HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

2. Reflecting a graph over the x-axis results in the line M whose equation is $a x-b y=c$, while a reflection through the y-axis results in the line N whose equation is $-a x+b y=c$. Both clearly have slope equal to a / b (from, say, the slope-intercept form of the equation.)

3. $\mathrm{AP}=\sqrt{\mathrm{x}^{2}+(\mathrm{y}-4)^{2}}$
$B P=\sqrt{x^{2}+(y+4)^{2}}$
$\because \quad|\mathrm{AP}-\mathrm{BP}|=6$
$\mathrm{AP}-\mathrm{BP}= \pm 6$
$\sqrt{x^{2}+(y-4)^{2}}-\sqrt{x^{2}+(y+4)^{2}}= \pm 6$
On squaring we get the locus of P is

$$
9 x^{2}-7 y^{2}+63=0
$$

9. as shown $=\frac{21-\mathrm{x}}{13}=\frac{\mathrm{x}+1}{3}$

$$
63-3 x=13 x+13
$$

$16 x=50$
$\mathrm{x}=\frac{25}{8}$; Hence $\mathrm{m}=\left(\frac{25}{8}+1\right) \cdot \frac{1}{3}=\frac{33}{24}=\frac{11}{8}$
11. Let (h, k) be the centroid of triangle
$3 \mathrm{~h}=\cos \alpha+\sin \alpha+1$
$\Rightarrow(3 \mathrm{~h}-1)=\cos \alpha+\sin \alpha$
$3 \mathrm{k}=\sin \alpha-\cos \alpha+2$
$\Rightarrow(3 \mathrm{k}-2)=\sin \alpha-\cos \alpha$
square \& add (i) \& (ii)

$$
9\left(x^{2}+y^{2}\right)+6(x-2 y)=-3
$$

12. $\mathrm{D}=0$
$x^{2}=4(x-y)^{2}$
$x=2(x-y) \quad$ or $\quad x=-2(x-y)$
$x=2 y$
or $3 x=2 y$
\Rightarrow line pair with slope $3 / 2$ and $1 / 2 \quad \Rightarrow D$
13.

$\mathrm{ABCD}, \mathrm{ABEC}, \mathrm{ACBF}$ are three possible parallelograms.
14. $\Delta=\frac{1}{2}\left|\begin{array}{ccc}2 a & 3 a & 1 \\ 3 b & 2 b & 1 \\ c & c & 1\end{array}\right|=0$
$\Rightarrow(2 a-c)(2 b-c)-(3 a-c)(3 b-c)=0$
$\Rightarrow 4 a b-2 a c-2 b c+c^{2}-\left(9 a b-3 a c-3 b c+c^{2}\right)=0$
$\Rightarrow \mathrm{ac}+\mathrm{bc}-5 \mathrm{ab}=0$
$\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}=\frac{5}{\mathrm{c}} \Rightarrow \frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}=2\left(\frac{5}{2 \mathrm{c}}\right)$
$\therefore \quad a, \frac{2 c}{5}, b$ are in H.P.
17. $(2 y-x)(y-m x)=m x^{2}-x y(2 m+1)+2 y^{2}=0$
\Rightarrow the equation to the pair of bisectors are :
$\frac{x^{2}-y^{2}}{m-2}=\frac{-2 x y}{2 m+1} \equiv 12 x^{2}-7 x y-12 y^{2}$
$\Rightarrow \frac{2 \mathrm{~m}+1}{12}=\frac{2(\mathrm{~m}-2)}{-7}$ or $38 \mathrm{~m}=41 \Rightarrow \mathrm{~m}=\frac{41}{38}$
19. Figure is a parallelogram

Area $=2\left(\frac{1+3}{2} \cdot 2\right)=8$ Ans.

24. $x^{2}+2 \sqrt{2} x y+2 y^{2}+4 x+4 \sqrt{2} y+1=0$

$$
\begin{aligned}
\Rightarrow & (x+\sqrt{2} y+p)(x+\sqrt{2} y+q)=0 \\
& p+q=4 \\
\Rightarrow & p q=1
\end{aligned}
$$

Distance between parallel lines is $\left|\frac{\mathrm{p}-\mathrm{q}}{\sqrt{3}}\right|=$
$\frac{\sqrt{(p+q)^{2}-4 p q}}{\sqrt{3}}=\frac{\sqrt{16-4}}{\sqrt{3}}=2$
26. Area of rectangle $\mathrm{BCDE}=4 \mathrm{mn}$

Area of $\Delta \mathrm{ABC}=\frac{2 \mathrm{~m}(\mathrm{~m}-\mathrm{n})}{2}$

$$
=\mathrm{m}^{2}-\mathrm{mn}
$$

$\therefore \quad$ area of pentagon $=4 \mathrm{mn}+\mathrm{m}^{2}-\mathrm{mn}$ $=\mathrm{m}^{2}+3 \mathrm{mn}$
30. Here, $x+2 y-3=0$ and $3 x+4 y-7=0$ intersect $(1,1)$, which does not satisfy $2 x+3 y-4=0$ and $4 x+5 y-6=0$. Also, $3 x+4 y-7=0$ and $2 x+3 y-4=0$ intersect at $(5,-2)$ which does not satisfy $x+2 y-3=0$ and $4 x+5 y-6=0$ Intersection point of $x+2 y-3=0$ and $2 x+3 y-4=0$ is $(-1,2)$ which satisfy $4 x+5 y-6=0$.
Hence, only three lines are concurrent.
32. $\mathrm{m}_{1}+\mathrm{m}_{2}=-10 \Rightarrow \mathrm{~m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{a}}{1}$
given $m_{1}=4 m_{2} \Rightarrow m_{2}=-2, m_{1}=-8, a=16$
34. Homogenizing the curve with the help of the straight line.
$5 x^{2}+12 x y-6 y^{2}+4 x(x+k y)-2 y(x+k y)+3(x+k y)^{2}=0$
$12 \mathrm{x}^{2}+(10+4 \mathrm{k}+6 \mathrm{k}) \mathrm{xy}+\left(3 \mathrm{k}^{2}-2 \mathrm{k}-6\right) \mathrm{y}^{2}=0$
Lines are equally inclined to the coordinate axes
\therefore coefficient of $\mathrm{xy}=0$
$\Rightarrow 10 \mathrm{k}+10=0 \quad \Rightarrow \mathrm{k}=-1$
35. Curve passing through points of intersection of $S_{1}=0$
$\& S_{2}=0$ is
$\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1\right)+\lambda\left(x^{2}+y^{2}+2 g x+2 f+c\right)=0$
above equation represents a pair of straight lines. They are parallel to the lines $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\lambda\left(x^{2}+y^{2}\right)=0$ which represents a pair of lines equally inclined to axis as the term containing $x y$ is absent
36. Let the third PH reading is x
$7.4<\frac{7.48+8.42+x}{3}<8.2$
$22.2<15.90+x<24.6$
$6.3<x<8.7$
PH range should be in between 6.3 to 8.7
37. Let distance be 'r'.

Co-ordinates of ' P ' are
$(2+\mathrm{r} \cos \theta, 5+\mathrm{r} \sin \theta)$ where $\tan \theta=\frac{3}{4}$
which lies on the line $3 x+y+4=0$
$3(2+r \cos \theta)+5+r \sin \theta+4=0$
$\mathrm{r}\left(3 \cdot \frac{4}{5}+\frac{3}{5}\right)+15=0$
$\Rightarrow \mathrm{r}=-\frac{15}{3}=-5$
but distance can not be negative
$\therefore \quad r=5$

EXERCISE-2

Part \# I : Multiple Choice

8. Use the condition of concurrency for three lines
9. The lines will pass through $(4,5) \&$ parallel to the bisectors between them
$\frac{3 x-4 y-7}{5}= \pm \frac{12 x-5 y+6}{13}$
by taking + sign, we get $\quad 21 x+27 y+121=0$
Now by taking - sign, we get $99 x-77 y-61=0$
so slopes of bisectors are $-\frac{7}{9}, \frac{9}{7}$
Equation of lines are
$y-5=\frac{-7}{9}(x-4)$
and $\quad y-5=\frac{9}{7}(x-4)$
$\Rightarrow 7 x+9 y=73$
and
$9 x-7 y=1$
10. Line \perp to $4 x+7 y+5=0$ is

$$
7 x-4 y+\lambda=0
$$

It passes through $(-3,1)$ and $(1,1)$

$$
\begin{array}{lll}
-11-4+1=0 & \Rightarrow 1=25 \\
7-4+1=0 & \Rightarrow 1=-3
\end{array}
$$

Hence lines are $7 x-4 y+25=0,7 x-4 y-3=0$
line $\|$ to $4 x+7 y+5=0$ passing through
$(1,1)$ is $4 x+7 y+1=0$
$\Rightarrow 1=-11$
$\Rightarrow 4 x+7 y-11=0$

Part \# II : Assertion \& Reason

3.

4. S_{1} : equation of such line is $\frac{x}{5}+\frac{y}{6}=2$

\Rightarrow Area of $\triangle \mathrm{OAB}=\frac{1}{2} \times 10 \times 12=60$
S_{2} : In this situation area obtained is least infact.
6. $\mathrm{AB}=\sqrt{(8)^{2}+(19)^{2}}=\sqrt{425} ; \quad \mathrm{AC}=\sqrt{(16)^{2}+(13)^{2}}$
$\therefore \quad \Delta$ is isosceles
8. $a x^{3}+b x^{2} y+c x y^{2}+d y^{3}=0$
since this is homogeneous pair represent there straight lines passing through origin
$a x^{3}+b x^{2} y+c x y^{2}+d y^{3}=\left(y-m_{1} x\right)\left(y-m_{2} x\right)\left(y-m_{3} x\right)$
or put $\mathrm{y}=\mathrm{mx}$ in given equation we get
$\mathrm{m}^{3} \mathrm{~d}+\mathrm{cm}^{2}+\mathrm{bm}+\mathrm{a}=0$
$\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}=\frac{-\mathrm{c}}{\mathrm{d}}$
$m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}=\frac{+b}{d}$
$m_{1} m_{2} m_{3}=\frac{+\mathrm{a}}{\mathrm{d}}$
given two lines + hence $m_{1} m_{2}=-1 \Rightarrow m_{3}=a / d$ eliminate m_{3} from remaining equation
10. $\mathrm{m}_{1_{1}}=\frac{2}{3}$
$\mathrm{m}_{\mathrm{l}_{2}}=\frac{2\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)}{3\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)}=\frac{2}{3}$

$A=\frac{1}{2}\left|\begin{array}{ccc}-2 & 1 & 1 \\ 1 & 3 & 1 \\ 3 x & (2 x-3) & 1\end{array}\right|=8$

EXERCISE - 3

Part \# I : Matrix Match Type

1. (A) Let the lines $4 x+5 y=0$ and $7 x+2 y=0$
represents the sides $A B \& A D$ of the parallelogram ABCD , then the vertices of
$\mathrm{A}, \mathrm{B}, \mathrm{D}$ are $(0,0),\left(\frac{5}{3},-\frac{4}{3}\right)$ and $\left(-\frac{2}{3}, \frac{7}{3}\right)$ respectively the mid point of BD is $\left(\frac{1}{2}, \frac{1}{2}\right)$
\therefore the equation of the line passing through $\left(\frac{1}{2}, \frac{1}{2}\right)$ and $(0,0)$ will be $x-y=0$ which is the required equation of the other diagonal
So $\mathrm{a}=1, \mathrm{~b}=-1, \mathrm{c}=0$
$\therefore a+b+c=0$
(B) Joint equation of lines $\mathrm{OA} \& \mathrm{OB}, \mathrm{O}$ being the origin will be

$$
2 x^{2}-b y^{2}+(2 b-1) x y-(x+b y)(-2 x+b y)=0
$$

$\Rightarrow 4 x^{2}-\left(b+b^{2}\right) y^{2}+(3 b-1) x y=0$
If these lines are perpendicular then

$$
4-b-b^{2}=0 \Rightarrow b+b^{2}=4
$$

(C) Equation of line passing through intersection of
$4 x+3 y=12$ and $3 x+4 y=12$ will be
$(4 x+3 y-12)+\lambda(3 x+4 y-12)=0$
If passes through $(3,4) \quad \Rightarrow \quad(12+\lambda(13))=0$
$\Rightarrow \lambda=-\frac{12}{13}$
$\therefore \quad$ Equation of the required line

$$
16 x-9 y-12=0
$$

length of intercepts on x and y axes are $\frac{3}{4}$ and $\frac{4}{3}$
So $a b=1$
2. (A) Slope of such line is ± 1
(B) area of $\triangle \mathrm{OAB}=\frac{1}{2} \times 3 \times 4=6$ sq. units

(C) To represent pair of straight lines $\left|\begin{array}{ccc}2 & -1 & -3 \\ -1 & -1 & 3 \\ -3 & 3 & \mathrm{c}\end{array}\right|=0$ $\Rightarrow \mathrm{c}=3$
(D) Lines represented by given equation are $x+y+a=0$ and $x+y-9 a=0$
\therefore distance between these parallel lines is

$$
=\frac{10 \mathrm{a}}{\sqrt{2}}=5 \sqrt{2} \mathrm{a}
$$

Part \# II : Comprehension

Comprehension \# 5

1. $\mathrm{d}(\mathrm{OR})=\mathrm{d}(\mathrm{AR})$
$|\mathrm{x}-0|+|\mathrm{y}-0|=|\mathrm{x}-1|+|\mathrm{y}-2|$
$x+y=|x-1|+|y-2| \quad(\because x>0, y>0)$
$x+y=-x+1-y+2$
$2 \mathrm{x}+2 \mathrm{y}=3 . \quad(\because 0 \leq \mathrm{x}<1 \& 0 \leq \mathrm{y}<2)$
2. $d(O S)=d(B S)$
$|\mathrm{x}-0|+|\mathrm{y}-0|=|\mathrm{x}-2|+|\mathrm{y}-3|$
$x+y=x-2+3-y \quad(\because x \geq 2 \& 0 \leq y<3)$.

$y=1 / 2$.
which is an infinite ray
3. $d(T O)=d(T C)$
$|\mathrm{x}-0|+|\mathrm{y}-0|=|\mathrm{x}-4|+|\mathrm{y}-3|$
$x+y=|x-4|+|y-3|$
Case : II $0 \leq x<4 \quad \& \quad 0 \leq y<3$.
$x+y=-x+4-y+3$
$x+y=7 / 2$.
Case: III $0 \leq x<4$ \& $y \geq 3$.
$x+y=-x+4+y-3$
$x=1 / 2$.
Case: IIII $x \geq 4$ \& $0 \leq y<3$.
$x+y=x-4-y+3$
$y=-1 / 2$.
Case:IV $x \geq 4 \quad \& \quad y \geq 3$.
$x+y=x-4+y-3$
$0=-7 \quad$ (so rejected)

Comprehension \# 6
Slopes of the lines
$3 x+4 y=5$ is $m_{1}=-\frac{3}{4}$
and $4 x-3 y=15$ is $m_{2}=\frac{4}{3}$
$\because \quad m_{1} m_{2}=-1$
\therefore given lines are perpendicular and $\angle \mathrm{A}=\frac{\pi}{2}$
Now required equation of BC is
$(y-2)=\frac{m \pm \tan (\pi / 4)}{1 \mp \mathrm{~m} \tan (\pi / 4)}(x-1)$
where $\mathrm{m}=$ slope of $\mathrm{AB}=-\frac{3}{4}$
$\therefore \quad$ equation of BC is (on solving (1))
$x-7 y+13=0$ and $7 x+y-9=0$
$L_{1} \equiv x-7 y+13=0$
$\mathrm{L}_{2} \equiv 7 \mathrm{x}+\mathrm{y}-9=0$

1. $\mathrm{c}+\mathrm{f}=4$
2. Equation of a straight line
through $(2,3)$ and inclined at an angle of $(\pi / 3)$ with y-axis $((\pi / 6)$ with x -axis $)$ is
$\frac{x-2}{\cos (\pi / 6)}=\frac{y-3}{\sin (\pi / 6)} \Rightarrow x-\sqrt{3} y=2-3 \sqrt{3}$
Points at a distance $c+f=4$ units from point P are

$$
(2+4 \cos (\pi / 6), 3+4 \sin (\pi / 6)) \equiv(2+2 \sqrt{3}, 5)
$$

and $(2-4 \cos (\pi / 6), 3-4 \sin (\pi / 6)) \equiv(2-2 \sqrt{3}, 1)$
only (A) is true out of given options
3. Let required line be $x+y=a$
which is at $|b-2 a-1|=|5-4-4 \sqrt{3}-1|=4 \sqrt{3}$ units from origin
$\therefore \quad$ required line is $x+y-4 \sqrt{6}=0$ (since intercepts are on positive axes only)

EXERCISE - 4

Subjective Type

3. $a x^{2}+2 h x y+b y^{2}=\left(y-m_{1} x\right)\left(y-m_{2} x\right)$
given that $\mathrm{m}_{2}=\mathrm{m}_{1}{ }^{\mathrm{n}}$
Hence $m_{1}+m_{2}=-\frac{2 h}{b} \Rightarrow m_{1}+m_{1}{ }^{n}=-\frac{2 h}{b}$
$\Rightarrow \mathrm{m}_{1} \cdot \mathrm{~m}_{1}{ }^{\mathrm{n}}=\frac{\mathrm{a}}{\mathrm{b}} \quad \Rightarrow \mathrm{m}_{1}=\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{\frac{1}{1+\mathrm{n}}}$

Eliminate m_{1} from both.
4. The combined equation of $A B$ and $A D$ is

$$
S_{1} \equiv a x^{2}+2 h x y+b y^{2}=0
$$

Now equation of lines through (p, q) and parallel to $S_{1}=0$ is

$$
S_{2} \equiv a(x-p)^{2}+2 h(x-p)(y-q)+b(y-q)^{2}=0
$$

Hence equation of diagonal $B D$ is $S_{1}-S_{2}=0$
$\Rightarrow \quad(2 x-p)(a p+h q)+(2 y-q)(h p+b q)=0$
5. Consider a line $\ell x+m y+n=0$
point $\left(\frac{r^{3}}{r-1}, \frac{r^{2}-3}{r-1}\right)$ lies on the above line
$\therefore \ell\left(\frac{r^{3}}{r-1}\right)+\mathrm{m}\left(\frac{r^{2}-3}{r-1}\right)+\mathrm{n}=0$
$\ell \mathrm{r}^{3}+\mathrm{mr}^{2}+\mathrm{nr}-(3 \mathrm{~m}+\mathrm{n})=0$
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the roots of the equation.
$\mathrm{a}+\mathrm{b}+\mathrm{c}=\frac{-m}{\ell}, \mathrm{ab}+\mathrm{bc}+\mathrm{ca}=\frac{n}{\ell}, \mathrm{abc}=\frac{3 m+n}{\ell}$
Now taking LHS
$3(a+b+c)=\frac{-3 m}{\ell}$
RHS
$\mathrm{ab}+\mathrm{bc}+\mathrm{ca}-\mathrm{abc}=\frac{\mathrm{n}}{\ell}-\left(\frac{3 \mathrm{~m}+\mathrm{n}}{\ell}\right)=-\frac{3 \mathrm{~m}}{\ell}$
10. (i) D is mid point of $B C$ Hence co-ordinates of D are $\left(\frac{\mathrm{x}_{2}+\mathrm{x}_{3}}{2}, \frac{\mathrm{y}_{2}+\mathrm{y}_{3}}{2}\right)$
Therefore, equation of the median AD is

$$
\left|\begin{array}{ccc}
x & y & 1 \\
x_{1} & y_{1} & 1 \\
\frac{x_{2}+x_{3}}{2} & \frac{y_{2}+y_{3}}{2} & 1
\end{array}\right|=0
$$

Applying $\mathrm{R}_{3} \rightarrow 2 \mathrm{R}_{3}$

$$
\left|\begin{array}{ccc}
x & y & 1 \\
x_{1} & y_{1} & 1 \\
x_{2}+x_{3} & y_{2}+y_{3} & 2
\end{array}\right|=0
$$

$\Rightarrow\left|\begin{array}{ccc}\mathrm{x} & \mathrm{y} & 1 \\ \mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1\end{array}\right|+\left|\begin{array}{ccc}\mathrm{x} & \mathrm{y} & 1 \\ \mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|=0$
(using the addition property of determinants)
(iii) Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the line parallel to BC Area of $\triangle \mathrm{ABP}=$ Area of $\triangle \mathrm{ACP}$

$$
\left|\begin{array}{ccc}
\mathrm{x} & \mathrm{y} & 1 \\
\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\
\mathrm{x}_{2} & \mathrm{y}_{2} & 1
\end{array}\right|=\left|\begin{array}{ccc}
\mathrm{x} & \mathrm{y} & 1 \\
\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\
\mathrm{x}_{3} & \mathrm{y}_{3} & 1
\end{array}\right|
$$

$\Rightarrow\left|\begin{array}{ccc}\mathrm{x} & \mathrm{y} & 1 \\ \mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1\end{array}\right|-\left|\begin{array}{ccc}\mathrm{x} & \mathrm{y} & 1 \\ \mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|=0$
This gives the equation of line AP.
(iii) Let AD be the internal bisector of angle A ,
$\therefore \quad \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{BA}}{\mathrm{CA}}=\frac{\mathrm{c}}{\mathrm{b}}$
$\therefore \quad \mathrm{D} \equiv\left(\frac{\mathrm{cx}_{3}+\mathrm{bx}_{2}}{\mathrm{c}+\mathrm{b}}, \frac{\mathrm{cy}_{3}+\mathrm{by}_{2}}{\mathrm{c}+\mathrm{b}}\right)$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on AD then $\mathrm{P}, \mathrm{A}, \mathrm{D}$ are collinear

$\mathrm{R}_{3} \rightarrow(\mathrm{~b}+\mathrm{c}) \mathrm{R}_{3}$
$\left|\begin{array}{ccc}x & y & 1 \\ x_{1} & y_{1} & 1 \\ c x_{3}+b x_{2} & \mathrm{cy}_{3}+\mathrm{by}_{2} & b+c\end{array}\right|=0$
$\therefore\left|\begin{array}{ccc}\mathrm{x} & \mathrm{y} & 1 \\ \mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{cx}_{3} & \mathrm{cy}_{3} & \mathrm{c}\end{array}\right|+\left|\begin{array}{ccc}\mathrm{x} & \mathrm{y} & 1 \\ \mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{bx}_{2} & \mathrm{by}_{2} & \mathrm{~b}\end{array}\right|=0$
(Addition property)
$\Rightarrow c\left|\begin{array}{ccc}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|+b\left|\begin{array}{ccc}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right|=0$
This is the equation of $A D$.
11. Circumcentre is origin
$\therefore \mathrm{OA}^{2}=\mathrm{OB}^{2}=\mathrm{OC}^{2}$

$$
\begin{aligned}
& x_{1}^{2}+x_{1}^{2} \tan ^{2} \theta_{1}=x_{2}^{2}+x_{2}^{2} \tan ^{2} \theta_{2} \\
& =x_{3}^{2}+x_{3}^{2} \tan ^{2} \theta_{3}=r^{2}
\end{aligned}
$$

$x_{1}=r \cos \theta_{1}, x_{2}=r \cos \theta_{2}, x_{3}=r \cos \theta_{3}$
$\therefore \quad$ co-ordinate of vertices of the triangle become -
$\mathrm{A}\left(\mathrm{r} \cos \theta_{1}, \mathrm{r} \sin \theta_{1}\right), \mathrm{B}\left(\mathrm{rcos} \theta_{2}, r \sin \theta_{2}\right)$,
$C\left(r \cos \theta_{3}, r \sin \theta_{3}\right)$
$\mathrm{x}^{\prime}=\frac{\sum \mathrm{r} \cos \theta_{1}}{3}, \quad \mathrm{y}^{\prime}=\frac{\sum \mathrm{r} \sin \theta_{1}}{3}$

	1	
$\begin{array}{l}\mathrm{H}(\overline{\mathrm{x}}, \bar{y}) \\ \text { (orthocentre) }\end{array}$	$\mathrm{G}\left(\mathrm{x}^{\prime}, y^{\prime}\right)$	
(centroid)		

\& (circum centre)\end{aligned}\)
Now, $x^{\prime}=\frac{0+\bar{x}}{3}$
$\overline{\mathrm{x}}=\mathrm{r}\left(\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}\right)$
$\bar{y}=r\left(\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}\right)$
$\therefore \frac{\bar{x}}{\bar{y}}=\frac{\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}}{\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}}$
13. Let point of intersection of lines is (x, y) using parametric form of line

$$
\frac{x-2}{\cos \theta}=\frac{y-1}{\sin \theta}=3
$$

$\mathrm{x}=3 \cos \theta+2, \mathrm{y}=3 \sin \theta+1$
This point satisfy equation of line

$$
\begin{align*}
& 4 y-4 x+4+3 \sqrt{2}+3 \sqrt{10}=0 \\
& 12(\sin \theta-\cos \theta)=-3 \sqrt{2}(1+\sqrt{5}) \\
& \sin \theta-\cos \theta=-\frac{(1+\sqrt{5})}{2 \sqrt{2}} \\
\Rightarrow & \cos \left(\theta+45^{\circ}\right)=-\frac{(1+\sqrt{5})}{4} \tag{i}\\
\Rightarrow & \cos \left(\theta+45^{\circ}\right)=\cos \left(180^{\circ}-36^{\circ}\right) \\
\Rightarrow & \cos \left(\theta+45^{\circ}\right)=\cos 144^{\circ} \Rightarrow \theta=99^{\circ}
\end{align*}
$$

Now from(i)
$\cos \left(\theta+45^{\circ}\right)=\cos \left(180^{\circ}+36^{\circ}\right) \quad \Rightarrow \quad \theta=171^{\circ}$
14. $y+2 a t=t x-a t^{3}$
slope $=\mathrm{t}$.
Let is passes through $\mathrm{P}(\mathrm{h}, \mathrm{k})$
$\therefore \mathrm{k}+2 \mathrm{at}=\mathrm{th}-\mathrm{at}^{3}$
$a t^{3}+t(2 a-h)+k=0$
$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}=-\frac{\mathrm{k}}{\mathrm{a}} \quad\left\{\mathrm{t}_{1} \mathrm{t}_{2}=-1\right\}$
$\mathrm{t}_{3}=\frac{\mathrm{k}}{\mathrm{a}}$
Substituting t_{3} in (1) we can get the desired locus
16. $a^{2}+b^{2}=c^{2}$

Let L is $\left(x_{1}, y_{1}\right)$
L is foot of perpendicular from point $P(a, b)$ on line $A B$ equation of $A B$ is $b x+a y-a b=0$
$\Rightarrow \quad \frac{x_{1}-a}{b}=\frac{y_{1}-b}{a}=\frac{-(a b+a b-a b)}{a^{2}+b^{2}}$

$\frac{\mathrm{x}_{1}-\mathrm{a}}{\mathrm{b}}=\frac{\mathrm{y}_{1}-\mathrm{b}}{\mathrm{a}}=\frac{-\mathrm{ab}}{\mathrm{c}^{2}}$
$\Rightarrow x_{1}=a-\frac{a b^{2}}{c^{2}}=\frac{a\left(c^{2}-b^{2}\right)}{c^{2}}=a^{3} / c^{2} \Rightarrow a^{3}=c^{2} x_{1}$
similarly $b^{3}=c^{2} y_{1}$
using these relations (iii) \& (iiii) in equation (i), we get required locus.
20. Since $A(4,2)$ and $B(2,4)$ both lies same side of
$3 x+2 y+10=0$
(i) $\mathrm{PA}+\mathrm{PB} \geq \mathrm{AB}$
$\mathrm{PA}+\mathrm{PB}^{\prime} \geq \mathrm{AB} \quad \Rightarrow \mathrm{PA}+\mathrm{PB}=\mathrm{PA}+\mathrm{PB}^{\prime}(\mathrm{min})=$.
Hence A, P, B' are collinear.
Image of $\mathrm{B}(2,4)$ in $3 \mathrm{x}+2 \mathrm{y}+10=0 \ldots$...is

$$
\begin{align*}
& \frac{x-2}{3}=\frac{y-4}{2}=-2\left(\frac{6+8+10}{3^{2}+2^{2}}\right) \tag{i}\\
& \Rightarrow \quad B^{\prime}(x, y)\left(-\frac{118}{13}, \frac{-44}{13}\right)
\end{align*}
$$

now equation of AB^{\prime} is $\mathrm{y}-2=\frac{2+\frac{49}{13}}{4+\frac{118}{13}}(\mathrm{x}-4)$
$\Rightarrow 7 x-17 y+6=0$ \qquad
solving (i) and (ii) we get $\left(-\frac{14}{5},-\frac{4}{5}\right)$
(ii) in any triangle.

$|\mathrm{PA}-\mathrm{PB}| \leq \mathrm{AB}$
Hence $|\mathrm{PA}-\mathrm{PB}|=\mathrm{AB}$ when $\mathrm{P}, \mathrm{A}, \mathrm{B}$ are collinear Hence equation of $A B$ is
$y-2=-1(x-4)$
$x+y-6=0$
solving (i) with $3 x+2 y+10=0$
we get $(-22,28)$

EXERCISE - 5

Part \# I : AIEEE/JEE-MAIN

1. $\left(\mathrm{h}-\mathrm{a}_{1}\right)^{2}+\left(\mathrm{k}-\mathrm{b}_{1}\right)^{2}=\left(\mathrm{h}-\mathrm{a}_{2}\right)^{2}+\left(\mathrm{k}-\mathrm{b}_{2}\right)^{2}$
$2 h\left(a_{1}-a_{2}\right)+2 k\left(b_{1}-b_{2}\right)+\left(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}\right)=0$

compare with $\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+c=0$
$\mathrm{c}=\frac{\left(\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}-\mathrm{a}_{1}^{2}-\mathrm{b}_{1}^{2}\right)}{2}$.
2. $3 h-1=a \cos t+b \sin t$
$3 k=a \sin t-b \cos t$
squaring and add. (Locus)

$(3 x-1)^{2}+9 y^{2}=a^{2}+b^{2}$
3. $x^{2}-2 p x y-y^{2}=0$
pair of angle bisector of this pair $\frac{x^{2}-y^{2}}{1-(-1)}=\frac{x y}{-p}$
$\Rightarrow \mathrm{x}^{2}-\mathrm{y}^{2}+\frac{2}{\mathrm{p}} \mathrm{xy}=0$
compare this bisector pair with $x^{2}-2 q x y-y^{2}=0$
$\frac{2}{p}=-2 q \quad \Rightarrow p q=-1$.
4. Equation of AC
$y-a \sin \alpha=\frac{\sin \alpha-\cos \alpha}{\cos \alpha+\sin \alpha}(x-a \cos \alpha)$
(-asin $\alpha, \operatorname{acos} \alpha)$

$y(\cos \alpha+\sin \alpha)+x(\cos \alpha-\sin \alpha)$
$=\mathrm{a}\left(\sin \alpha \cos \alpha+\sin ^{2} \alpha-\sin \alpha \cos \alpha+\cos ^{2} \alpha\right)$
$\mathrm{y}(\cos \alpha+\sin \alpha)+\mathrm{x}(\cos \alpha-\sin \alpha)=\mathrm{a}$.
5. $\mathrm{G}\left(\frac{\mathrm{h}}{3}, \frac{\mathrm{k}-2}{3}\right)$
$\Rightarrow \frac{2 \mathrm{~h}}{3}+(\mathrm{k}-2)=1 \Rightarrow 2 \mathrm{~h}+3 \mathrm{k}=9$

Locus $2 \mathrm{x}+3 \mathrm{y}=9$.
6. Let equation of line is $\frac{x}{a}+\frac{y}{b}=1$
it passes through $(4,3) \frac{4}{a}+\frac{3}{b}=1$
sum of intercepts is -1
$\Rightarrow \mathrm{a}+\mathrm{b}=-1 \quad \Rightarrow \mathrm{a}=-1-\mathrm{b}$
$\Rightarrow \frac{4}{-1-b}+\frac{3}{b}=1 \Rightarrow 4 b-3-3 b=-b-b^{2}$
$\Rightarrow \mathrm{b}^{2}+2 \mathrm{~b}-3=0 \quad \Rightarrow \mathrm{~b}=-3,1$
$\mathrm{b}=1, \quad \mathrm{a}=-2 \quad \frac{\mathrm{x}}{-2}+\frac{\mathrm{y}}{1}=1$
$\mathrm{b}=-3, \quad \mathrm{a}=2 \quad \frac{\mathrm{x}}{2}+\frac{\mathrm{y}}{-3}=1$.
7. $x^{2}-2 c x y-7 y^{2}=0$
sum of the slopes $m_{1}+m_{2}=\frac{2 c}{-7}$
Product of slopes $m_{1} m_{2}=\frac{-1}{7}$
given $m_{1}+m_{2}=4 m_{1} m_{2} \Rightarrow \frac{2 c}{-7}=\frac{-4}{7} \Rightarrow c=2$.
8. Pair $6 x^{2}-x y+4 c y^{2}=0$ has its one line $3 x+4 y=0$
$\Rightarrow y=\frac{-3 x}{4}$
$6 x^{2}+\frac{3 x^{2}}{4}+4 c \frac{9 x^{2}}{16}=0 \Rightarrow 24 x^{2}+3 x^{2}+9 c x^{2}=0$
$\Rightarrow \mathrm{c}=-3$.
9. $a x+2 b y+3 b=0$
$b x-2 a y-3 a=0$

$$
\frac{x}{-6 a b+6 a b}=\frac{y}{3 b^{2}+3 a^{2}}=\frac{1}{-2 a^{2}-2 b^{2}}
$$

Hence point of intersection $(0,-3 / 2)$
Line parallel to x -axis $\mathrm{y}=-3 / 2$.
10. $\because \mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P. $\frac{2}{\mathrm{~b}}=\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{c}} \Rightarrow \frac{1}{\mathrm{a}}-\frac{2}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=0$
given line $\quad \frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$
Clearly line passes through $(1,-2)$.
11. Centroid is $\left(1, \frac{7}{3}\right)$

12. Pair of lines $a x^{2}+2(a+b) x y+b y^{2}=0$ Area of sector $A_{1}=\frac{1}{2} r^{2} \theta_{1}$

$$
\begin{aligned}
& \mathrm{A}_{2}=\frac{1}{2} \mathrm{r}^{2} \theta_{2} \\
& \theta_{1}+\theta_{2}=180^{\circ}
\end{aligned}
$$

given $A_{1}=3 A_{2} \Rightarrow \theta_{1}=3 \theta_{2}$

$$
\Rightarrow \theta_{2}=45^{\circ}, \theta_{1}=135^{\circ}
$$

Angle between lines is $=\left|\frac{2 \sqrt{(a+b)^{2}-a b}}{a+b}\right|=1$
$\Rightarrow 4\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{ab}\right)=\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab}$
$\Rightarrow 3 a^{2}+3 b^{2}+2 a b=0$.
13. Let equation of line is $\frac{x}{a}+\frac{y}{b}=1$. By section formula

$$
\begin{array}{ll}
\frac{a}{2}=3 & \Rightarrow a=6 \\
\frac{b}{2}=4 & \Rightarrow b=8 \\
\frac{x}{6}+\frac{y}{8}=1 & \Rightarrow 4 x+3 y=24
\end{array}
$$

14. Since $(1,1)$ and ($\left.a, a^{2}\right)$ Both lies same side with respect to both lines
$\mathrm{a}-2 \mathrm{a}^{2}<0 \quad \Rightarrow \quad 2 \mathrm{a}^{2}-\mathrm{a}>0$

$$
\Rightarrow \mathrm{a}(2 \mathrm{a}-1)>0
$$

$a \in(-\infty, 0) \cup\left(\frac{1}{2}, \infty\right)$

$3 a-a^{2}>0 \Rightarrow a^{2}-3 a<0 \Rightarrow a \in(0,3)$
Hence after taking intersection $\mathrm{a} \in\left(\frac{1}{2}, 3\right)$.
15. $\mathrm{AB}=\sqrt{(\mathrm{h}-1)^{2}+(\mathrm{k}-1)^{2}}$
$\mathrm{BC}=1$
$\mathrm{AC}=\sqrt{(\mathrm{h}-2)^{2}+(\mathrm{k}-1)^{2}}$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
$\Rightarrow(\mathrm{h}-1)^{2}+(\mathrm{k}-1)^{2}+1=(\mathrm{h}-2)^{2}+(\mathrm{k}-1)^{2}$

$\Rightarrow 2 h=2 \Rightarrow h=1$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \sqrt{(\mathrm{~h}-1)^{2}+(\mathrm{k}-1)^{2}} \times 1=1$
$(\mathrm{K}-1)^{2}=4 \Rightarrow \mathrm{k}-1= \pm 2 \Rightarrow \mathrm{k}=3,-1$.
16. The line segment QR makes an angle 60° with the positive direction of x-axis.
hence bisector of angle PQR will make 120° with +ve direction of x -axis.
\therefore Its equation

$$
y-0=\tan 120^{\circ}(x-0)
$$

$$
\begin{aligned}
& y=-\sqrt{3} x \\
& x \sqrt{3}+y=0
\end{aligned}
$$

17. Bisector of $x=0$ and $y=0$ is either $y=x$ or $y=-x$

If $\mathrm{y}=\mathrm{x}$ is Bisector, then
$\mathrm{mx}^{2}+\left(1-\mathrm{m}^{2}\right) \mathrm{x}^{2}-\mathrm{mx}^{2}=0 \Rightarrow \mathrm{~m}+1-\mathrm{m}^{2}-\mathrm{m}=0$
$\Rightarrow \mathrm{m}^{2}=1 \Rightarrow \mathrm{~m}= \pm 1$.
18. Slope of $\mathrm{PQ}=\frac{1}{1-\mathrm{k}}$

Hence equation of \perp to line PQ

$\mathrm{y}-\frac{7}{2}=(\mathrm{k}-1)\left(\mathrm{x}-\frac{(1+\mathrm{k})}{2}\right)$
Put $\mathrm{x}=0$
$y=\frac{7}{2}+\frac{(1-k)(1+k)}{2}=-4$
$7+\left(1-k^{2}\right)=-8$
$\Rightarrow \mathrm{k}^{2}=16 \Rightarrow \mathrm{k}= \pm 4$.
Hence possible answer $=-4$.
19. $p\left(p^{2}+1\right) x-y+q=0$
$\left(p^{2}+1\right)^{2} x+\left(p^{2}+1\right) y+2 q=0$ are perpendicular for a common line
\Rightarrow lines are parallel $\quad \Rightarrow$ slopes are equal
$\therefore \quad \frac{\mathrm{p}\left(\mathrm{p}^{2}+1\right)}{1}=-\frac{\left(\mathrm{p}^{2}+1\right)^{2}}{\left(\mathrm{p}^{2}+1\right)} \Rightarrow \mathrm{p}=-1$
20. $\therefore \quad \frac{\mathrm{PA}^{\prime}}{\mathrm{PB}^{\prime}}=\frac{3}{1}$
$\therefore \quad(\mathrm{x}+1)^{2}+\mathrm{y}^{2}=9\left((\mathrm{x}-1)^{2}+\mathrm{y}^{2}\right)$
$x^{2}+2 x+1+y^{2}=9 x^{2}+9 y^{2}-18 x+9$
$8 x^{2}+8 y^{2}-20 x+8=0$
$x^{2}+y^{2}-\frac{10}{4} x+1=0$

$\therefore \quad$ circumcentre $\left(\frac{5}{4}, 0\right)$.
21. $\frac{x}{5}+\frac{y}{b}=1$
$\frac{13}{5}+\frac{32}{b}=1 \Rightarrow \frac{32}{b}=-\frac{8}{5} \Rightarrow b=-20$
$\frac{x}{5}-\frac{y}{20}=1 \quad \Rightarrow \quad 4 x-y=20$
Line K has same slope $\Rightarrow-\frac{3}{c}=4$
$c=-\frac{3}{4} \Rightarrow 4 x-y=-3$
distance $=\frac{23}{\sqrt{17}}$
Hence correct option is (3)
22.

$\therefore \quad \mathrm{AD}: \mathrm{DB}=2 \sqrt{2}: \sqrt{5}$
\because OD is angle bisector
of angle AOB
\therefore St: 1 true
St. 2 false (obvious)
23. $x+y=|a|$
$a x-y=1$
If $\quad a>0$

$$
\begin{aligned}
& x+y=a \\
& a x-y=1 \\
& ----------------------1 \\
& x(1+a)=1+a \text { as } x=1 \\
& y=a-1
\end{aligned}
$$

It is in the first quadrant
So $\mathrm{a}-1 \geq 0$
$\mathrm{a} \geq 1$
$\mathrm{a} \in[1, \infty)$
If $\mathrm{a}<0$
$x+y=-a$
$a x-y=1$
$+$
$x(1+a)=1-a$
$\mathrm{x}=\frac{1-\mathrm{a}}{1+\mathrm{a}}>0 \quad \Rightarrow \quad \frac{\mathrm{a}-1}{\mathrm{a}+1}<0$

$y=-a-\frac{1-a}{1+a}$
$=\frac{-a-a^{2}-1+a}{1+a}>0$
$-\left(\frac{a^{2}+1}{a+1}\right)>0 \quad \Rightarrow \quad \frac{a^{2}+1}{a+1}<0$

from (1) and (2) $\mathrm{a} \in\{\phi\}$
correct answer is $\mathrm{a} \in[1, \infty)$
24. $\alpha=3 h$
$\beta-2=3 \mathrm{k}$
$\beta=3 \mathrm{k}+2$
third vertex on the line $2 x+3 y=9$

$2 \alpha+3 \beta=9$
$2(3 \mathrm{~h})+3(3 \mathrm{k}+2)=9$
$2 \mathrm{~h}+3 \mathrm{k}=1$
$2 x+3 y-1=0$
25. $\therefore \mathrm{C}\left(\frac{8}{5}, \frac{14}{5}\right)$

Line $2 \mathrm{x}+\mathrm{y}=\mathrm{k}$ passes $\mathrm{C}\left(\frac{8}{5}, \frac{14}{5}\right)$
$\frac{2 \times 8}{5}+\frac{14}{5}=\mathrm{k}$
$\mathrm{k}=6$
26. $(y-2)=m(x-1)$
$\mathrm{OP}=1-\frac{2}{\mathrm{~m}}$
$\mathrm{OQ}=2-\mathrm{m}$

Area of $\triangle \mathrm{POQ}=\frac{1}{2}(\mathrm{OP})(\mathrm{OQ})=\frac{1}{2}\left(1-\frac{2}{\mathrm{~m}}\right)(2-\mathrm{m})$

$$
\begin{aligned}
& =\frac{1}{2}\left[2-\mathrm{m}-\frac{4}{\mathrm{~m}}+2\right] \\
& =\frac{1}{2}\left[4-\left(\mathrm{m}+\frac{4}{\mathrm{~m}}\right)\right]
\end{aligned}
$$

$\mathrm{m}=-2$
27. Take any point $B(0,1)$ on given line Equation of AB^{\prime}
$y-0=\frac{-1-0}{0-\sqrt{3}}(x-\sqrt{3})$
$-\sqrt{3} y=-x+\sqrt{3}$
$x-\sqrt{3} y=\sqrt{3}$
$\Rightarrow \quad \sqrt{3} y=x-\sqrt{3}$

28. x - coordinate of incentre $=\frac{2 \times 0+2 \sqrt{2} .0+2.2}{2+2+2 \sqrt{2}}=\frac{2}{2+\sqrt{2}}$

$=2-\sqrt{2}$
31. Point of intersection of sides

$x-y+1=0$ and $7 x-y-5=0$
$\therefore \quad \mathrm{x}=1, \mathrm{y}=2$
Slope of AM $=\frac{4}{2}=2$
\therefore Equation of $\mathrm{BD}: \mathrm{y}+2=-\frac{1}{2}(\mathrm{x}+1)$
$\Rightarrow x+2 y+5=0$
Solving $x+2 y+5=0$ and $7 x-y-5=0$

$$
\mathrm{x}=\frac{1}{3}, \mathrm{y}=-\frac{8}{3} \Rightarrow\left(\frac{1}{3},-\frac{8}{3}\right)
$$

Part \# II : IIT-JEE ADVANCED

1. The number of integral points that lie in the interior of square OABC is 20×20. These points are (x, y) where $x, y=1,2, \ldots \ldots . . ., 20$. Out of these 400 points 20 lie on the line $A C$. Out of the remaining exactly half lie in $\triangle \mathrm{ABC}$.
\therefore number of integral point in the triangle OAC
$=\frac{1}{2}[20 \times 20-20]=190$

Alternative Solution
There are 19 points that lie in the interior of $\triangle \mathrm{ABC}$ and on the line $\mathrm{x}=1,18$ point that lie on the line $\mathrm{x}=2$ and so on. Thus, the number of desired points is
$19+18+17+\ldots .+2+1=\frac{20 \times 19}{2}=190$.
2. Refer Figure

Equation of altitude BD is $\mathrm{x}=3$.
slope of AB is $\frac{4-0}{3-4}=-4$
\therefore slope of OE is $1 / 4$
Equation of OE is

$$
y=\frac{1}{4} x
$$

Lines BD and OE meets at $(3,3 / 4)$
3. The lines given by $x^{2}-8 x+12=0$ are $x=2$ and $x=6$.

The lines given by $y^{2}-14 y+45=0$ are $y=5$ and $y=9$ Centre of the required circle is the centre of the square.
$\therefore \quad$ Required centre is
$\left(\frac{2+6}{2}, \frac{5+9}{2}\right)=(4,7)$.
4. $x^{2}-y^{2}+2 y=1$
$x= \pm(y-1)$
Bisector of above lines are $\mathrm{x}=0, \mathrm{y}=1$

so Area between $\mathrm{x}=0, \mathrm{y}=1$ and $\mathrm{x}+\mathrm{y}=3$
$=\frac{1}{2} \times 2 \times 2=2$ squ. units
5. A line passing through $P(h, k)$ and parallel to $x-a x i s$ is $y=k$.

The other lines given are $y=x$
and
$y+x=2$
Let ABC be the Δ formed by the points of intersection of the lines (i), (ii) and (iii).
$\therefore \quad \mathrm{A}(\mathrm{k}, \mathrm{k}), \mathrm{B}(1,1), \mathrm{C}(2-\mathrm{k}, \mathrm{k})$
$\therefore \quad$ Area of $\triangle \mathrm{ABC}=\frac{1}{2}\left|\begin{array}{ccc}\mathrm{k} & \mathrm{k} & 1 \\ 1 & 1 & 1 \\ 2-\mathrm{k} & \mathrm{k} & 1\end{array}\right|=4 \mathrm{~h}^{2}$
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{2} \frac{1}{2}\left|\begin{array}{ccc}0 & \mathrm{k} & 1 \\ 0 & 1 & 1 \\ 2-2 \mathrm{k} & \mathrm{k} & 1\end{array}\right|=4 \mathrm{~h}^{2}$
$\Rightarrow \frac{1}{2}|(2-2 \mathrm{k})(\mathrm{k}-1)|=4 \mathrm{~h}^{2}$
$\Rightarrow(\mathrm{k}-1)^{2}=4 \mathrm{~h}^{2} \quad \Rightarrow \quad \mathrm{k}-1=2 \mathrm{~h}, \mathrm{k}-1=-2 \mathrm{~h}$
$\Rightarrow \mathrm{k}=2 \mathrm{~h}+1 \quad \mathrm{k}=-2 \mathrm{~h}+1$
$\therefore \quad$ locus of (h, k) is $y=2 x+1 \quad y=-2 x+1$
6.

R is centroid hence $R \equiv\left(3, \frac{4}{3}\right)$
7. $\frac{\mathrm{PR}}{\mathrm{RQ}}=\frac{\mathrm{OP}}{\mathrm{OQ}}$

$\frac{\mathrm{PR}}{\mathrm{RQ}}=\frac{\mathrm{OP}}{\mathrm{OQ}}=\frac{2 \sqrt{2}}{\sqrt{5}}$
but statement -2 is false
\therefore Ans. (C)
8. $P \equiv(-\sin (\beta-\alpha),-\cos \beta)$
$Q \equiv(\cos (\beta-\alpha), \sin \beta)$
$R \equiv(\cos (\beta-\alpha+\theta), \sin (\beta-\theta))$
$0<\alpha, \beta, \theta<\frac{\pi}{4}$
$x_{R}=\cos (\beta-\alpha) \cos \theta-\sin (\beta-\alpha) \sin \theta$
$\Rightarrow x_{R}=x_{Q} \cdot \cos \theta+x_{p} \cdot \sin \theta$
$\mathrm{y}_{\mathrm{R}}=\sin \beta \cos \theta-\cos \beta \sin \theta$
$\Rightarrow y_{R}=y_{Q} \cdot \cos \theta+y_{P} \cdot \sin \theta$

For $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ to be collinear

$$
\sin \theta+\cos \theta=1
$$

$\Rightarrow \sin \left(\theta+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
\Rightarrow not possible for the given interval $\theta \in\left(0, \frac{\pi}{4}\right)$
\Rightarrow non collinear
9. $(1+p) x-p y+p(1+p)=0$
$(1+q) x-q y+q(1+q)=0$
on solving (1) and (2), we get $\mathrm{C}(\mathrm{pq},(1+\mathrm{p})(1+\mathrm{q}))$
\therefore equation of altitude CM passing through C and perpendicular to $A B$ is $x=p q$
$\because \quad$ slope of line (2) is $=\left(\frac{1+q}{q}\right)$
$\therefore \quad$ slope of altitude $B N($ as shown in figure $)$ is $=\frac{-q}{1+q}$
$\therefore \quad$ equation of $B N$ is $y-0=\frac{-q}{1+q}(x+p)$

$$
\begin{equation*}
\Rightarrow \mathrm{y}=\frac{-\mathrm{q}}{(1+\mathrm{q})}(\mathrm{x}+\mathrm{p}) \ldots \ldots .(4) \tag{4}
\end{equation*}
$$

Let orthocentre of triangle be $\mathrm{H}(\mathrm{h}, \mathrm{k})$ which is the point of intersection of (3) and (4)
\therefore on solving (3) and (4), we get
$\mathrm{x}=\mathrm{pq}$ and $\mathrm{y}=-\mathrm{pq} \quad \Rightarrow \mathrm{h}=\mathrm{pq}$ and $\mathrm{k}=-\mathrm{pq}$
$\therefore \quad \mathrm{h}+\mathrm{k}=0$
$\therefore \quad$ locus of $\mathrm{H}(\mathrm{h}, \mathrm{k})$ is $\mathrm{x}+\mathrm{y}=0$
10. Let slope of line $L=m$
$\therefore\left|\frac{\mathrm{m}-(-\sqrt{3})}{1+\mathrm{m}(-\sqrt{3})}\right|=\tan 60^{\circ}=\sqrt{3} \Rightarrow\left|\frac{\mathrm{~m}+\sqrt{3}}{1-\sqrt{3} \mathrm{~m}}\right|=\sqrt{3}$
taking positive sign, $m+\sqrt{3}=\sqrt{3}-3 m$
$\mathrm{m}=0$
taking negative sign

$$
\begin{aligned}
& m+\sqrt{3}+\sqrt{3}-3 m=0 \\
& m=\sqrt{3}
\end{aligned}
$$

As L cuts x -axis $\quad \Rightarrow \mathrm{m}=\sqrt{3}$
So L is $y+2=\sqrt{3}(x-3)$
11. (A) or (C) or Bonus

As $\mathrm{a}>\mathrm{b}>\mathrm{c}>0$
$\Rightarrow \mathrm{a}-\mathrm{c}>0$ and $\mathrm{b}>0$
$\Rightarrow \mathrm{a}-\mathrm{c}>0$ and $\mathrm{b}>0$
$\Rightarrow \mathrm{a}+\mathrm{b}-\mathrm{c}>0$
\Rightarrow option (A) is correct
Further $\mathrm{a}>\mathrm{b}$ and $\mathrm{c}>0$
$\Rightarrow \mathrm{a}-\mathrm{b}>0$ and $\mathrm{c}>0$
$\Rightarrow \mathrm{a}-\mathrm{b}>0$ and $\mathrm{c}>0$
$\Rightarrow \mathrm{a}-\mathrm{b}+\mathrm{c}>0 \quad \Rightarrow$ option (C) is correct
Aliter
$(a-b) x+(b-a) y=0 \Rightarrow x=y$
\Rightarrow Point of intersection $\left(\frac{-c}{a+b}, \frac{-c}{a+b}\right)$

Now

$$
\sqrt{\left(1+\frac{c}{a+b}\right)^{2}+\left(1+\frac{c}{a+b}\right)^{2}}<2 \sqrt{2}
$$

$\Rightarrow \sqrt{2}\left(\frac{a+b+c}{a+b}\right)<2 \sqrt{2}$
$\Rightarrow \quad a+b-c>0$
12.

$$
\begin{aligned}
& \mathrm{S} \equiv\left(\frac{3}{2}, \frac{3}{2}, 3\right) \\
& \overline{\mathrm{OQ}}=3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}} \quad \Rightarrow \quad \overline{\mathrm{OS}}=\frac{3}{2} \hat{\mathrm{i}}+\frac{3}{2} \hat{\mathrm{j}}+3 \hat{\mathrm{k}}
\end{aligned}
$$

$$
\cos \theta=\frac{\frac{1}{2}+\frac{1}{2}}{\sqrt{2} \sqrt{\frac{1}{2}+\frac{1}{4}}+1}=\frac{1}{\sqrt{2} \sqrt{\frac{3}{2}}}=\frac{1}{\sqrt{3}}
$$

$$
\overrightarrow{\mathrm{n}}=\overline{\mathrm{OQ}} \times \overline{\mathrm{OS}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}}) \times(\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})
$$

$$
=\hat{\mathrm{k}}-2 \hat{\mathrm{j}}-\hat{\mathrm{k}}+2 \hat{\mathrm{i}} \quad \Rightarrow \quad 2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}
$$

$$
x-y=\lambda \quad \Rightarrow \quad x=y \quad \Rightarrow \quad \perp(3,0,0) \quad \Rightarrow \quad \frac{3}{\sqrt{2}}
$$

$$
R S \rightarrow \frac{x-0}{\frac{3}{2}}=\frac{y-3}{-\frac{3}{2}}=\frac{z-0}{3}=\lambda
$$

$$
\Rightarrow \mathrm{x}=\frac{3}{2} \lambda, \mathrm{y}=-\frac{3}{2} \lambda+3, \mathrm{z}=3 \lambda
$$

T distance $\Rightarrow \sqrt{\frac{3}{2}-3+9} \Rightarrow \sqrt{\frac{15}{2}}$

$\mathrm{D}=\frac{9}{4} \lambda^{2}+\left(3-\frac{3}{2} \lambda\right)^{2}+9 \lambda^{2}=\frac{27}{2} \lambda^{2}-9 \lambda+9$
$\Rightarrow \lambda=\frac{9}{27}=\frac{1}{3}$

MOCK TEST

1. Condition for concurrency $\left|\begin{array}{ccc}1 & 2 \mathrm{a} & \mathrm{a} \\ 1 & 3 \mathrm{~b} & \mathrm{~b} \\ 1 & 4 \mathrm{c} & \mathrm{c}\end{array}\right|=0$
$3 \mathrm{bc}-4 \mathrm{bc}-2 \mathrm{a}(\mathrm{c}-\mathrm{b})+\mathrm{a}(4 \mathrm{c}-3 \mathrm{~b})=0$
$-\mathrm{bc}+2 \mathrm{ac}-\mathrm{ab}=0 \quad \Rightarrow \quad \frac{2}{\mathrm{~b}}=\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{c}}$
So $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P.
2. (A)
point of intersection is $\mathrm{A}(-2,0)$. The required line will be one which passes through $(-2,0)$ and is perpendicular to the line joining $(-2,0)$ and $(2,3)$
3. $\mathrm{x}^{2}\left(\sec ^{2} \theta-\sin ^{2} \theta\right)-2 \mathrm{xy} \tan \theta+\mathrm{y}^{2} \sin ^{2} \theta=0$
$\left|\mathrm{m}_{1}-\mathrm{m}_{2}\right|=\sqrt{\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)^{2}-4 \mathrm{~m}_{1} \mathrm{~m}_{2}}$
$\sqrt{\left(\frac{2 \tan \theta}{\sin ^{2} \theta}\right)^{2}-4\left(\frac{\sec ^{2} \theta-\sin ^{2} \theta}{\sin ^{2} \theta}\right)}=2$
4. (B)
for $\mathrm{x}>0 \mathrm{y}-\sqrt{3} \mathrm{x}-2=0$
$x<0 \quad y+\sqrt{3} x-2=0$

$\mathrm{P}=\left(\frac{5}{2}, \frac{4+5 \sqrt{3}}{2}\right)$ or $\left(-\frac{5}{2}, \frac{4+5 \sqrt{3}}{2}\right)$
distance of p on its angle bisector i.e.
y -axis is $\left(0, \frac{4+5 \sqrt{3}}{2}\right)$
5. To find equations of $A B$ and $C D$
$\because \quad A B$ and $C D$ are parallel to $3 x-4 y=0$ and at a distance of 2 units from $(1,1)$

$\therefore \quad 3 x-4 y+k=0$ and $\left|\frac{3-4+k}{5}\right|=2$
$\Rightarrow \mathrm{k}-1= \pm 10 \Rightarrow \mathrm{k}=11,-9$
\therefore equations of two sides of the square which are parallel to $3 x-4 y=0$ are

$$
3 x-4 y+11=0 \text { and } 3 x-4 y-9=0
$$

Now the remaining two sides will be perpendicular to $3 x-4 y=0$ and at a distance of 2 unit from $(1,1)$
$\therefore \quad 4 x+3 y+k=0$
and $\left|\frac{4+3+k}{5}\right|=2 \Rightarrow k+7= \pm 10 \Rightarrow k=3,-17$
$\therefore \quad$ remaining two sides are

$$
4 x+3 y+3=0 \quad \text { and } 4 x+3 y-17=0
$$

6. (D)

Let equation of $A B$ be $y=x+a$
$\therefore \mathrm{A}(1-\mathrm{a}, 1)$ and $\mathrm{B}(2,2+\mathrm{a})$
$\therefore \quad$ equation of AD is

$$
y-1=-1(x-1+a)
$$

$\therefore \quad \mathrm{D}(-2,4-\mathrm{a})$
Let $C(h, k)$ mid point of $A C=$ mid point of $B D$
$\Rightarrow \mathrm{h}+1-\mathrm{a}=2-2 \quad \Rightarrow \mathrm{~h}=\mathrm{a}-1$
and $k+1=2+\mathrm{a}+4-\mathrm{a} \Rightarrow \mathrm{k}=5$
\therefore Locus of $\mathrm{C}(\mathrm{h}, \mathrm{k})$ is $\mathrm{y}=5$
7.

$\therefore \quad \mathrm{P} \equiv(-4,-2) \quad$ and $\quad \mathrm{Q} \equiv(-2,-6)$
$\therefore \quad$ Let slopes of PM and QM be m_{1} and m_{2} respectively.
$\therefore \quad \mathrm{m}_{1}=3$ and $\mathrm{m}_{2}=\frac{1}{2}$.
Let ' θ ' be the acute angle between PM and QM
8. (A)

Let O be taken as the origin and a line through O parallel to L_{1} as the x-axis and the line through O perpendicular to x -axis as y -axis (figure).

Let equations of L_{1} and L_{2} in this system of coordinates be $\mathrm{y}=\mathrm{c}$ and $\mathrm{ax}+\mathrm{by}=1$ respectively, where a, b, c are fixed constants.
Let equation of the variable line through O be
$\frac{\mathrm{x}}{\cos \theta}=\frac{\mathrm{y}}{\sin \theta}=\mathrm{r}$
Then $(r \cos \theta, r \sin \theta)$ are the coordinates of a point on this line at a distance r from the origin O.
Let $\mathrm{OP}=\mathrm{r}, \mathrm{OR}=\mathrm{r}_{1}$ and $\mathrm{OS}=\mathrm{r}_{2}$ so that coordinates of P, R and S are respectively
$(r \cos \theta, r \sin \theta),\left(r_{1} \cos \theta, r_{1} \sin \theta\right)$ and $\left(r_{2} \cos \theta, r_{2} \sin \theta\right)$.
Since R lies on $\mathrm{L}_{1}, \mathrm{r}_{1} \sin \theta=\mathrm{c}$ and S lies on L_{2}, a. $\mathrm{r}_{2} \cos \theta+\mathrm{b} . \mathrm{r}_{2} \sin \theta=1$.
so that $r_{1}=\frac{c}{\sin \theta}$ and $r_{2}=\frac{1}{a \cos \theta+b \sin \theta}$

Now we are given $\frac{\mathrm{m}+\mathrm{n}}{\mathrm{OP}}=\frac{\mathrm{m}}{\mathrm{OR}}+\frac{\mathrm{n}}{\mathrm{OS}}$
$\Rightarrow \frac{\mathrm{m}+\mathrm{n}}{\mathrm{r}}=\frac{\mathrm{m}}{\mathrm{r}_{1}}+\frac{\mathrm{n}}{\mathrm{r}_{2}}$
$\Rightarrow \frac{\mathrm{m}+\mathrm{n}}{\mathrm{r}}=\frac{\mathrm{m} \sin \theta}{\mathrm{c}}+\mathrm{n}(\mathrm{a} \cos \theta+\mathrm{b} \sin \theta)$
[from (1)]
$\Rightarrow(\mathrm{m}+\mathrm{n}) \mathrm{c}=\mathrm{mrsin} \theta+\mathrm{cnarcos} \theta+\mathrm{cnbrsin} \theta$
Therefore locus of $\mathrm{P}(\mathrm{r} \cos \theta, \operatorname{rsin} \theta)$ is

$$
c n(a x+b y-1)+m(y-c)=0
$$

which is a straight line passing through the intersection of $L_{1}: y-c=0$ and $L_{2}: a x+b y=1$
9. \because point of intersection of the two ray is $\mathrm{P}(0,2)$
$\therefore \quad$ Point A is $\left(\frac{2}{\sqrt{3}}, 0\right)$ or $\left(-\frac{2}{\sqrt{3}}, 0\right)$

and PO is bisector of the angle between two rays
\therefore required point is $(0,0)$
$\therefore \quad \tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right| \Rightarrow \tan \theta=1 \Rightarrow \theta=\frac{\pi}{4}$
10. (D)
S_{1} : Image of $(2,1)$ in the line $x+1=0$ is $(-4,1)$
$\therefore \quad \mathrm{S}_{1}$ is false
$\mathrm{S}_{2}: \ell+\mathrm{m}=4$
$\therefore \quad \frac{\ell+\mathrm{m}}{2}=2 \quad \therefore \quad \mathrm{~S}_{2}$ is true
$\mathrm{S}_{3}: \mathrm{A}(10,20), \mathrm{B}(22,25), \mathrm{C}(10,25)$
$\mathrm{AB}^{2}=(22-10)^{2}+(25-20)^{2}=169, \mathrm{BC}^{2}=12^{2}+0=144$,
$\mathrm{CA}^{2}=0^{2}+5^{2}=25$
ABC is right angled triangle
Hence $(10,25)$ is orthocentre $\quad \therefore \quad \mathrm{S}_{3}$ is true
S_{4} : Equation of pair of bisectors of angles between lines $a x^{2}-2 h x y+b y^{2}=0$ is

$$
\frac{x^{2}-y^{2}}{a-b}=\frac{x y}{-h}
$$

$\Rightarrow \quad-\mathrm{h}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)=(\mathrm{a}-\mathrm{b}) \mathrm{xy}$
but $y=m x$ is one of these lines, then it will satisfy it. Substituting $y=m x$ in (1)

$$
-\mathrm{h}\left(\mathrm{x}^{2}-\mathrm{m}^{2} \mathrm{x}^{2}\right)=(\mathrm{a}-\mathrm{b}) \mathrm{x} \cdot \mathrm{mx}
$$

Dividing by $\mathrm{x}^{2}, \mathrm{~h}\left(1-\mathrm{m}^{2}\right)+\mathrm{m}(\mathrm{a}-\mathrm{b})=0$
11. Orthocentre O of the $\triangle \mathrm{ABC}$ is the incentre of the pedal $\triangle \mathrm{DEF}$.
$\mathrm{ED}=\sqrt{(20-8)^{2}+(25-16)^{2}}=1$
$\mathrm{FD}=20, \mathrm{EF}=7$

$\mathrm{H}=\frac{7 \times 20+20 \times 8+15 \times 8}{7+20+15}=10$
$K=\frac{7 \times 25+20 \times 16+15 \times 9}{7+20+15}=15$
$0(10,15)$
$A C \equiv y-2 x=0$
$A B \equiv 3 y+x-35=0$
$B C \equiv x+y-45=0 \Rightarrow A(5,10), B(50,-5) C(15,30)$
12. (A,C)
$\frac{x-\frac{a}{2}}{\frac{b}{\sqrt{a^{2}+b^{2}}}}=\frac{y-\frac{b}{2}}{\frac{a}{\sqrt{a^{2}+b^{2}}}}= \pm \frac{\sqrt{a^{2}+b^{2}}}{2}$
(0, b)

$$
x=\frac{a}{2}+\frac{b}{2}, y=\frac{b}{2}+\frac{a}{2}
$$

and $x=\frac{a}{2}-\frac{b}{2}, y=\frac{b}{2}-\frac{a}{2}$
\therefore the required points are $\left(\frac{\mathrm{a}+\mathrm{b}}{2}, \frac{\mathrm{a}+\mathrm{b}}{2}\right)$ and $\left(\frac{\mathrm{a}-\mathrm{b}}{2}, \frac{\mathrm{~b}-\mathrm{a}}{2}\right)$
13. Take $A(0,0), B(a, 0), C(a, a)$ and $D(0, a)$ then $M(a, a / 2)$ and $\mathrm{P}(\mathrm{a} / 2, \mathrm{a})$
$\Delta \mathrm{AMP}=\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ \mathrm{a} & \mathrm{a} / 2 & 1 \\ \mathrm{a} / 2 & \mathrm{a} & 1\end{array}\right|=\frac{3 \mathrm{a}^{2}}{8}$
$\Delta \mathrm{MAP}=\frac{\mathrm{a}^{2}}{8} \Rightarrow \Delta \mathrm{ABM}=\Delta \mathrm{ARP}=\frac{\mathrm{a}^{2}}{4}$
Area of quad. $A M C P=\frac{3 a^{2}}{8}+\frac{a^{2}}{8}=\frac{a^{2}}{2}$
14. (A,C)
$\tan \alpha \tan \beta=-1$
$\Rightarrow \cos (\alpha-\beta)=0$
$\Rightarrow \alpha-\beta=\frac{\pi}{2}$
16. (B)

Put $2 \mathrm{~h}=-(\mathrm{a}+\mathrm{b})$ in $\mathrm{ax}^{2}+2 \mathrm{~h} x y+\mathrm{by}^{2}=0$
$\Rightarrow \quad \mathrm{ax}^{2}-(\mathrm{a}+\mathrm{b}) \mathrm{xy}+\mathrm{by}^{2}=0$
$\Rightarrow \quad(x-y)(a x-b y)=0$
\Rightarrow one of the line bisects the angle between co-ordinate axes in positive quadrant.
Also put $b=-2 h-a$ in $a x-b y$ we have $a x-b y$ $=a x-(-2 h-a) y=a x+(2 h+a) y$
Hence $a x+(2 h+a) y$ is a factor of $a x^{2}+2 h x y+b y^{2}=0$
17. (D)

Statement-II is true (standard result from high school classes)
Statement-I :
Since AB may not be equal to AC ,
\therefore perpendicular drawn from A to BC may not bisects BC
\therefore statement is false
18. (B)
$a x^{3}+b x^{2} y+c x y^{2}+d y^{3}=0$
$\Rightarrow d\left(\frac{y}{x}\right)^{3}+c\left(\frac{y}{x}\right)^{2}+b\left(\frac{y}{x}\right)+a=0$
$\Rightarrow \mathrm{dm}^{3}+\mathrm{cm}^{2}+\mathrm{bm}+\mathrm{a}=0$
$m_{1} m_{2} m_{3}=-a / d$
$\Rightarrow \mathrm{m}_{3}=\mathrm{a} / \mathrm{d}$
as two lines are perpendicular, put $\mathrm{m}_{3}=\mathrm{a} / \mathrm{d}$ in
$7 \Rightarrow \mathrm{a}^{2}+\mathrm{ac}+\mathrm{bd}+\mathrm{d}^{2}=0$
19. (A)

ABC is a right angled triangle, right angled at C as $\left(\mathrm{m}_{\mathrm{AC}}\right)$
$\left(m_{B C}\right)=\left(\frac{-4+2}{5+5}\right)\left(\frac{-4-6}{5-7}\right)=-1$
Hence circumcentre is mid pt. of $\mathrm{AB} \equiv(1,2)$
20. (B)

Bisector at $C \frac{|3 x+2 y|}{\sqrt{13}}=\frac{|2 x+3 y+6|}{\sqrt{13}}$
$\Rightarrow \mathrm{x}-\mathrm{y}-6=0$ and $5 \mathrm{x}+5 \mathrm{y}+6=0$
according to given equations of sides, internal angle bisector at C will have negative slope.
Image of A will lie on BC with respect to both bisectors.
21. $(\mathrm{A}) \rightarrow(\mathrm{t})$,
$(\mathrm{B}) \rightarrow(\mathrm{s})$,
$(C) \rightarrow(p)$,
(D) $\rightarrow(\mathrm{q})$
(A) For point ($\mathrm{a}, \mathrm{a}^{2}$) to lie inside the triangle must satisfy

$$
\begin{array}{ll}
& a>0 \\
\text { and } \quad & a^{2}>0 \\
& a+2 a^{2}-3<0 \tag{iii}\\
& (2 a+3)(a-1)<0 \\
\Rightarrow a<1 \\
\Rightarrow & a \in(0,1)
\end{array}
$$

Hence correct answer is t
(B) Since $\angle \mathrm{BCA}=90^{\circ}$

Points A, O, B, C are concyclic
Let $\angle A O C=\theta$

$$
\begin{aligned}
& \angle \mathrm{BOC}=\angle \mathrm{BAC} \\
& \\
& \tan \left(\frac{\pi}{2}-\theta\right)=\frac{5}{12} \\
& \\
& \frac{x}{y}=\frac{5}{12} \\
& \Rightarrow \quad \\
& 12 x-5 y=0
\end{aligned}
$$

(C) Slope of line joining the point $(t-1,2 t+2)$ and its image $(2 t+1, t)$ is $\frac{(2 t+2)-t}{t-1-2 t-1}=\frac{t+2}{-(t+2)}=-1$.
So slope of line is 1
(D) Image of point $\mathrm{A}(1,2)$ in bisector of angles B and C lie on the line BC.

Image of A in $\mathrm{x}=\mathrm{y}$ is $(2,1)$ and image of A in $\mathrm{y}=0$ is $(1,-2)$.

So equation of line $B C$ is $y=3 x-5$
So $\quad d(A, B C)=\frac{4}{\sqrt{10}}$ So $\sqrt{10} d(A, B C)=4$.
22. (A) \rightarrow (p),
$(\mathrm{B}) \rightarrow(\mathrm{q})$,
$(C) \rightarrow(s)$,
(D) \rightarrow (s)
(A) $\mathrm{AH} \perp \mathrm{BC} . \Rightarrow\left(\frac{\mathrm{k}}{\mathrm{h}}\right)\left(\frac{3+1}{-2-5}\right)=-1$ $4 \mathrm{k}=7 \mathrm{~h}$
$\mathrm{BH} \perp \mathrm{AC} . \Rightarrow\left(\frac{0+1}{0-5}\right)\left(\frac{\mathrm{k}-3}{\mathrm{~h}+2}\right)=-1$

$$
\begin{align*}
\Rightarrow & 7 \mathrm{~h}-12=20 \mathrm{~h}+40 \\
& 13 \mathrm{~h}=-52 \\
& \mathrm{~h}=-4 \\
\therefore \quad & \mathrm{~A}(-4,-7) \tag{i}
\end{align*}
$$

(B) $x+y-4=0$

Let $(h, 4-h)$ be the point on (i),

$$
\text { then }\left|\frac{4 h+3(4-h)-10}{5}\right|=1 \quad \text { i.e. } h+2= \pm 5
$$

i.e. $h=3 ; h=-7$
\therefore required point is either $(3,1)$ or $(-7,11)$
(C) Orthocentre of the triangle is the point of intersection of the lines

$$
x+y-1=0 \quad \text { and } \quad x-y+3=0 \quad \text { i.e. } \quad(-1,2)
$$

(D) Since a, b, c are in A.P.
$\therefore \quad \mathrm{b}=\frac{\mathrm{a}+\mathrm{c}}{2}$
\therefore the family of lines is $a x+\frac{a+c}{2} y=c$
i.e. $a\left(x+\frac{y}{2}\right)+c\left(\frac{y}{2}-1\right) 7$
$\therefore \quad$ point of concurrency is $(-1,2)$
23.

1. (B)
$\omega=60^{\circ}, \mathrm{m}=2$
$\tan \theta=\frac{m \sin \omega}{1+m \cos \omega}=\frac{2 \sin 60^{\circ}}{1+2 \cos 60^{\circ}}=\frac{2 \times \sqrt{3} / 2}{1+2 \times 1 / 2}=\frac{\sqrt{3}}{2}$
$\Rightarrow \theta=\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
2. (D) $\omega=60^{\circ}, m_{1}=2, m_{2}=-\frac{1}{2}$

$$
\begin{aligned}
& \tan \theta_{1}=\frac{m_{1} \sin \omega}{1+m_{1} \cos \omega}=\frac{2 \times \sqrt{3} / 2}{1+2 \times 1 / 2}=\frac{\sqrt{3}}{2} \\
& \tan \theta_{2}=\frac{-1 / 2 \times \sqrt{3} / 2}{1-1 / 2 \times 1 / 2}=\frac{-\sqrt{3}}{4} \times \frac{4}{3}=-\frac{1}{\sqrt{3}}
\end{aligned}
$$

Let angle between the lines be ϕ then
$\tan \phi=\left|\frac{\tan \theta_{1}-\tan \theta_{2}}{1+\tan \theta_{1} \tan \theta_{2}}\right|=\left|\frac{\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{3}}}{1-\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}}}\right|$
$\Rightarrow \phi=\tan ^{-1}\left(\frac{5}{\sqrt{3}}\right)$
3. (C) $\mathrm{m}=\frac{\sin 60^{\circ}}{\sin \left(30^{\circ}-60^{\circ}\right)}=-\sqrt{3}$
$\therefore \quad$ equation of the line is $\mathrm{y}-0=-\sqrt{3}(\mathrm{x}-2)$
i.e. $\sqrt{3} x+y=2 \sqrt{3}$
24.

1. (B)

Image of $A(1,3)$ in line $x+y=2$ is

$$
\left(1-\frac{2(2)}{2}, 3-\frac{2(2)}{2}\right) \equiv(-1,1)
$$

So line BC passes through $(-1,1)$ and $\left(-\frac{2}{5},-\frac{2}{5}\right)$.
Equation of line BC is $y-1=\frac{-2 / 5-1}{-2 / 5+1}(x+1)$
$\Rightarrow 7 x+3 y+4=0$
2. (C) Vertex B is point of intersection of $7 x+3 y+4=0$ and $x+y=2$ i.e $B=(-5 / 2,9 / 2)$
3. (A) Line AB is $\mathrm{y}-3=\frac{3-9 / 2}{1+5 / 2}(\mathrm{x}-1)$

$$
\Rightarrow \quad 3 x+7 y=24
$$

25.
26. $\frac{\mathrm{x}-2}{3}=\frac{\mathrm{y}-3}{-4}=-15 \frac{6-12+1}{25}=3$
$\therefore \quad \mathrm{x}=11, \mathrm{y}=-9$
$\therefore \quad \alpha=2$
27. $\frac{\mathrm{x}-1}{-5}=\frac{\mathrm{y}-1}{12}=26 \frac{-5+12+6}{169}=2$
$x=-9, y=25$
$\therefore \quad \beta=16$
28. since $\mathrm{PQ}=16 \mathrm{PL}$, therefore, $\mathrm{LQ}=15 \mathrm{PL}$ and so $\mathrm{PQ}^{\prime}=14 \mathrm{PL}$.

Thus $\mathrm{n}=14$ for the point Q^{\prime}.

Since L and Q^{\prime} are on opposites sides of P

$$
\therefore \quad \frac{\mathrm{x}-2}{1}=\frac{\mathrm{y}+1}{-1}=14 \cdot \frac{2+1+1}{2}=28 \quad \therefore \mathrm{Q}^{\prime}(30,-29)
$$

26. D is mid point of $A B$ and lies on the line $3 x+y=6 \lambda$

$$
\begin{align*}
\Rightarrow & 3 \cdot \frac{\lambda^{2}+\lambda+1}{2}+\frac{2 \lambda-1}{2}=6 \lambda \\
& 3 \lambda^{2}-7 \lambda+2=0 \tag{1}
\end{align*}
$$

$$
\lambda=\frac{1}{3}, 2
$$

multiplication of slope of $\mathrm{AB} \&$ line $=-1$

$$
\begin{align*}
& \frac{-1}{\lambda-\lambda^{2}-1}(-3)=-1 \\
& \lambda^{2}-\lambda-2=0 \tag{2}\\
& \lambda=-1,2 \\
& \lambda=2 \text { satisfies both }(1) \&(2)
\end{align*}
$$

27. Let the line (L) through the origin is

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

as L intersects L_{1} at Q and $O Q=r_{1}$
$\therefore \quad r_{1} \sin \theta=m_{1} r_{1} \cos \theta+c_{1}$
similarly, L intersects L_{2} at R and $\mathrm{OR}=\mathrm{r}_{2}$

$$
\begin{equation*}
\mathrm{r}_{2} \sin \theta=\mathrm{m}_{2} \mathrm{r}_{2} \cos \theta+\mathrm{c}_{2} \tag{2}
\end{equation*}
$$

Let $\mathrm{P} \equiv(\mathrm{h}, \mathrm{k}) \quad \& \quad \mathrm{OP}=\mathrm{r}$
$\therefore \quad r^{2}=r_{1} r_{2}$
\& $h=r \cos \theta$
$\mathrm{k}=\mathrm{r} \sin \theta$
putting the values of r_{1} and r_{2} from (1) and (2) in (3)
$\therefore \quad r^{2}=\frac{c_{1}}{\left(\sin \theta-m_{1} \cos \theta\right)} \cdot \frac{c_{2}}{\left(\sin \theta-m_{2} \cos \theta\right)}$
putting the value of $\cos \theta$ and $\sin \theta$ from (4) and (5) in (6), we get
$\Rightarrow \mathrm{r}^{2}=\frac{\mathrm{c}_{1} \mathrm{c}_{2}}{\left(\frac{\mathrm{k}}{\mathrm{r}}-\mathrm{m}_{1} \frac{\mathrm{~h}}{\mathrm{r}}\right)\left(\frac{\mathrm{k}}{\mathrm{r}}-\mathrm{m}_{2} \frac{\mathrm{~h}}{\mathrm{r}}\right)}$
$\Rightarrow \quad\left(\mathrm{k}-\mathrm{m}_{1} \mathrm{~h}\right)\left(\mathrm{k}-\mathrm{m}_{2} \mathrm{~h}\right)=\mathrm{c}_{1} \mathrm{c}_{2}$
replacing (h, k) by (x, y) we get the desired locus
as $\left(y-m_{1} x\right)\left(y-m_{2} x\right)=c_{1} c_{2}$
28. (6)

Let $\mathrm{OC}=\mathrm{a}$
$\therefore \mathrm{OC}=\mathrm{CA}=\mathrm{AB}=\mathrm{BO}=\mathrm{a}$
Let $\left(x_{1}, \frac{4 x_{1}}{3}\right) \quad \therefore \quad A\left(a+x_{1}, \frac{4 x_{1}}{3}\right)$
$\because \quad \mathrm{x}_{1}^{2}+\frac{16 \mathrm{x}_{1}{ }^{2}}{9}=\mathrm{a}^{2} \quad(\because$ ODB is a right angle triangle $)$

$\therefore \quad a=\frac{5 x_{1}}{3}$
$\because \quad$ equation of BC is
$y-0=\frac{\frac{4 x_{1}}{3}-0}{x_{1}-a}(x-a) \quad \because \quad a=\frac{5 x_{1}}{3}$
$\therefore \quad y=-2 x+\frac{10 x_{1}}{3}$
\therefore BC passes through $\left(\frac{2}{3}, \frac{2}{3}\right)$
$\therefore \mathrm{x}_{1}=3 / 5 \quad \therefore \quad \mathrm{a}=1$
$\therefore \mathrm{A}\left(1+\frac{3}{5}, \frac{4}{3} \times \frac{3}{5}\right)$
$\therefore A\left(\frac{8}{5}, \frac{4}{5}\right) \quad \therefore \quad \frac{5}{2}(\alpha+\beta)=6$.
29. (2)
$\because \quad \theta_{1}-\theta=\theta-\theta_{2} \quad \Rightarrow 2 \theta=\theta_{1}+\theta_{2}$
$\therefore \quad \tan 2 \theta=\frac{\tan \theta_{1}+\tan \theta_{2}}{1-\tan \theta_{1} \tan \theta_{2}}$
$\Rightarrow \tan 2 \theta=\frac{7+1}{1-7} \quad \Rightarrow \quad \tan 2 \theta=\frac{-4}{3}$
$\Rightarrow \frac{2 \tan \theta}{1-\tan ^{2} \theta}=-\frac{4}{3}$

$\Rightarrow \tan \theta=2$ or $-\frac{1}{2}$
\therefore slope of longer diagonal is $=2$
30. Consider region OABC , x -coordinate downword very from 0 to - 10
$\left.\begin{array}{llll}(0,0) & (0,1) & \ldots \ldots \ldots & (0,10) \rightarrow 11 \\ (-1,0) & (-1,1) & \ldots \ldots \ldots & (-1,10) \rightarrow 11 \\ \vdots & & & \\ (-10,0) & (-10,1) & (-10,2),(-10,10) \rightarrow 11\end{array}\right\} 11^{2}$

Similarly ODEF $=11^{2}$
origin is common to both \Rightarrow integral point in
region OABC and $\mathrm{ODEF}=11^{2}+11^{2}-1=241$
consider region OAF excluding OA \& OF
$(1,9),(1,8) \ldots .(1,1) \rightarrow 9$
$(2,8),(2,7) \ldots .(2,1) \rightarrow 8$

$(9,1) \rightarrow 1$
$=$ total points $1+2+\ldots \ldots .+8+9=\frac{9 \times 10}{2}=45$ points
similarly region $\mathrm{OCD}=45$ points
total integral points $=241+45+45=331$

