move along the \perp from crossing point $\left(\frac{31}{17}, \frac{-2}{17}\right)$ to (iii) line

Slope of (iii) line is $\frac{6}{7}$

Slope of required path $=\frac{-7}{6}\left[\because m_{1} \times m_{2}=-1\right]$
$y-\left(-\frac{2}{17}\right)=\frac{-7}{6}\left(x-\frac{31}{17}\right)$
$119 x+102 y=205$
7. A line is such that its segment between the lines $5 x-y+4=0$ and $3 x+4 y-4=0$ is bisected at the point $(1,5)$ obtain its equation.

Ans. $p\left(x_{1} y_{1}\right)$ lies on $5 x-y+4=0$
$\Rightarrow 5 x_{1}-y_{1}+4=0$
And $Q\left(x_{2} y_{2}\right)$ lies on $3 x+4 y-4=0$
$3 x_{2}+4 y_{2}-4=0$

On solving
$y_{1}=5 x_{1}+4$
$y_{2}=\frac{4-3 x_{2}}{4}$

Since R is the mid point of PQ
$\frac{x_{1}+x_{2}}{2}=1, \frac{y_{1}+y_{2}}{2}=5$
$x_{1}+x_{2}=2, y_{1}+y_{2}=10$

On solving
$x_{1}=\frac{26}{23}, x_{2}=\frac{20}{23}$
And $y_{1}=\frac{222}{23}, y_{2}=\frac{8}{23}$

Eq. of PQ
$y-\frac{222}{23}=\frac{\frac{8}{23}-\frac{222}{23}}{\frac{20}{23}-\frac{26}{23}}\left(x-\frac{26}{23}\right)$
$107 x-3 y-92=0$
8.Find the equations of the lines which pass through the point $(4,5)$ and make equal angles with the lines $5 x-12 y+6=0$ and $3 x-4 y-7=0$

Ans. The slopes of the given lines are $\frac{5}{12}$ and $\frac{3}{4}$

Let m be the slope of a required line

ATQ
$\left|\frac{m-\frac{5}{12}}{1+m \cdot \frac{5}{12}}\right|=\left|\frac{m-\frac{3}{4}}{1+m \cdot \frac{3}{4}}\right|$
$\Rightarrow\left|\frac{12 m-5}{12+5 m}\right|=\left|\frac{4 m-3}{4+3 m}\right|$
$\frac{12 m-5}{12+5 m}=\frac{4 m-3}{4+3 m}$
$16 m^{2}=-16$
$m^{2}=-1$
Neglect
$\frac{12 m-5}{12+5 m}=-\frac{4 m-3}{4+3 m}$
$m=\frac{4}{7}, \frac{-7}{4}$

Req. eq. are
$y-5=\frac{4}{7}(x-4)$
$4 x-7 y+19=0$
$y-5=\frac{-7}{4}(x-4)$
$7 x+4 y-48=0$

Straight lines

1. Find the equation of the straight line which passes through the point $(1,-2)$ and cuts off equal intercepts from axes.
2. Find the equation of the line passing through the point $(5,2)$ and perpendicular to the line joining the points $(2,3)$ and $(3,-1)$.
3. Find the angle between the lines $y=(2-\sqrt{3})(x+5)$ and $y=(2+\sqrt{3})(x-7)$.
4. Find the equation of the lines which passes through the point $(3,4)$ and cuts off intercepts from the coordinate axes such that their sum is 14 .
5. Find the points on the line $x+y=4$ which lie at a unit distance from the line $4 x+3 y=10$.
6. Show that the tangent of an angle between the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{a}-\frac{y}{b}=1$ is $\frac{2 a b}{a^{2}-b^{2}}$.
7. Find the equation of lines passing through $(1,2)$ and making angle 30° with y-axis.
8. Find the equation of the line passing through the point of intersection of $2 x+y=$ 5 and $x+3 y+8=0$ and parallel to the line $3 x+4 y=7$.
9. For what values of a and b the intercepts cut off on the coordinate axes by the line $a x+b y+8=0$ are equal in length but opposite in signs to those cut off by the line $2 x-3 y+6=0$ on the axes.
10. If the intercept of a line between the coordinate axes is divided by the point $(-5$, 4) in the ratio $1: 2$, then find the equation of the line.
11. Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.
[Hint: Use normal form, here $\omega=30^{\circ}$.]
12. Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by $3 x+4 y=4$ and the opposite vertex of the hypotenuse is $(2,2)$.
13. If the equation of the base of an equilateral triangle is $x+y=2$ and the vertex is $(2,-1)$, then find the length of the side of the triangle.
[Hint: Find length of perpendicular (p) from $(2,-1)$ to the line and use $p=l$ sin 60°, where l is the length of side of the triangle].
14. A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points $(2,0),(0,2)$ and $(1,1)$ on the line is zero. Find the coordinates of the point P.
[Hint: Let the slope of the line be m. Then the equation of the line passing through the fixed point $\mathrm{P}\left(x_{1}, y_{1}\right)$ is $y-y_{1}=m\left(x-x_{1}\right)$. Taking the algebraic sum of perpendicular distances equal to zero, we get $y-1=m(x-1)$. Thus $\left(x_{1}, y_{2}\right)$ is $(1,1)$]
15. In what direction should a line be drawn through the point $(1,2)$ so that its point of intersection with the line $x+y=4$ is at a distance $\frac{\sqrt{6}}{3}$ from the given point.
16. A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.
[Hint: $\frac{x}{a}+\frac{y}{b}=1$ where $\frac{1}{a}+\frac{1}{b}=$ constant $=\frac{1}{k}$ (say). This implies that $\frac{k}{a}+\frac{k}{b}=1 \Rightarrow$ line passes through the fixed point (k, k).]
17. Find the equation of the line which passes through the point $(-4,3)$ and the portion of the line intercepted between the axes is divided internally in the ratio $5: 3$ by this point.
18. Find the equations of the lines through the point of intersection of the lines $x-y+1=0$ and $2 x-3 y+5=0$ and whose distance from the point $(3,2)$ is $\frac{7}{5}$.
19. If the sum of the distances of a moving point in a plane from the axes is 1 , then find the locus of the point. [Hint: Given that $|x|+|y|=1$, which gives four sides of a square.]
20. $\mathrm{P}_{1}, \mathrm{P}_{2}$ are points on either of the two lines $y-\sqrt{3}|x|=2$ at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P_{1}, P_{2} on the bisector of the angle between the given lines.
[Hint: Lines are $y=\sqrt{3} x+2$ and $y=-\sqrt{3} x+2$ according as $x \geq 0$ or $x<0$. y-axis is the bisector of the angles between the lines. $\mathrm{P}_{1}, \mathrm{P}_{2}$ are the points on these lines at a distance of 5 units from the point of intersection of these lines which have a point on y-axis as common foot of perpendiculars from these points. The y-coordinate of the foot of the perpendicular is given by $2+5 \cos 30^{\circ}$.]
21. If p is the length of perpendicular from the origin on the line $\frac{x}{a}+\frac{y}{b}=1$ and a^{2}, p^{2}, b^{2} are in A.P, then show that $a^{4}+b^{4}=0$.
