HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

1. Work $=\overrightarrow{\mathrm{F}} . \overrightarrow{\mathrm{d} r}$, Work $=-\int_{0}^{\theta}(0.5)(5) \operatorname{Rd} \theta \therefore \mathrm{F}=\mathrm{mN}$
$\Rightarrow \quad[$ work $]=(2.5)(\mathrm{R})(2 \pi)=-5 \mathrm{~J}$
2. By applying work energy theorem change in kinetic energy $=W_{\mathrm{g}}+\mathrm{W}_{\text {ext. } \mathrm{P}}$
$0=m g\left(\ell \cos 37^{\circ}-\ell \cos 53^{\circ}\right)+\mathrm{W}_{\text {ext }}$

$$
=50 \times 10 \times 1\left[\frac{3}{5}-\frac{4}{5}\right]+\mathrm{W}_{\mathrm{extP}}
$$

$\mathrm{W}_{\text {ext }}=100$ joule
3. $W=\vec{f} . \vec{d}$
$\mathrm{mg}-\mathrm{T}=\frac{\mathrm{Mg}}{2} ; \mathrm{T}=\frac{\mathrm{Mg}}{2}$

$\mathrm{W}=\left(-\frac{\mathrm{Mg}}{2}\right) \mathrm{x}$
4. By applying work energy theorem

$$
\Delta K E=\vec{f} \cdot \vec{d}=m\left(\frac{v}{t_{1}}\right) \frac{1}{2}\left(\frac{v}{t_{1}}\right) t^{2} \Rightarrow \Delta K . E \cdot=\frac{m v^{2}}{2 t_{1}^{2}} t^{2}
$$

5. For conservation force work done is independent of the path
$\mathrm{W}_{\mathrm{AB}}+\mathrm{W}_{\mathrm{BC}}=\mathrm{W}_{\mathrm{AC}}, 3+4=\mathrm{W}_{\mathrm{AC}}=7 \mathrm{~J}$
6. By applying work energy theorem

$$
\begin{aligned}
& \frac{1}{2} m \frac{v^{2}}{4}-\frac{1}{2} m v^{2}=-\frac{1}{2} k x^{2} \\
\Rightarrow & \frac{-3 m v^{2}}{8}=\frac{-1}{2} k x^{2} ; k=\frac{3 m v^{2}}{4 x^{2}}
\end{aligned}
$$

7. By applying work energy theorem $\Delta \mathrm{KE}=$ work done by all the forces

New kinetic energy $=\frac{1}{2} \mathrm{mv}_{\mathrm{f}}^{2}=\frac{\mathrm{mv}^{2}}{8}$
$\Rightarrow \mathrm{v}_{\mathrm{f}}=\frac{\mathrm{v}_{0}}{2} \Rightarrow \mathrm{v}=\mathrm{u}-\mu \mathrm{gt} \mathrm{t}_{0} \Rightarrow \mu \Rightarrow \frac{\mathrm{v}_{0}}{2 \mathrm{gt}_{0}}$
8. Slope of $v-t$ graph Acceleration $\Rightarrow-10 \mathrm{~m} / \mathrm{s}^{2}$ Area under $\mathrm{v}-\mathrm{t}$ graph \rightarrow displacement $\Rightarrow 20 \mathrm{~m}$ work $=\vec{f} . \vec{s}=2(10)(20) \Rightarrow-400 \mathrm{~J}$
9. Total mass ; $\mathrm{f} \propto 6 \mathrm{~m}, \mathrm{f}=6 \mathrm{~m}_{\mathrm{C}}(20)=\mathrm{P}$

To Drive $12 \mathrm{~m}: \mathrm{f} \propto 14 \mathrm{~m} \quad \Rightarrow \mathrm{f}=14 \mathrm{~m}_{\mathrm{C}}$
$\left(14 \mathrm{~m}_{\mathrm{C}}\right) \mathrm{v}=6\left(\mathrm{~m}_{\mathrm{C}}\right) 20 \quad \Rightarrow 8.57 \mathrm{~m} / \mathrm{s}$
To drive 6 bogie : force $\propto 8 \mathrm{~m}$
$\begin{array}{ll}\text { force }=8 m_{C} & \Rightarrow P=8 m_{C} v \\ \left(8 m_{C}\right) v=120 m_{C} & \Rightarrow 15 \mathrm{~m} / \mathrm{s}\end{array}$
10. Power $=$ constant, $\mathrm{Fv}=\mathrm{C}$
$\operatorname{mvdv}=\mathrm{Cdt} \Rightarrow \mathrm{v}^{2}=\frac{2 \mathrm{C}}{\mathrm{m}} \mathrm{t} \Rightarrow \mathrm{v}=\sqrt{\frac{2 \mathrm{C}}{\mathrm{m}} \mathrm{t}}$
as $\quad v=\frac{d x}{d t} \Rightarrow \int d x=\sqrt{\frac{2 C}{m}} \int \sqrt{\mathrm{t}} \mathrm{dt}$
$\mathrm{x}=\sqrt{\frac{2 \mathrm{C}}{\mathrm{m}}} \frac{\mathrm{t}^{3 / 2}}{2 / 3} \Rightarrow \mathrm{x} \propto \mathrm{t}^{3 / 2}$
11. By applying work energy theorem
$\frac{1}{2} \mathrm{mv}^{2}-0=\mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\mathrm{fr}}$
for the second half work energy theorem change in kinetic energy $=\mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\mathrm{fr}}$

$$
0=100 \mathrm{mg}+\mathrm{W}_{\mathrm{fr}}=-100 \mathrm{mg}
$$

As work done for the first half by the gravity is 100 mg therefore work done by air resistance is less than 100 mg .
12. $\mathrm{x}=3 \mathrm{t}-4 \mathrm{t}^{2}+\mathrm{t}^{3} ; \quad \mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=3-8 \mathrm{t}+3 \mathrm{t}^{2}$
$\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=0-8+6 \mathrm{t}$
$\mathrm{W}=\int \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{d} x}=\int_{0}^{4} 3(6 \mathrm{t}-8)\left(3-8 \mathrm{t}+3 \mathrm{t}^{2}\right) \mathrm{dt}$
$\mathrm{W}=528 \mathrm{~mJ}$
OR
From work energy theorem
$\mathrm{W}=\frac{1}{2} \mathrm{mv}_{2}^{2}-\frac{1}{2} \mathrm{mv}_{1}^{2}=\frac{1}{2}\left(3 \times 10^{-3}\right)$
$\left[\left(3-8(4)+3(4)^{2}\right)-(3)^{2}\right]=528 \mathrm{~mJ}$
13. P.E. \rightarrow Maximum \rightarrow Unstable equilibrium
P.E. \rightarrow Minimum \rightarrow Stable equilibrium
P.E. \rightarrow Constant \rightarrow Natural equilibrium
\therefore None of these
14. $\mathrm{a}_{\mathrm{c}}=\mathrm{k}^{2} \mathrm{rt}^{2} \Rightarrow \frac{\mathrm{v}^{2}}{\mathrm{r}}=\mathrm{k}^{2} \mathrm{rt}^{2}$
$\Rightarrow \mathrm{v}^{2}=\mathrm{k}^{2} \mathrm{r}^{2} \mathrm{t}^{2} \Rightarrow \mathrm{v}=\mathrm{krt} \Rightarrow \mathrm{a}_{\mathrm{T}}=\frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{kr}$
$\mathrm{P}=\int \mathrm{m} \overrightarrow{\mathrm{a}}_{\mathrm{T}} \cdot \overrightarrow{\mathrm{v}}=\mathrm{m}(\mathrm{kr}) .(\mathrm{krt})=\mathrm{mk}^{2} \mathrm{r}^{2} \mathrm{t}$
15. By applying work energy theorem
$\Delta \mathrm{KE}=$ Work done by all the forces
$0=\mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\text {spring }}+\mathrm{W}_{\text {ext agent }}$
$-\mathrm{W}_{\mathrm{g}}=\left(\mathrm{W}_{\text {spring }}+\mathrm{W}_{\text {ext agent }}\right)$
$\Delta \mathrm{U}=\left(\mathrm{W}_{\text {spring }}+\mathrm{W}_{\text {ext agent }}\right) \quad\left[\because \Delta \mathrm{U}=\mathrm{W}_{\mathrm{g}}\right]$
16. P.E. \rightarrow Maximum \rightarrow Unstable equilibrium
P.E. \rightarrow Minimum \rightarrow Stable equilibrium
P.E. \rightarrow Constant \rightarrow Natural equilibrium

Force $=-\frac{\mathrm{dU}}{\mathrm{dx}} \Rightarrow-$ (slope)
[slope is -ve from E to F]
Force $=+$ ve repulsion
Force $=-$ ve attraction
17. $\Delta \mathrm{U}=\mathrm{mgh}$
height w.r.t. ground $=(\ell-\mathrm{h}), \Delta \mathrm{U}=\mathrm{mg}(\ell-\mathrm{h})$
18. At lowest point
$\mathrm{T}-\mathrm{mg}=\frac{\mathrm{mu}^{2}}{\ell}$
at highest point $\mathrm{T}=0$
$\mathrm{mg}=\frac{\mathrm{mv}^{2}}{\ell}, \mathrm{v}=\sqrt{\mathrm{g} \ell}$ and $\mathrm{v}^{2}=\mathrm{u}^{2}+2$ as
$(\sqrt{\mathrm{g} \ell})^{2}=u^{2}+2(-\mathrm{g}) \times 2 \ell$
$\mathrm{g} \ell=\mathrm{u}^{2}-4 \mathrm{~g} \ell$
$\mathrm{u}^{2}=5 \mathrm{~g} \ell$
Put the value of u^{2} in equation (i)
$\mathrm{T}-\mathrm{mg}=\frac{\mathrm{m}(5 \mathrm{~g} \ell)}{\ell} \Rightarrow \mathrm{T}=6 \mathrm{mg}$
19. By applying work energy theorem

$$
\begin{aligned}
& \Delta \mathrm{K} \cdot \mathrm{E}=\mathrm{W}_{\mathrm{s}}+\mathrm{W}_{\text {ext agent }} \\
& 0=-\frac{1}{2} \mathrm{Kx}^{2}+\mathrm{Fx} \Rightarrow \mathrm{x}=\frac{2 \mathrm{~F}}{\mathrm{~K}} \\
& \text { Work done }=\frac{2 \mathrm{~F}^{2}}{\mathrm{~K}}
\end{aligned}
$$

20. In case of rod the minimum velocity of particle is zero at highest.
21. When the string is horizontal

$$
\begin{align*}
\mathrm{T} & =\frac{\mathrm{mv}^{2}}{\ell} \tag{i}\\
\mathrm{v}^{2} & =\mathrm{u}^{2}-2 \mathrm{~g} \ell \\
\mathrm{v}^{2} & =5 \mathrm{~g} \ell-2 \mathrm{~g} \ell=3 \mathrm{~g} \ell
\end{align*}
$$

So $\quad \mathrm{T}=\frac{\mathrm{m} \cdot 3 \mathrm{~g} \ell}{\ell}=3 \mathrm{mg}$

So net force

$$
=\sqrt{\mathrm{T}^{2}+(\mathrm{mg})^{2}}=\sqrt{(3 \mathrm{mg})^{2}+(\mathrm{mg})^{2}}=\sqrt{10} \mathrm{mg}
$$

22. By applying work energy theorem $\Delta \mathrm{KE}=\mathrm{W}_{\mathrm{g}}$

$\frac{1}{2} \mathrm{mv}^{2}=\operatorname{mg}(\mathrm{r}-\mathrm{b}) \Rightarrow \mathrm{v}=\sqrt{2 \mathrm{~g}(\mathrm{r}-\mathrm{b})}$
23. As velocity is vector quantity

$$
\begin{aligned}
& \Delta \mathrm{v}=\sqrt{\mathrm{v}_{1}^{2}+\mathrm{v}_{2}^{2}-2 \mathrm{v}_{1} \mathrm{v}_{2} \cos \theta}\left[\operatorname{as} \theta=90^{\circ}\right] \\
& \Delta \mathrm{v}=\sqrt{\mathrm{v}_{1}^{2}+\mathrm{v}_{2}^{2}}
\end{aligned}
$$

By applying work energy theorem velocity at z

$$
\begin{aligned}
& \frac{1}{2} \mathrm{mv}_{2}{ }^{2}-\frac{1}{2} \mathrm{mu}^{2}=-\mathrm{mgL} \\
& \mathrm{v}_{2}{ }^{2}=\mathrm{u}^{2}-2 \mathrm{gL} \Rightarrow \Delta u=\sqrt{2\left(\mathrm{u}^{2}-\mathrm{gL}\right)}
\end{aligned}
$$

24. $\Delta \mathrm{P}=\sqrt{\mathrm{P}_{1}^{2}+\mathrm{P}_{2}^{2}-2 \mathrm{P}_{1} \mathrm{P}_{2} \cos \theta}$
for $\cos \theta=$ maximum $\Rightarrow \Delta \mathrm{P}$ minimum $\theta=360^{\circ}$
for $\cos \theta=$ minimum $\Rightarrow \Delta \mathrm{P}$ maximum $\theta=180^{\circ}$
25. Net force towards centre equal $=\frac{m v^{2}}{r}$
$m g \cos \theta-N=\frac{m_{x} v^{2}}{r}$
$\mathrm{v}=\sqrt{\mathrm{rg} \cos \theta}$
By applying work energy theorem

$\frac{1}{2} \operatorname{mrg} \cos \theta-0=\operatorname{mgr}(1-\cos \theta)=\cos \theta=\frac{2}{3}$
26. Tension at any point $\mathrm{T}=3 \mathrm{mg} \cos \theta$

Given $3 \mathrm{mg} \cos \theta=2 \mathrm{mg}$

EXERCISE - 2

Part \# I : Multiple Choice

1. $\mathrm{COME} \Rightarrow \mathrm{K}_{1}+\mathrm{U}_{1}=\mathrm{K}_{2}+\mathrm{U}_{2}$

$$
\begin{aligned}
& \Rightarrow 0+\frac{1}{2} \mathrm{k}_{1} \mathrm{x}^{2}+\frac{1}{2} \mathrm{k}_{2} \mathrm{x}^{2} \\
& =\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{k}_{1}\left(\frac{\mathrm{x}}{2}\right)^{2}+\frac{1}{2} \mathrm{k}_{2}\left(\frac{\mathrm{x}}{2}\right)^{2} \\
& \Rightarrow \frac{1}{2}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{x}^{2}=\frac{1}{2} m v^{2}+\frac{1}{8}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{x}^{2} \\
& \Rightarrow \mathrm{v}=\sqrt{\frac{3}{4} \frac{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{x}^{2}}{m}}
\end{aligned}
$$

2. For body B : $\mathrm{mg}-\mathrm{T}=\mathrm{m}(2 \mathrm{a})$

For body A: $2 \mathrm{~T}-\mathrm{mg}=\mathrm{ma} \Rightarrow \mathrm{a}=\frac{\mathrm{g}}{5}$

$$
\mathrm{a}_{\mathrm{B}}=2 \mathrm{a}_{\mathrm{A}} \text { and } \mathrm{a}_{\mathrm{A}}=\mathrm{a}
$$

\therefore Velocity of B after travelling distance ℓ

$$
=\sqrt{2 \mathrm{as}}=\sqrt{\frac{4 \mathrm{~g} \ell}{5}}
$$

\therefore Velocity of $A: \mathrm{v}_{\mathrm{A}}=\frac{\mathrm{v}_{\mathrm{B}}}{2}=\sqrt{\frac{\mathrm{g} \ell}{5}}$
3. Work done against friction $=\mathrm{mgh}=$ loss in P.E.
\therefore Work done by ext. agent

$$
\begin{aligned}
& =\mathrm{W}_{\mathrm{f}}+\Delta \mathrm{PE} \\
& =\mathrm{mgh}+\mathrm{mgh}=2 \mathrm{mgh}
\end{aligned}
$$

4. COME : $\mathrm{K}_{1}+\mathrm{U}_{1}=\mathrm{K}_{2}+\mathrm{U}_{2}$
$0+\mathrm{mg}(4 \mathrm{R})=\frac{1}{2} \mathrm{mv}^{2}+\mathrm{mg}(2 \mathrm{R}) \Rightarrow \mathrm{mv}^{2}=4 \mathrm{mgR}$
Forces at position 2 :

$$
\mathrm{N}=\frac{\mathrm{mv}^{2}}{\mathrm{R}}-\mathrm{mg}=4 \mathrm{mg}-\mathrm{mg}=3 \mathrm{mg}
$$

5. $\quad \mathrm{COME} \Rightarrow \mathrm{K}_{1}+\mathrm{U}_{1}=\mathrm{K}_{2}+\mathrm{U}_{2}$
$0+\operatorname{mg} \ell\left(1-\cos 60^{\circ}\right)=\frac{1}{2} \mathrm{mv}^{2}+0 \Rightarrow \mathrm{v}=\sqrt{\mathrm{g} \ell}$
6. $\mathrm{W}_{\operatorname{man}}=\Delta \mathrm{U}=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=\left(\frac{\mathrm{m}}{2}\right) \mathrm{g}\left(\frac{\ell}{4}\right)-\frac{\mathrm{mg} \ell}{2}=-\frac{3 \mathrm{mg} \ell}{8}$
7. COME: $\mathrm{K}_{\mathrm{B}}+\mathrm{U}_{\mathrm{B}}=\mathrm{K}_{\mathrm{C}}+\mathrm{U}_{\mathrm{C}}$

$$
\begin{equation*}
\frac{1}{2} \mathrm{mv}_{0}^{2}+\mathrm{mgr}=\frac{1}{2} \mathrm{mv}_{\mathrm{C}}^{2}+\mathrm{mg} \operatorname{rcos} \theta \tag{i}
\end{equation*}
$$

Force equation at C
$\Rightarrow N+\frac{\mathrm{mv}_{\mathrm{C}}^{2}}{\mathrm{r}}=m g \cos \theta$
at $\mathrm{C}, \mathrm{N}=0 \Rightarrow \cos \theta=\frac{3}{4}$
8. $\mathrm{F}_{\text {ext }}=\mathrm{m}_{2} \mathrm{~g}-\mathrm{m}_{1} \mathrm{~g} \quad \therefore \mathrm{P}_{\text {inst }}=\mathrm{f}_{\text {ext }} \cdot \mathrm{v}=\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right) \mathrm{gv}$
9. At $\mathrm{x}=-\sqrt{\frac{2 \mathrm{E}}{\mathrm{k}}} ; \quad \mathrm{E}_{\text {total }}=\frac{1}{2} \mathrm{kx}^{2}=\mathrm{U} \quad \therefore \mathrm{KE}=0$
10. $\mathrm{W}_{\mathrm{f}}=\Delta \mathrm{KE} \Rightarrow \int_{\mathrm{r}}^{\infty}(-\mu . \mathrm{mg}) \mathrm{dr}=0-\frac{1}{2} \mathrm{mv}^{2} \Rightarrow \mathrm{v}=\sqrt{2 \mathrm{gA}}$
11. Equation of motion :
$m_{A} g \sin 37^{\circ}-T=m_{A} a_{A}$ and $2 T-m_{B} g=m_{B} a_{B}$

$$
a_{A}=2 a_{B}=2 \times \frac{g}{12}=\frac{g}{6}
$$

$\therefore \quad v_{A}=\sqrt{2 a_{A} \cdot s_{A}}=\sqrt{2 \times \frac{g}{6} \times 1}=\sqrt{\frac{g}{3}}$
$\therefore \quad \mathrm{v}_{\mathrm{B}}=\frac{\mathrm{v}_{\mathrm{A}}}{2}=\frac{\sqrt{g}}{2 \sqrt{3}}$
12. $\operatorname{COME}: \mathrm{K}_{\mathrm{B}}+\mathrm{U}_{\mathrm{B}}=\mathrm{K}_{\mathrm{A}}+\mathrm{U}_{\mathrm{A}}$

$$
\begin{aligned}
& 0+\frac{1}{2} \mathrm{k}(13-7)^{2}=\frac{1}{2} \mathrm{mv}_{\mathrm{A}}^{2}+0 \\
& \mathrm{~N}_{\mathrm{A}}=\frac{\mathrm{mv}_{\mathrm{A}}^{2}}{\mathrm{R}}=\frac{\mathrm{k} \times 6^{2}}{5}=1440 \mathrm{~N}
\end{aligned}
$$

13. $\operatorname{COME}: \mathrm{K}_{\mathrm{A}}+\mathrm{U}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}+\mathrm{U}_{\mathrm{B}}$
$0+\mathrm{mg} \times 25=\frac{1}{2} \mathrm{mv}_{\mathrm{A}}^{2}+\mathrm{mg} \times 15 \Rightarrow \mathrm{mv}_{\mathrm{A}}^{2}=20 \mathrm{mg}$
Forces at $B: N=m g-\frac{m v_{A}^{2}}{R}=0 \Rightarrow R=20 m$
14. Conservation of mechanical energy explains the K.E. at
$\mathrm{A} \& \mathrm{~B}$ are equal.
Acceleration for $\mathrm{A}=\mathrm{g} \sin \theta_{1}$
Acceleration for $\mathrm{B}=\mathrm{g} \sin \theta_{2}$
$\because \sin \theta_{1}>\sin \theta_{2} \quad \therefore a_{1}>a_{2}$
$\mathrm{F}_{\mathrm{ext}}$ and displacements are in opposite directions.
15. Power $=\rho \mathrm{QgH}=\rho A v . g H=\rho A \sqrt{2 g H} \cdot g H$ $=10^{3} \times \frac{\pi \mathrm{d}^{2}}{4} \times \sqrt{2 \times 10 \times 40} \times 10 \times 40(\mathrm{~d}=5 \mathrm{~cm})=21.5 \mathrm{~kW}$
16. Area of graph

$$
\begin{aligned}
& =\int P \cdot d x=\int m v \cdot a \cdot d x=\int m v \cdot\left(\frac{v d v}{d x}\right) d x \\
& =\int_{u}^{v} m v^{2} d v=\frac{m\left(v^{3}-u^{3}\right)}{3}=\frac{10 \cdot\left(v^{3}-1\right)}{7 \times 3} \\
& =\frac{1}{2}(4+2) \times 10 \Rightarrow v=4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

17. For upward motion : $\mathrm{mgh}+\mathrm{fh}=\frac{1}{2} \mathrm{~m} \times 16^{2}$
downward motion : $\mathrm{mgh}-\mathrm{fh}=\frac{1}{2} \mathrm{~m} \times 8^{2} \Rightarrow \mathrm{~h}=8 \mathrm{~m}$
18. For equilibrium : $\mathrm{N} \cos \theta=\mathrm{mg} \& N \sin \theta=\mathrm{kx}$
$\Rightarrow \mathrm{kx}=\mathrm{mgtan} \theta(\mathrm{N}=$ normal between $\mathrm{m} \& \mathrm{M})$
$\therefore \quad \mathrm{U}=\frac{1}{2} \mathrm{kx}^{2}=\frac{\mathrm{m}^{2} \mathrm{~g}^{2} \tan ^{2} \theta}{2 \mathrm{k}}$
19. $P=\frac{\Delta \mathrm{W}}{\Delta \mathrm{t}}=\frac{\overrightarrow{\mathrm{F}} \cdot \Delta \overrightarrow{\mathrm{S}}}{\Delta \mathrm{t}}=\frac{(3 \tilde{\mathrm{i}}+4 \tilde{\mathrm{j}}) \cdot(8 \tilde{\mathrm{i}}+6 \tilde{\mathrm{j}})}{6}=8 \mathrm{~W}$
20. For motion $\mathrm{P} \rightarrow 0 \Rightarrow \mathrm{~K}_{\mathrm{O}}+\mathrm{U}_{\mathrm{O}}=\mathrm{K}_{\mathrm{P}}+\mathrm{U}_{\mathrm{P}}$

For motion $\mathrm{Q} \rightarrow 0 \Rightarrow \mathrm{~K}_{\mathrm{O}}^{\prime}+\mathrm{U}_{\mathrm{O}}^{\prime}=\mathrm{K}_{\mathrm{Q}}+\mathrm{U}_{\mathrm{Q}}$

$$
\begin{aligned}
& \Rightarrow \mathrm{K}_{\mathrm{O}}=\mathrm{U}_{\mathrm{P}} ; \quad \mathrm{K}_{\mathrm{O}}^{\prime}=\mathrm{U}_{2}=2 \mathrm{U}_{\mathrm{P}}=2 \mathrm{~K}_{\mathrm{O}} \\
& \Rightarrow \mathrm{t}_{\mathrm{Q} \rightarrow \mathrm{O}}=\sqrt{\frac{2(2 \mathrm{~h} / \sin \alpha)}{\mathrm{g} \sin \alpha}}=\mathrm{t}_{1} \\
& \Rightarrow \mathrm{t}_{\mathrm{P} \rightarrow \mathrm{O}}=\sqrt{\frac{2(\mathrm{~h} / \sin \alpha)}{\mathrm{g} \sin \alpha}}=\mathrm{t}_{2}=\sqrt{2} \mathrm{t}_{1}
\end{aligned}
$$

21. $\mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\mathrm{F}}=\Delta \mathrm{KE} \Rightarrow-\mathrm{mgh}-\mathrm{f} . \mathrm{d}=0-\frac{1}{2} \mathrm{mv}^{2}$
$-\operatorname{mg} 1.1-\mu \mathrm{mg} \mathrm{d}=-\frac{1}{2} \mathrm{mv}^{2}(\mu=0.6) \Rightarrow \mathrm{d}=1.17 \mathrm{~m}$
22. Maximum elongation in spring $=\frac{2 \mathrm{Mg}}{\mathrm{K}}$

Condition block ' m ' to move is
$K x \geq m g \sin 37^{\circ}+\mu m g \cos 37^{\circ} \Rightarrow M=\frac{3}{5}$
23. $\mathrm{v}=\mathrm{a} \sqrt{\mathrm{s}}=\frac{\mathrm{ds}}{\mathrm{dt}} \Rightarrow \mathrm{s}=\frac{\mathrm{a}^{2} \mathrm{t}^{2}}{4}$
$\therefore \mathrm{W}=\frac{1}{2} \mathrm{mv}^{2}-0=\frac{1}{2} \mathrm{~m} \times \mathrm{a}^{2} \mathrm{~s}=\frac{1}{2} \mathrm{ma}^{2} \frac{\left(\mathrm{a}^{2} \mathrm{t}^{2}\right)}{4}=\frac{\mathrm{ma}^{4} \mathrm{t}^{2}}{8}$
24. Conservative forces depends on the end points not on the path. Hence work done by it in a closed loop is zero.
25. COME : $\mathrm{K}_{1}+\mathrm{U}_{1}=\mathrm{K}_{2}+\mathrm{U}_{2}$
$\frac{1}{2} \mathrm{mv}_{0}^{2}+0=0+\mathrm{mg} \ell\left(1-\cos 60^{\circ}\right) \Rightarrow \mathrm{v}_{0}=7 \mathrm{~m} / \mathrm{s}$
26. For equilibrium, $F=0 \Rightarrow x(3 x-2)=0 \Rightarrow x=0 \Rightarrow x=\frac{2}{3}$
27. For velocity to maximum acceleration must be zero.
$\Rightarrow \mathrm{mg}-\mathrm{kx}=\mathrm{ma}=0$
$\Rightarrow \mathrm{x}=\frac{\mathrm{mg}}{\mathrm{k}}=\frac{1 \times 10}{0.2}=5 \mathrm{~cm}$
\therefore Height from table $=15 \mathrm{~cm}$
28. $\mathrm{v}^{2}=\mathrm{v}_{0}{ }^{2}+2(-\mu \mathrm{g}) \mathrm{L}$

For $v=0, \quad v_{0}=\sqrt{2 \mu g \mathrm{~L}}$
29. Sum of KE and PE remains constant.
30. $\mathrm{W}_{\mathrm{N}}=\Delta \mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{~m}(\mathrm{at})^{2}=\frac{1}{2} \times 1 \times(10 \sqrt{3})^{2}=150 \mathrm{~J}$
31. Δ K.E. $=$ work done by all the forces
Δ K.E. $=\mathrm{m} \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{s}}$
When acceleration is constant

$$
\Delta \text { K.E. } \propto \mathrm{t}^{2}\left[\text { as s }=\frac{1}{2} a \mathrm{t}^{2}\right]
$$

32. $\left(0-\frac{1}{2} \mathrm{kx}^{2}\right)+(-\mu \mathrm{mgx})=0-\frac{1}{2} \mathrm{mv}^{2} \Rightarrow \mathrm{v}=8 \mathrm{~m} / \mathrm{s}$
33. $\overrightarrow{\mathrm{F}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}$ is a conservative force ie therefore $\mathrm{W}_{1}=\mathrm{W}_{2}$
34. \quad Given $\mathrm{v}=\sqrt{ } \mathrm{gr}$

35. To break off reaction becomes O ,
i.e. $m g \cos \theta=\frac{\mathrm{mv}^{2}}{\mathrm{R}} \Rightarrow \cos \theta=\frac{\mathrm{v}^{2}}{\mathrm{Rg}}$

But from energy considerations

$$
\operatorname{mgR}[1-\cos \theta]=\frac{1}{2} \mathrm{mv}^{2}
$$

$\Rightarrow \mathrm{v}^{2}=2 \mathrm{gR}(1-\cos \theta)$ using it in (1)
$\cos \theta=2(1-\cos \theta)$
$\Rightarrow \cos \theta=2-2 \cos \theta \Rightarrow \cos \theta=\frac{2}{3}$
So $\sin \theta=\sqrt{1-\frac{4}{9}}=\frac{\sqrt{5}}{3}$
Now tangential acceleration $\mathrm{g} \sin \theta=\mathrm{g} \frac{\sqrt{5}}{3}$
36. Given $\frac{1}{2} \mathrm{mv}^{2}=\mathrm{as}^{2}$

So $\mathrm{a}_{\mathrm{r}}=\frac{\mathrm{v}^{2}}{\mathrm{R}}=\frac{2 \mathrm{as}^{2}}{\mathrm{mR}}$
Also $\mathrm{a}_{\mathrm{t}}=\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{dv}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}}=\mathrm{v} \frac{\mathrm{dv}}{\mathrm{ds}}$
But from equation (1) $v=s \sqrt{\frac{2 a}{m}}$
put it above $\mathrm{a}_{\mathrm{t}}=\mathrm{s} \sqrt{\frac{2 \mathrm{a}}{\mathrm{m}}}\left(\sqrt{\frac{2 \mathrm{a}}{\mathrm{m}}}\right)=\frac{2 \mathrm{as}}{\mathrm{m}}$
So that $\mathbf{a}=\sqrt{a_{r}^{2}+a_{t}^{2}}=\sqrt{\left(\frac{2 a s^{2}}{m R}\right)^{2}+\left(\frac{2 a s}{m}\right)^{2}}$
i.e. $a=\frac{2 \mathrm{as}}{\mathrm{m}} \sqrt{1+\left(\frac{\mathrm{s}}{\mathrm{R}}\right)^{2}}$

So force $\mathrm{F}=\mathrm{ma}=2 \mathrm{as} \sqrt{1+\left(\frac{\mathrm{s}}{\mathrm{R}}\right)^{2}}$
37. In this case $T=\frac{2 \pi r}{u}$ [for 1 resolution]

Also $\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2} \Rightarrow \mathrm{t}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}$
But $\mathrm{t}=\mathrm{nT} \Rightarrow \sqrt{\frac{2 h}{g}}=\mathrm{n} \frac{2 \pi \mathrm{r}}{\mathrm{u}} \Rightarrow \mathrm{n}=\frac{\mathrm{u}}{2 \pi \mathrm{r}} \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}$
38. Tension will be $\mathrm{mg} \cos \theta$ at extremes but it becomes $\mathrm{mg} \cos \theta+\frac{\mathrm{mv}^{2}}{\ell}$.

In the given situation by making diagram, we can shown that $T-M g \cos \theta=\frac{\mathrm{Mv}^{2}}{\mathrm{~L}}$ and tangential acceleration $=\mathrm{g} \sin \theta$.

Part \# II : Assertion \& Reason

1. D 2. A 3. D 4. B 5. A 6. C
2. A 8. A

EXERCISE-3

Part \# I : Matrix Match Type

1. $\mathrm{f}_{\text {conservative }}=-\frac{\mathrm{du}}{\mathrm{dx}}=30 \mathrm{Ni}$
change in kinetic energy $=2$
[Area under $(a-x)$ graph]
as mass is $1 \mathrm{~kg} \Rightarrow[80+40]=120$,

$$
\mathrm{KE}_{\text {intitial }}=\frac{1}{2} \mathrm{Mv}^{2}=8 \mathrm{~J}
$$

(A) $\mathrm{KE}_{\mathrm{f}}=128 \mathrm{~J}$
(B) $\mathrm{W}_{\text {can }}=\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{d}}=30 \times 8 \Rightarrow 240 \mathrm{~J}$
(C) $\mathrm{W}_{\mathrm{Net}}=\Delta \mathrm{KE}=120 \mathrm{~J}$
(D) $\mathrm{W}_{\text {cons }}+\mathrm{W}_{\text {ext }}=120 ; \mathrm{W}_{\text {ext }}=-120 \mathrm{~J}$
2. $\quad \mathrm{W}_{\mathrm{g}}=$ force $\times($ displacement in the direction of force $)$
$\mathrm{W}_{\mathrm{g}}=\left[10 \times \frac{1}{2} \times 2 \times 16\right]=-160$ joule
$\mathrm{w}_{\mathrm{N}}=\overrightarrow{\mathrm{N}} . \overrightarrow{\mathrm{s}}=\mathrm{m}(\mathrm{g}+\mathrm{a}) \cos \theta\left(\frac{1}{2} \times 2 \times 16\right) \cos \theta$
$=(12) \times \frac{\sqrt{3}}{2}(16) \frac{\sqrt{3}}{2}$
$=12 \times 12=144 \mathrm{~J}$
$\mathrm{W}_{\mathrm{fr}}=\overrightarrow{\mathrm{f}}_{\mathrm{r}} \cdot \overrightarrow{\mathrm{s}}$

$=\mathrm{m}(\mathrm{g}+\mathrm{a}) \sin \theta(16) \cos (90-\theta)$
$=(12) \times 16 \times \frac{1}{4}=48$ joule
$\mathrm{W}_{\mathrm{net}}=\mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\mathrm{N}}+\mathrm{W}_{\mathrm{fr}}=32$ joule
3. By applying conservation of momentum wedge will acquire some velocity $=-\frac{m v_{x}}{M+m}$ where v_{x} is velocity of block w.r.t wedge in negative x-direction.
(A) Work done by normal on block is

$$
=-\frac{1}{2} M\left(\frac{m v_{x}}{M+m}\right)^{2}
$$

(B) Work done by normal on wedge is

$$
=\frac{1}{2} \mathrm{M}\left(\frac{\mathrm{mv}}{\mathrm{x}+\mathrm{m}}\right)^{2} \text { is positive. }
$$

(C) Net work done by normal is $=0$
(D) less than mgh as K.E. is $<\frac{1}{2} \mathrm{~m} 2 \mathrm{gh}$,

$$
\mathrm{KE}_{\mathrm{f}}>\mathrm{KE} \text { is positive. }
$$

4. For $\mathrm{v} \geq \sqrt{5 \mathrm{~g} \ell}$, the bob will complete a vertical circular path.

For $\sqrt{2 \mathrm{~g} \ell}<\mathrm{v}<\sqrt{5 \mathrm{~g} \ell}$, the bob will execute projectile motion.

For $\mathrm{v}<\sqrt{2 \Omega \ell}$, the bob oscillates.

Part \# II : Comprehension

Comprehension \# 1

1. $\mathrm{N}-\mathrm{Kx} \cos 30^{\circ}-\mathrm{mg} \cos 60^{\circ}=\frac{\mathrm{Mv}^{2}}{\mathrm{R}}$

As velocity of Ring $=0$
$\mathrm{N}=\mathrm{kx} \cos 30^{\circ}+\mathrm{mg} \cos 60^{\circ}$

$=\frac{(2+\sqrt{3}) \mathrm{mg}}{\sqrt{3} \mathrm{R}}(2-\sqrt{3}) \mathrm{R}\left(\frac{\sqrt{3}}{2}\right)+\frac{\mathrm{mg} \sqrt{3}}{2}$
$=\frac{\mathrm{mg}}{2}+\frac{\mathrm{mg}}{2}=\mathrm{mg}$
2. $f_{\text {net }}=\left(k \cos 60^{\circ}\right) x+m g \cos 30^{\circ}$

$$
\begin{aligned}
& =\frac{(2+\sqrt{3}) \mathrm{mg}}{\sqrt{3} \mathrm{R}}(2-\sqrt{3}) \mathrm{R} \frac{1}{2}+\frac{\mathrm{mg} \sqrt{3}}{2} \\
& =\frac{\mathrm{mg}}{2}\left[\frac{1}{\sqrt{3}}+\sqrt{3}\right]=\frac{2 \mathrm{mg}}{\sqrt{3}}
\end{aligned}
$$

$$
\mathrm{a}_{\mathrm{rev}}=2 \mathrm{a} \cos 60=\mathrm{a}=\frac{2 \mathrm{~g}}{\sqrt{3}} \text { horizontal }
$$

3. By applying work - energy theorem

$$
\begin{aligned}
& \frac{1}{2} \mathrm{mv}^{2}-0=\frac{1}{2} k x^{2} ; \frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \frac{(2+\sqrt{3}) \mathrm{mg}}{\sqrt{3} g}(2-\sqrt{3})^{2} \mathrm{R}^{2} \\
& \frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \frac{\mathrm{mg}}{\sqrt{3}}(2-\sqrt{3}) \mathrm{R} \Rightarrow \mathrm{v}=\sqrt{\frac{\mathrm{gR(2-} \mathrm{\sqrt{3}})}{\sqrt{3}}}
\end{aligned}
$$

Comprehension \# 2

1. $\mathrm{W}=\overrightarrow{\mathrm{f}} . \mathrm{d} \overrightarrow{\mathrm{s}} \Rightarrow \mathrm{W}=-\mathrm{mg}\left(\frac{1}{2} \mathrm{a}_{0} \mathrm{t}^{2}\right)$
2. For the motion of the block in vertical

$$
\begin{aligned}
& m g-N=m a_{0}, N=m\left(g-a_{0}\right) \\
& W_{N}=-\frac{N a_{0} t^{2}}{2} \Rightarrow-\frac{m\left(g-a_{0}\right) a_{0} t^{2}}{2}
\end{aligned}
$$

3. For observer A pseudo force on the particle is zero $\mathrm{W}=0$
4. $\mathrm{W}=\overrightarrow{\mathrm{f}}_{\text {net }} \cdot \overrightarrow{\mathrm{d}} \mathrm{s} \Rightarrow \mathrm{W}=\mathrm{ma} \frac{1}{2} \mathrm{at}^{2} \Rightarrow \frac{\mathrm{ma}^{2} \mathrm{t}^{2}}{2}$
5. For observer A the block appears to be stationary
\therefore Displacement is zero hence $\mathrm{w}=0$
Comprehension \#3
6. By applying work energy theorem
$\frac{1}{2} \mathrm{Mv}^{2}-0=\mathrm{W}_{\mathrm{g}} \Rightarrow \frac{1}{2} \mathrm{Mv}^{2}=\mathrm{mg} \ell \Rightarrow \mathrm{v}=\sqrt{2 \mathrm{~g} \ell}$
7. $\sqrt{2 g \ell}=\sqrt{5 g(\ell-x)}$

$$
\Rightarrow 2 \mathrm{~g} \ell=5 \mathrm{~g}(\ell-\mathrm{x}) \Rightarrow 5 \mathrm{x}=3 \ell \quad \Rightarrow \quad \mathrm{x}=\frac{3 \ell}{5}
$$

3. Net force towards the centre will provide the required centripetal force
$\mathrm{kx}-\mathrm{mg}=\frac{\mathrm{mv}}{\mathrm{R}} \mathrm{R}$
$\mathrm{kx}-\mathrm{mg}=\frac{\mathrm{m} 2 \mathrm{~g} \ell}{\ell}$
$\Rightarrow \mathrm{kx}=3 \mathrm{mg} \Rightarrow \mathrm{x}=\frac{3 \mathrm{mg}}{\mathrm{k}}$

Comprehension \# 4

1. From the F.B.D. of the blocks :
upper block is -ve and lower block is +ve as

$\mathrm{v}_{\text {upper }}=$ decreases, $\quad \mathrm{v}_{\text {lower }}=$ Increases
2. By applying conservation of momentum

$$
1 \times 6+2 \times 3=3(\mathrm{v}) \Rightarrow \mathrm{v}=4 \mathrm{~m} / \mathrm{s}
$$

By applying work energy theorem

$$
\begin{aligned}
& -\frac{1}{2}(1)(36)+\frac{1}{2}(1)(16)=\mathrm{w}_{\mathrm{fr}} \\
\Rightarrow & -18+8=\mathrm{W}_{\mathrm{fr}} \Rightarrow \mathrm{~W}_{\mathrm{fr}}=-10 \mathrm{~J}
\end{aligned}
$$

and Work done on the lower block $+10 \mathrm{j} \Rightarrow \mathrm{W}_{\text {net }}=0$

Comprehension \# 5

1. Particle will have some translatory kinetic energy as well as rotatory energy the whole of the K.E. is converted into potential energy $h<6$
2. By applying conservation of mechanical energy

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2} \mathrm{mu}^{2}=\mathrm{mg}(\mathrm{~h}) \Rightarrow \mathrm{u}^{2}=80 \\
& \Rightarrow \quad \frac{1}{2} \mathrm{mu}^{2} \sin ^{2} 30=\mathrm{mgh} \Rightarrow \mathrm{~h}=1 \mathrm{~m}
\end{aligned}
$$

Total height $=2+1=3 \mathrm{~m}$

Comprehension \# 6

1. By applying work energy theorem change in kinetic energy $=\mathrm{w}_{\mathrm{s}} \Rightarrow 0-\frac{1}{2} \mathrm{mv}^{2}=\mathrm{W}_{\mathrm{s}}$
2. As the kinetic energy of block is decreasing, therefore work done by the normal is $=-\frac{1}{2} \mathrm{mv}^{2}$
3. $\mathrm{W}_{\mathrm{net}}=-\frac{1}{2} \mathrm{mv}^{2}$
4. $\mathrm{W}_{\text {net }}=0$ as for the B change in velocity is zero.
5. As there is no change in kinetic energy stored is due to

Comprehension \# 7

1. $(\mathrm{A}) \mathrm{W}_{\mathrm{CL}}+\mathrm{W}_{\mathrm{f}}=\Delta \mathrm{KE} \quad \therefore \mathrm{W}_{\mathrm{CL}}=\Delta \mathrm{KE}-\mathrm{W}_{\mathrm{f}}$
(a) During acceleration motion negative work is done against friction and there is also change is kinetic energy. Hence net work needed is positive.
(b) During uniform motion work is done against friction only and that is positive.
(c) During retarded motion, the load has to be stopped in exactly 50 metres. If only friction is considered then the load stops in 12.5 metres which is less than where it has to stop.

Hence the camel has to apply some force so that the load stops in $50 \mathrm{~m}(>12.5 \mathrm{~m})$. Therefore the work done in this case is also positive.
2. $\mathrm{W}_{\mathrm{CL}} \mathrm{l}_{\text {accelerated motion }}=\Delta \mathrm{KE}-\mathrm{W}_{\text {friction }}$
where W_{CL} is work done by camel on load.
$=\left[\frac{1}{2} \mathrm{mv}^{2}-0\right]-\left[-\mu_{\mathrm{k}} \mathrm{mg} .50\right]$
$=\frac{1}{2} \times 1000 \times 5^{2}+0.1 \times 10 \times 1000 \times 50=1000\left[\frac{125}{2}\right]$
similarly, W_{CL} |retardation $=\Delta \mathrm{KE}-\mathrm{W}_{\text {friction }}$

$$
\begin{aligned}
& {\left[0-\frac{1}{2} \mathrm{mv}^{2}\right]-\left[-\mu_{\mathrm{k}} \mathrm{mg} .50\right]=1000\left[\frac{75}{2}\right] } \\
\therefore & \frac{\mathrm{W}_{\mathrm{CL}} \mid \text { accelerated motion }}{\mathrm{W}_{\mathrm{CL}} \mid \text { retarded motion }}=\frac{125}{75}=\frac{5}{3} \Rightarrow 5: 3
\end{aligned}
$$

3. Maximum power $=\mathrm{F}_{\max } \times \mathrm{V}$

Maximum force applied by camel is during the accelerated motion.
We have $\mathrm{V}^{2}-\mathrm{U}^{2}=2$ as, $25=0^{2}+2 \cdot \mathrm{a} \cdot 50$

$$
\mathrm{a}=0.25 \mathrm{~m} / \mathrm{s}^{2}
$$

for accelerated motion

$$
\begin{aligned}
& \therefore \mathrm{F}_{\mathrm{c}}-\mathrm{f}=\mathrm{ma} \\
& \therefore \mathrm{~F}_{\mathrm{c}}=\mu \mathrm{mg}+\mathrm{ma} \\
& \quad=0.1 \times 1000 \times 10+1000 \times 2.5 \\
& \quad=1000+250=1250 \mathrm{~N}
\end{aligned}
$$

This is the critical point just before the point where it attains maximum velocity of almost $5 \mathrm{~m} / \mathrm{s}$.

Hence maximum power at this point is

$$
=1250 \times 5=6250 \mathrm{~J} / \mathrm{s}
$$

4. We have $\mathrm{W}=\mathrm{P} \Delta \mathrm{T}, \mathrm{P}=18 \times 10^{3} \mathrm{~V}+10^{4} \mathrm{~J} / \mathrm{s}$
$\therefore \mathrm{P}_{5}=18 \times 10^{3} \times 5+10^{4} \mathrm{~J} / \mathrm{s}$ and

$$
\begin{gathered}
\Delta \mathrm{T}_{5}=\frac{2000 \mathrm{~m}}{5 \mathrm{~m} / \mathrm{s}}=400 \mathrm{~s} \\
\mathrm{P}_{10}=18 \times 10^{3} \times 10^{4} \mathrm{~J} / \mathrm{s} \\
\text { and } \Delta \mathrm{T}_{10}=\frac{2000 \mathrm{~m}}{10 \mathrm{~m} / \mathrm{s}}=200 \mathrm{~s} \\
\therefore \quad \frac{\mathrm{~W}_{5}}{\mathrm{~W}_{10}}=\frac{10^{4}(9+1) \times 400}{10^{4}(18+1) \times 200}
\end{gathered}
$$

5. The time of travel in accelerated motion = time of travel in retarded motion.

$$
\begin{gathered}
\overbrace{50 \mathrm{~m}}^{\mathrm{D}} \underbrace{\mathrm{C}}_{2000 \mathrm{~m}} \overbrace{50 \mathrm{~m}}^{\mathrm{B}} \\
\mathrm{~T}_{\mathrm{AB}}=\mathrm{T}_{\mathrm{CD}}=\frac{\mathrm{V}}{\mathrm{a}}=\frac{5}{0.25}=20 \mathrm{sec}
\end{gathered}
$$

Now time for uniform motion $=\mathrm{T}_{\mathrm{ac}}=\frac{2000}{5}=400 \mathrm{~s}$
\therefore Total energy consumed $=\int_{0}^{440} \mathrm{Pdt}$

$$
\begin{aligned}
& =\int_{0}^{20}\left[18.10^{3} \mathrm{~V}+10^{4}\right] \mathrm{dt}+\int_{20}^{420}\left[18.10^{3} \cdot 5+10^{4}\right] \mathrm{dt} \\
& \quad+\int_{420}^{440}\left[18.10^{3} \mathrm{~V}+10^{4}\right] \mathrm{dt} \\
& =\int_{0}^{20}\left[18.10^{3} \mathrm{Vdt}+\int_{0}^{20} 10^{4} \mathrm{dt}+\left[10^{5} \mathrm{t}\right]_{20}^{420}\right. \\
& \quad+\int_{420}^{440} 18.10^{3} \mathrm{Vdt}+\int_{420}^{440} 10^{4} \mathrm{dt}
\end{aligned}
$$

Putting Vdt $=\mathrm{dx}$ and changing limits appropriately it becomes

$$
\begin{aligned}
& \int_{0}^{60} 18.10^{3} \mathrm{dx}+\left[10^{4} \mathrm{t}\right]_{0}^{20}+10^{5}[420-20] \\
& \quad+\int_{2050}^{2100} 18.10^{3} \mathrm{dx}+\left[10^{4}\right]_{420}^{440} \\
& =18.10^{3} .50+10^{4}[20]+10^{5} \cdot 400 \\
& \quad+18.10^{3}[50]+10^{4}[20] \text { Joules } \\
& =90 \times 10^{4}+20 \times 10^{4}+400 \times 10^{5} \\
& +90 \times 10^{4}+20 \times 10^{4} \mathrm{~J}=4.22 \times 10^{7} \mathrm{~J}
\end{aligned}
$$

1. $\mathrm{u}=\frac{\mathrm{A}}{\mathrm{r}^{2}}-\frac{\mathrm{B}}{\mathrm{r}} \Rightarrow \frac{\mathrm{du}}{\mathrm{dr}}=-\frac{2 \mathrm{~A}}{\mathrm{r}^{3}}+\frac{\mathrm{B}}{\mathrm{r}^{2}}$
$f=-\frac{d u}{d r}=\frac{2 A}{r^{3}}-\frac{B}{r^{2}}, F=0 \Rightarrow r=\frac{2 A}{B}$
2. As potential is minimum at $\mathrm{r}=\mathrm{r}_{0}$ the equilibrium is stable.
3. Given that

$$
\begin{aligned}
& \mathrm{U}=\frac{\mathrm{A}}{\mathrm{r}^{2}}-\frac{\mathrm{B}}{\mathrm{r}} \text { as } \mathrm{r}=\frac{2 \mathrm{~A}}{\mathrm{~B}} ; \mathrm{U}_{\mathrm{i}}=\frac{\mathrm{AB}^{2}}{4 \mathrm{~A}^{2}}-\frac{\mathrm{BB}}{2 \mathrm{~A}}=\frac{-\mathrm{B}^{2}}{4 \mathrm{~A}} \\
& \Rightarrow \mathrm{U}_{\mathrm{f}}=0, \Delta \mathrm{~W}=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}} \Rightarrow \frac{\mathrm{~B}^{2}}{4 \mathrm{~A}}
\end{aligned}
$$

4. K.E. + P.E. $=T \cdot E, 0+\frac{A}{r^{2}}-\frac{B}{r}=\frac{-3 B^{2}}{16 A}$

By solving the above equation $r=\frac{2 r_{0}}{3}$
Comprehension \# 9
Balancing the forces $T=\frac{m v^{2}}{R}+m g \cos \theta$

From energy considerations
$\mathrm{mgR} \cos \theta=\frac{1}{2} \mathrm{mv}^{2} \Rightarrow \mathrm{v}^{2}=2 \mathrm{gR} \cos \theta$
putting this value in equation (i)
we get $\quad T=3 \mathrm{mg} \cos \theta$
Also acceleration $a_{\text {Total }}=\sqrt{a_{r}^{2}+a_{t}^{2}}$
$=\sqrt{\left(\frac{v^{2}}{R}\right)^{2}+(g \sin \theta)^{2}}=\sqrt{(2 g \cos \theta)^{2}+(g \sin \theta)^{2}}$
$=\mathrm{g} \sqrt{4 \cos ^{2} \theta+\sin ^{2} \theta} \Rightarrow \mathrm{a}_{\text {Total }}=\mathrm{g} \sqrt{1+3 \cos ^{2} \theta}$
Now virtual component of sphere's velocity
$\mathrm{v}_{\mathrm{y}}=\mathrm{v} \sin \theta=\sqrt{2 \mathrm{gR}} \sqrt{\cos \theta} \sin \theta$

Applying maxima-minima
$\frac{d v_{y}}{d \theta}=\sqrt{2 g R}\left[\frac{(-\sin \theta) \sin \theta}{2 \sqrt{\cos \theta}}+\sqrt{\cos \theta} \cos \theta\right]$

$$
\begin{aligned}
& \quad=\sqrt{2 g R}\left[\frac{-\sin ^{2} \theta}{2 \sqrt{\cos \theta}}+\cos \theta \sqrt{\cos \theta}\right] \\
& \Rightarrow \\
& \Rightarrow \frac{\sin ^{2} \theta}{2}=\cos ^{2} \theta \Rightarrow \tan ^{2} \theta=\sqrt{2} \\
& \Rightarrow \\
& \theta=\tan ^{-1} \sqrt{2} \quad \Rightarrow \tan \theta=\sqrt{2} \\
& \text { So } \quad \sin \theta=\frac{\sqrt{2}}{\sqrt{3}} \text { and } \cos \theta=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Thus tension $\mathrm{T}=3 \mathrm{mg} \cos \theta=3 \mathrm{mg} \times \frac{1}{\sqrt{3}}=\sqrt{3} \mathrm{mg}$

Comprehension 10

Using work energy theorem

$$
\begin{equation*}
\frac{m \times 2 g}{9} \times R \sin \theta+m g R(1-\cos \theta)=\frac{1}{2} m v^{2} \tag{i}
\end{equation*}
$$

Also $\mathrm{mg} \cos \theta=\frac{2 \mathrm{mg}}{9} \sin \theta+\frac{\mathrm{mv}^{2}}{\mathrm{R}}$

$$
\begin{equation*}
\mathrm{v}^{2}=\mathrm{gR} \cos \theta-\frac{2 g}{9} \mathrm{R} \sin \theta \tag{ii}
\end{equation*}
$$

From equation (i) \& (ii)

$$
\begin{aligned}
& \frac{2 m g}{9} R \sin \theta+m g R(1-\cos \theta)=\frac{m}{2}\left(g R \cos \theta-\frac{2 g}{9} R \sin \theta\right) \\
& \Rightarrow 4 \sin \theta+18(1-\cos \theta)=9 \cos \theta-2 \sin \theta \\
& \Rightarrow 6 \sin \theta+18-18 \cos \theta=9 \cos \theta \\
& \Rightarrow 6 \sin \theta-27 \cos \theta+18=0 \\
& \Rightarrow 2 \sin \theta-9 \cos \theta+6=0
\end{aligned}
$$

Now let $\sin \theta=\mathrm{x}$ so $\cos \theta=\sqrt{1-\mathrm{x}^{2}}$
Than $2 \mathrm{x}-9 \sqrt{1-\mathrm{x}^{2}}+6=0$
Solving $x=\frac{3}{5}=\sin \theta$ so $\cos \theta=\frac{4}{5} ; \theta=37^{\circ}$
Now putting $\theta=37^{\circ}$
in $\mu=\mathrm{h}+\mathrm{R} \cos \theta=\frac{4 \mathrm{R}}{3}+\mathrm{R} \times \frac{4}{5}$

$$
=\frac{20 \mathrm{R}+12 \mathrm{R}}{15}=\frac{32 \mathrm{R}}{15}
$$

From equation (ii) $v^{2}=g R \cos \theta \frac{2 g}{9} R \sin \theta$

$$
\begin{aligned}
\mathrm{v}^{2} & =\mathrm{gR} \times \frac{4}{5}-\frac{2 \mathrm{~g}}{9} \mathrm{R} \times \frac{3}{5} \\
& =\mathrm{gR}\left[\frac{4}{5}-\frac{2}{15}\right]=\frac{10 \mathrm{gR}}{15}=\frac{2 \mathrm{gR}}{3}
\end{aligned}
$$

Now using $S=u t+\frac{1}{2} \mathrm{gt}^{2} ; \frac{32 \mathrm{R}}{15}=\sqrt{\frac{2 g \mathrm{R}}{3}} \mathrm{t}+\frac{1}{2} \mathrm{gt}^{2}$
t can be obtained $\mathrm{t}=\sqrt{\frac{2 \mathrm{R}}{\mathrm{g}}}$

EXERCISE - 4

Subjective Type

1. Heat generated $=$ work done against friction
$\Rightarrow(\mu \mathrm{mg})(\mathrm{vt})=(0.2 \times 2 \times 10) \times 2 \times 5=40 \mathrm{~J}$

$$
=\frac{40}{4.2} \mathrm{cal}=9.52 \mathrm{cal}
$$

2.

$\mathrm{W}_{\mathrm{Mg}}=\mathrm{Mg}(\sin \alpha \times \mathrm{DG}+\sin \beta \times \mathrm{GF})=\mathrm{Mg} \times \mathrm{DE}$
$\mathrm{W}_{\mathrm{f}}=-\mu \mathrm{Mg}(\mathrm{DG} \cos \alpha+\mathrm{GF} \cos \beta)=-\mu \mathrm{Mg}(\mathrm{EF})$
$=-\mu \mathrm{Mg} \times \mathrm{BC}$
$(\because B C=E F)$
From WET, \triangle KE will be same in both cases.
$\therefore \quad \mathrm{v}_{\mathrm{C}}=\mathrm{v}_{\mathrm{F}}$
3. Blocks are moving with constant speed.

$\therefore m_{A} g=T=k x=f=\mu m_{B} g$
$\Rightarrow \mathrm{m}_{\mathrm{B}}=\frac{\mathrm{m}_{\mathrm{A}}}{\mu}=\frac{2}{0.2}=10 \mathrm{~kg}$ and $\mathrm{x}=\frac{2 \times 9.8}{1960}$
$\therefore \quad$ Energy stored in spring $=\frac{1}{2} \mathrm{kx}^{2}$

$$
=\frac{1}{2} \times 1960 \times\left(\frac{19.6}{1960}\right)^{2}=0.098 \mathrm{~J}
$$

4. COME : $\mathrm{K}_{1}+\mathrm{U}_{1}=\mathrm{K}_{2}+\mathrm{U}_{2}$
$\frac{3 \mathrm{mgr}}{2}=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{kr}^{2}$
Force equation $\mathrm{kr}=\mathrm{mg}+\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
Solving we get, $\mathrm{k}=\frac{2 \mathrm{mg}}{\mathrm{r}}=500 \mathrm{~N} / \mathrm{m}$
5. Work done by force $=\int F d x$

$$
\begin{aligned}
\mathrm{W} & =\int_{0}^{1 / 2} \pi \sin \pi \mathrm{xdx}=\pi \frac{[-\cos \pi \mathrm{x}]^{1 / 2}}{\pi} 0 \\
& =-\cos \frac{\pi}{2}+\cos 0=1 \mathrm{~J}
\end{aligned}
$$

Work done by external agent $=-1 \mathrm{~J}$
6. Potential energy $U=1 \times\left(\frac{x^{2}}{2}-x\right)=\frac{x^{2}}{2}-x$

For minimum U,
$\frac{d U}{d x}=\frac{2 x}{2}-1=0$ and $\frac{d^{2} U}{d x^{2}}=1=$ positive
So at $\mathrm{x}=1, \mathrm{U}$ is minimum. Hence $\mathrm{U}_{\text {min }}=-\frac{1}{2} \mathrm{~J}$
Total mechanical energy $=$ Max KE + Min PE
$\Rightarrow \operatorname{Max} \mathrm{KE}=\frac{1}{2} \mathrm{mv}_{\max }^{2}=2-\left(-\frac{1}{2}\right)=\frac{5}{2}$
$\Rightarrow \mathrm{v}_{\max }=\sqrt{\frac{2}{1} \times \frac{5}{2}}=\sqrt{5} \mathrm{~ms}^{-1}$
7. As C falls down, $\mathrm{A} \& \mathrm{~B}$ move up.

COME : $\mathrm{K}_{1}+\mathrm{U}_{1}=\mathrm{K}_{2}+\mathrm{U}_{2}$

$0+m g x=0+2 m g\left(\sqrt{a^{2}+x^{2}}-a\right) \Rightarrow x=\frac{4 a}{3}$
8. $a_{n}=b t^{2}=\frac{v^{2}}{R} \Rightarrow v=\sqrt{b R} t \Rightarrow a_{t}=\sqrt{b R}$
$\therefore \mathrm{P}=\mathrm{FV}=\mathrm{mbRt}$
$<\mathrm{P}>=\frac{\int_{0}^{\mathrm{t}} \mathrm{Pdt}}{\int_{0}^{\mathrm{t}} \mathrm{dt}}=\frac{\operatorname{mbR}\left(\mathrm{t}^{2} / 2\right)}{\mathrm{t}}=\frac{\mathrm{mbRt}}{2}$
9. Let extension in spring be x_{0} due to m_{1}
then $\quad \mathrm{m}_{1} \mathrm{gx}_{0}=\frac{1}{2} \mathrm{kx}_{0}^{2} \quad \Rightarrow \mathrm{kx}_{0}=2 \mathrm{~m}_{1} \mathrm{~g}$
but $\mathrm{kx}_{0} \geq \mathrm{mg}$ so $2 \mathrm{~m}_{1} \mathrm{~g} \geq \mathrm{mg} \Rightarrow \mathrm{m}_{1} \geq \frac{\mathrm{m}}{2}$
therefore minimum value of $m_{1}=\frac{m}{2}$
10. COME : $\mathrm{K}_{1}+\mathrm{U}_{1}=\mathrm{K}_{2}+\mathrm{U}_{2}$

$0+\mathrm{MgR}=\frac{1}{2} \mathrm{mv}^{2}+\frac{\mathrm{mgR}}{2} \Rightarrow \mathrm{v}=\sqrt{\mathrm{gR}}$
Forces at $B \Rightarrow N=m g \cos 60^{\circ}+\frac{m v^{2}}{R}=\frac{15 \sqrt{3}}{2}$
11. $\theta=3(\mathrm{t}+\sin \mathrm{t}) ; \omega=3+3 \cos \mathrm{t} ; \alpha=-3 \sin \mathrm{t}$
$F=\sqrt{\left(m \omega^{2} R\right)^{2}+(m \alpha R)^{2}}\left(t=\frac{\pi}{2}\right)=9 \sqrt{ } 10 N$
12. $\mathrm{COME}: \frac{\mathrm{mv}^{2}}{2}=\mathrm{mgh}$

If resultant acceleration, a , makes angle θ with thread, then $\operatorname{asin} \phi=g \sin \theta$

$$
\begin{gathered}
\operatorname{acos} \phi=\frac{\mathrm{v}^{2}}{\ell}=\frac{2 \mathrm{gh}}{\ell} \\
\therefore \quad \tan \phi=\frac{\ell \sin \theta}{2 \mathrm{~h}} \Rightarrow \phi=\tan ^{-1}\left(\frac{\ell \sin \theta}{2 \mathrm{~h}}\right)
\end{gathered}
$$

13. Here the bob has velocity greater than $\sqrt{2 g \ell}$ and smaller than $\sqrt{5 g \ell}$. Hence the thread will slack after completing semicircle.

COME: $\mathrm{K}_{1}+\mathrm{U}_{1}=\mathrm{K}_{2}+\mathrm{U}_{2}$
$\frac{1}{2} \mathrm{~m}(3 \mathrm{~g} \ell)+0=\frac{1}{2} \mathrm{mv}^{2}+\mathrm{mg}(\ell+\ell \sin \theta)$
Force equation at B :
$T+m g \sin \theta=\frac{m v^{2}}{R}$
Solving for $\mathrm{T}=0$, we get $\sin \theta=\frac{1}{3}$
$\therefore \quad \mathrm{V}_{\mathrm{B}}=\sqrt{\mathrm{g} \ell \sin \theta}$
\therefore The particle will execute projectile motion after tension become zero.
$\therefore \quad \mathrm{v}_{\text {min }}=\mathrm{v} \sin \theta=\sqrt{\frac{g \ell}{3}} \times \frac{1}{3}$
14. $\mathrm{T}_{\max }=\mathrm{mg}+\frac{\mathrm{mv}}{} \mathrm{R}^{2}, \mathrm{~T}_{\text {min }}=\frac{\mathrm{mv}}{} \mathrm{R}^{2}-m g$
$\frac{\mathrm{T}_{\max }}{\mathrm{T}_{\min }}=\frac{\mathrm{mg}+\frac{\mathrm{mv}^{2}}{\mathrm{R}}}{\frac{\mathrm{mv}}{} \mathrm{R}^{2}}-\mathrm{mg} \quad=\frac{5}{3} \quad(\mathrm{R}=2 \mathrm{~m})$
$\Rightarrow \quad \mathrm{v}=4 \sqrt{5} \mathrm{~m} / \mathrm{s}$

15. For speed u_{0}, contact at top is lost.
$\Rightarrow \mathrm{N}+\frac{\mathrm{mu}_{0}^{2}}{\mathrm{r}}=\mathrm{mg} \Rightarrow(\mathrm{N}=0) \mathrm{u}_{0}=\sqrt{\mathrm{gr}}$
(a) For vertical motion; $t=\sqrt{\frac{2 r}{g}}$
\therefore Horizontal distance
$s=2 u_{0} t=2 \sqrt{g r} \times \frac{\sqrt{2 r}}{g}=2 \sqrt{2} r$
(b) COME :
$\frac{1}{2} \frac{\mathrm{~m}\left(\mathrm{u}_{0}\right)^{2}}{3}+\mathrm{mgr}=\frac{1}{2} \mathrm{mv}^{2}+\mathrm{mgr} \cos \theta$
Force equation : $N+\frac{\mathrm{mv}^{2}}{r}=m g \cos \theta$
$\therefore \quad \mathrm{h}=\mathrm{r} \cos \theta=\frac{19}{27} \mathrm{r}$
(c) $\left|\vec{a}_{\text {net }}\right|=\left|\vec{a}_{r}+\vec{a}_{t}\right|=\sqrt{(g \sin \theta)^{2}+(g \cos \theta)^{2}}=g$
16. $\operatorname{COME}: K_{A}+U_{A}=K_{B}+U_{B}$
$0+\operatorname{mg}(2 \mathrm{R})+\frac{1}{2} \mathrm{kR}^{2}=\frac{1}{2} \mathrm{mv}^{2}+0+0(\mathrm{k}=\mathrm{mg} / \mathrm{R})$
$\Rightarrow \frac{m v^{2}}{R}=5 \mathrm{mg} \quad \therefore$ Force equation at B
$\Rightarrow \mathrm{T}_{\mathrm{B}}=\mathrm{mg}+\frac{\mathrm{mv}^{2}}{\mathrm{R}}=6 \mathrm{mg}$
17. a : Natural length
$\mathrm{a}:$ Initial elongation
2a: additional elongation
COME : $\frac{1}{2} \mathrm{k}(3 \mathrm{a})^{2}=\mathrm{mgx} \Rightarrow \mathrm{x}=\frac{9 \mathrm{a}}{2}$
(above point of suspension)
18. Conservative force, $F=-\frac{d U}{d r}=-\frac{d\left(2 r^{3}\right)}{d r}=-6 r^{2}$

This force supplies the necessary centripetal acceleration.
$\frac{m v^{2}}{r}=6 r^{2} \Rightarrow \frac{1}{2} \mathrm{mv}^{2}=3 r^{3}$
$E=K+U=5 r^{3}=5 \times 5 \times 5 \times 5=625 \mathrm{~J}$
19. WET: $\mathrm{W}_{\mathrm{N}}+\mathrm{W}_{\mathrm{Mg}}+\mathrm{W}_{\mathrm{f}}+\mathrm{W}_{\mathrm{sp}}=\Delta \mathrm{KE}$
$0+0-\mu_{\mathrm{k}} \cdot \mathrm{mg}(2.14+\mathrm{x})+0-\frac{1}{2} \mathrm{kx}^{2}=0-\frac{1}{2} \mathrm{mv}^{2}$
$\Rightarrow \mathrm{x}=0.1 \mathrm{~m}$
At $\mathrm{x}=1 \mathrm{~m}, \mathrm{~F}_{\text {spring }}=\mathrm{kx}=2 \times 0.1=0.2 \mathrm{~N}$
$\mathrm{F}_{\mathrm{S} . \mathrm{F} .}=\mu_{\mathrm{S}} \cdot \mathrm{mg}=0.22 \times \frac{1}{2} \times 10=1.1 \mathrm{~N}$
Hence the block stops after compressing the spring.
\therefore Total distance travelled by block when it stops

$$
=2+2.14+0.1=4.24 \mathrm{~m}
$$

20. At position B;

$$
\begin{aligned}
\mathrm{mg} & =\mathrm{T} \cos \theta=\mathrm{k} \cdot \Delta \ell \cdot \cos \theta \\
& =\frac{2 \mathrm{mg}}{\mathrm{a}}\left[\mathrm{a}+\frac{\mathrm{a}}{\sin \theta}-\mathrm{a}\right] \cos \theta \\
& =2 \mathrm{mg} \cot \theta \Rightarrow \cot \theta=\frac{1}{2}
\end{aligned}
$$

(a) $\mathrm{OB}=\operatorname{acot} \theta=\frac{\mathrm{a}}{2}$
(b) COME : $\mathrm{K}_{\mathrm{C}}+\mathrm{U}_{\mathrm{C}}=\mathrm{K}_{\mathrm{o}}+\mathrm{U}_{\mathrm{o}}$

$$
0+\mathrm{mga}+\frac{1}{2} \times\left(\frac{2 \mathrm{mg}}{\mathrm{a}}\right)(\sqrt{2} \mathrm{a})^{2}=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{ka}^{2}
$$

(i) $\Rightarrow v=2 \sqrt{g a}$
(ii) $\mathrm{K}_{\mathrm{C}}+\mathrm{U}_{\mathrm{C}}=\mathrm{K}_{\mathrm{P}}+\mathrm{U}_{\mathrm{P}}$
[P is the point of greatest depth]
$\Rightarrow m g a+\frac{1}{2}\left(\frac{2 m g}{a}\right)(\sqrt{2} a)^{2}$
$=-\operatorname{mgx}+\frac{1}{2}\left(\frac{2 m g}{a}\right)\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right) \Rightarrow \mathrm{x}=2 \mathrm{a}$
21. For part $\mathrm{AB}:(\mathrm{R}=4 \mathrm{a})$

$$
\left(\frac{\mathrm{v}_{0}}{4 \mathrm{a}}\right) \mathrm{t}_{1}=\frac{\pi}{2} \Rightarrow \mathrm{t}_{1}=4\left(\frac{\pi \mathrm{a}}{2 \mathrm{v}_{0}}\right)
$$

For part $B C:(R=3 a) \Rightarrow t_{2}=3\left(\frac{\pi a}{2 v_{0}}\right)$
For part CD : $(R=2 a): t_{3}=2\left(\frac{\pi a}{2 v_{0}}\right)$
For part DA: $(R=a)=: t_{4}=\left(\frac{\pi a}{2 v_{0}}\right)$
$\therefore \mathrm{t}=\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}=\frac{5 \pi \mathrm{a}}{\mathrm{v}_{0}}$
22. COME : $\mathrm{K}_{\mathrm{i}}+\mathrm{U}_{\mathrm{i}}=\mathrm{K}_{\mathrm{f}}+\mathrm{U}_{\mathrm{f}}$

$$
\begin{aligned}
\Rightarrow & 0+\mathrm{Mg} \times \mathrm{R}_{1} \\
= & 0+\operatorname{mg}(\sqrt{5}-1)+\frac{1}{2} \mathrm{Mu}^{2}+\frac{1}{2} \mathrm{~m}(\mathrm{u} \cos \theta)^{2} \\
\Rightarrow & \mathrm{u}=3029 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

23. $\operatorname{COME}: \mathrm{K}_{\mathrm{i}}+\mathrm{U}_{\mathrm{i}}=\mathrm{K}_{\mathrm{f}}+\mathrm{U}_{\mathrm{f}}$
24. $\mathrm{COME}: \frac{1}{2} \mathrm{mu}^{2}=\frac{1}{2} \mathrm{mv}^{2}+\operatorname{mgL}(1+\sin \theta)$

For equation $\Rightarrow T+m g \sin \theta=\frac{m v^{2}}{L}$
Since the particle crosses the $\frac{L}{8}$
line at its half of its range
$\therefore \frac{\mathrm{v}^{2} \sin \theta \cdot \cos \theta}{\mathrm{~g}}=\mathrm{L} \cos \theta-\frac{\mathrm{L}}{8}$
$\Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ}$

From equation (i) $\Rightarrow u=\sqrt{\operatorname{gL}\left(2+\frac{3 \sqrt{3}}{2}\right)}$
27. $\mathrm{WET} \Rightarrow \mathrm{W}_{\mathrm{mg}}+\mathrm{W}_{\mathrm{N}}+\mathrm{W}_{\mathrm{T}}+\mathrm{W}_{\mathrm{f}}=\Delta \mathrm{KE}$

$-\mathrm{mgR}+0+\mathrm{W}_{\mathrm{T}}+\int_{0}^{\pi / 2}(\mu \mathrm{mg} \sin \theta \cdot \mathrm{Rd} \theta) \cos 180=0$
$\Rightarrow \mathrm{W}_{\mathrm{T}}=\operatorname{mgR}(1+\mu)$
28. WET : $\mathrm{W}_{\mathrm{SP}}+\mathrm{W}_{\mathrm{mg}}+\mathrm{W}_{\mathrm{N}}+\mathrm{W}_{\mathrm{f}}=\Delta \mathrm{KE}$
$\Rightarrow\left[0-\frac{1}{2} \mathrm{k}\left(\frac{\mathrm{h}}{\sin \theta}\right)^{2}\right]+\left[\mathrm{mg} \sin \theta \times \frac{\mathrm{h}}{\sin \theta}\right]+0$
$-\mu \mathrm{mgh} \cot \theta=\frac{1}{2} \mathrm{mv}^{2}$
$\Rightarrow \mathrm{v}=\sqrt{\frac{2}{\mathrm{~m}}\left[m g h-\frac{1}{2} \mathrm{k}\left(\frac{\mathrm{h}}{\sin \theta}\right)^{2}-\mu m g h \cot \theta\right]}$
29. The string can break at the lowest point
$\therefore \quad T_{\text {max }}=m g+\frac{m v_{H}^{2}}{R}$
$\Rightarrow 45=5+\frac{0.5 \times \mathrm{v}^{2}}{0.5}$
COME: $\mathrm{v}_{\mathrm{H}}^{2}=\mathrm{v}_{0}^{2}+2 \mathrm{gR}$

$$
\begin{array}{r}
\mathrm{v}_{0}^{2}=40-2 \times 10 \times \frac{1}{2}=30 \\
\therefore \quad \mathrm{H}_{\max }=\frac{\mathrm{v}_{0}^{2}}{2 \mathrm{~g}}=\frac{30}{2 \times 10}=\frac{3}{2}=1.5 \mathrm{~m}
\end{array}
$$

30. $\frac{1}{2} \alpha t^{2}=\frac{\pi}{2}\left(\alpha=\frac{\pi}{4}\right) \Rightarrow t=2 \sec$
\therefore Average velocity $=\frac{\sqrt{2} R}{t}=1 \mathrm{~m} / \mathrm{s}$

EXERCISE - 5

Part \# I : AIEEE/JEE-MAIN

1. Spring constant $(\mathrm{k})=800 \frac{\mathrm{~N}}{\mathrm{~m}}$

Work done in extending a spring from
X_{1} to $\mathrm{X}_{2}=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=\frac{1}{2} \mathrm{kX}_{2}^{2}-\frac{1}{2} \mathrm{kX}_{1}^{2}$
$\left.\mathrm{W}=\frac{1}{2} \mathrm{k}\left[\mathrm{X}_{2}^{2}-\mathrm{X}_{1}^{2}\right]=\frac{1}{2} \times 800[0.15)^{2}-(0.05)^{2}\right]$
$=400\left[\left(\frac{15}{100}\right)^{2}-\left(\frac{5}{100}\right)^{2}\right]=\frac{400}{10000}[225-25]$

$$
=\frac{400 \times 200}{10000}=8 \mathrm{~J}
$$

2. $\mathrm{k}=5 \times 10^{3} \mathrm{~N} / \mathrm{m}$
$\mathrm{W}=\frac{1}{2} \mathrm{k}\left[\mathrm{x}_{2}^{2}-\mathrm{x}_{1}^{2}\right]$
$\mathrm{W}=\frac{1}{2} \times 5 \times 10^{3}\left[\left(10 \times 10^{-2}\right)-\left(5 \times 10^{-2}\right)^{2}\right]$
$\mathrm{W}=\frac{1}{2} \times 5 \times 10^{3} \times 10^{-4}[100-25]$
$=\frac{75 \times 5 \times 10^{-1}}{2}=\frac{75}{4}=18.75 \mathrm{~N}-\mathrm{m}$
3. Power $=\mathrm{FV}=$ constant i.e., $\operatorname{mav}=\mathrm{k}$
$\Rightarrow \mathrm{av}=\mathrm{k}_{1} \Rightarrow\left(\frac{\mathrm{dv}}{\mathrm{dt}}\right) \mathrm{v}=\mathrm{k}_{1} \Rightarrow \mathrm{vdv}=\mathrm{k}_{1} \mathrm{dt}$
On integrating both sides, we get
$\frac{\mathrm{v}^{2}}{2}=\mathrm{k}_{1} \mathrm{t} \Rightarrow \mathrm{v}^{2}=2 \mathrm{k}_{1} \mathrm{t} \Rightarrow \mathrm{v}=\sqrt{2 \mathrm{k}_{1}} \mathrm{t}^{1 / 2}$
$\Rightarrow \mathrm{ds}=\mathrm{k}_{2} \mathrm{t}^{1 / 2} \mathrm{dt} \Rightarrow \mathrm{s}=\left(\frac{\mathrm{k}_{2}}{3 / 2}\right) \mathrm{t}^{3 / 2} \Rightarrow \mathrm{~s} \propto \mathrm{t}^{3 / 2}$
4. Here $\mathrm{F} \propto \mathrm{x}$, by using work energy theorem
$\Delta \mathrm{KE}=\int \mathrm{Fdx} \Rightarrow \Delta \mathrm{KE} \propto \int \mathrm{xdx} \Rightarrow \Delta \mathrm{KE} \propto \mathrm{x}^{2}$
5. Given that acceleration $\mathrm{a}=\frac{\mathrm{v}_{1}}{\mathrm{t}_{1}}$

Power $=F v \quad P=(m a) v$
$P=\left(m a^{2} t\right) \quad[\because v=a t]$
$P=\left(\frac{m v_{1}^{2}}{t_{1}^{2}}\right) t\left[\right.$ on replacing $\left.a=\frac{v_{1}}{t_{1}}\right]$
6. Work done in pulling the hanging part of the chain upon the table $=\frac{\mathrm{mg} \ell}{2}$

where $\mathrm{m}=$ mass of the hanging part
$1=$ hanging part of chain
$\mathrm{W}=\left(\frac{4}{3} \times 0.6\right) \times \frac{10 \times(0.6)}{2}=3.6 \mathrm{~J}$
7. According to work-energy theorem,

$$
\mathrm{W}=\Delta \mathrm{K}
$$

Case I: $-\mathrm{F} \times 3=\frac{1}{2} \mathrm{~m}\left(\frac{\mathrm{v}_{0}}{2}\right)^{2}-\frac{1}{2} \mathrm{mv}_{0}^{2}$
where F is resistive force and v_{0} is initial speed.
Case III : Let, the further distance travelled by the bullet before coming to rest is s .
$\therefore-\mathrm{F}(3+\mathrm{s})=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}=-\frac{1}{2} \mathrm{mv}_{0}^{2}$
$\Rightarrow-\frac{1}{8} \mathrm{mv}_{0}^{2}(3+\mathrm{s})=-\frac{1}{2} \mathrm{mv}_{0}^{2}$
or $\quad \frac{1}{4}(3+\mathrm{s})=1 \quad$ or $\quad \frac{3}{4}+\frac{\mathrm{s}}{4}=1$ or $\mathrm{s}=1 \mathrm{~cm}$
8. Momentum would be maximum when KE would be maximum and this is the case when total elastic PE is converted into KE.
According to conseration of energy

$$
\begin{aligned}
& \frac{1}{2} \mathrm{~kL}^{2}=\frac{1}{2} \mathrm{Mv}^{2} \\
\Rightarrow & \mathrm{~kL} \\
2 & =\frac{(\mathrm{Mv})^{2}}{\mathrm{M}} \text { or } \quad \mathrm{MkL}^{2}=\mathrm{p}^{2} \quad(\because \mathrm{p}=\mathrm{Mv}) \\
\Rightarrow & \mathrm{p}=\mathrm{L} \sqrt{\mathrm{Mk}}
\end{aligned}
$$

9. Applying work-energy theorem at the lowest and highest point, we get

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{C}}+\mathrm{W}_{\mathrm{NC}}+\mathrm{W}_{\mathrm{ext}}=\Delta \mathrm{K} \\
& \mathrm{~W}_{\mathrm{C}}+0+0=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}} \\
& \mathrm{~W}_{\mathrm{C}(\text { Gravity) }}=0-\frac{1}{2} \times 0.1 \times 25 \\
& \mathrm{~W}_{\text {Gravity }}=-1.25 \mathrm{~J}
\end{aligned}
$$

10. $\mathrm{V}(\mathrm{x})=\left(\frac{\mathrm{x}^{4}}{4}-\frac{\mathrm{x}^{2}}{2}\right)$

For minimum value of V ,
$\frac{d V}{d x}=0 \Rightarrow \frac{4 x^{3}}{4}-\frac{2 x}{4}=0 \Rightarrow x=0, x= \pm 1$
So, $\quad V_{\min }(x= \pm 1)=\frac{1}{4}-\frac{1}{2}=\frac{-1}{4} J$
Now, $\mathrm{K}_{\max }+\mathrm{V}_{\text {min }}=$ Total mechanical energy
$\Rightarrow \mathrm{K}_{\max }=\left(\frac{1}{4}\right)+2$ or $\mathrm{K}_{\max }=\frac{9}{4}$
or $\frac{m v^{2}}{2}=\frac{9}{4}$ or $v=\frac{3}{\sqrt{2}} \mathrm{~ms}^{-1}$
11. Applying work-energy theorem,

Work done by F from A to B
$=$ Work done by Mg from A to B
$\Rightarrow \mathrm{F}\left(\ell \sin 45^{\circ}\right)=\mathrm{Mg} \ell\left[1-\cos 45^{\circ}\right]$
$\Rightarrow \mathrm{F}=\mathrm{Mg}(\sqrt{ } 2-1)$
12. $\mathrm{a}=\frac{\mathrm{F}_{\mathrm{k}}}{\mathrm{m}}=\frac{15}{2}=7.5 \mathrm{~m} / \mathrm{s}^{2}$.

Now, $\mathrm{ma}=\frac{1}{2} \mathrm{kx}^{2} \Rightarrow 2 \times 7.5=\frac{1}{2} \times 10000 \times \mathrm{x}^{2}$
or $\mathrm{x}^{2}=3 \times 10^{-3}$ or $\mathrm{x}=0.055 \mathrm{~m}$ or $\mathrm{x}=5.5 \mathrm{~cm}$
13. Question is somewhat based on approximations. Let mass of athlete is 65 kg .
Approx velocity from the given data is $10 \mathrm{~m} / \mathrm{s}$
So, $\mathrm{KE}=\frac{65 \times 100}{2}=3250 \mathrm{~J}$
So, option (d) is the most probable answer.
14. $\mathrm{U}=\frac{\mathrm{a}}{\mathrm{x}^{12}}-\frac{\mathrm{b}}{\mathrm{x}^{6}}$
$F=-\frac{d U}{d x}=+12 \frac{a}{x^{13}}-\frac{6 b}{x^{7}}=0 \Rightarrow x=\left(\frac{2 a}{b}\right)^{1 / 6}$

$$
\mathrm{U}(\mathrm{x}=\infty)=0
$$

$\mathrm{U}_{\text {equilibrium }}=\frac{\mathrm{a}}{\left(\frac{2 \mathrm{a}}{\mathrm{b}}\right)^{2}}-\frac{\mathrm{b}}{\left(\frac{2 \mathrm{a}}{\mathrm{b}}\right)}=-\frac{\mathrm{b}^{2}}{4 \mathrm{a}}$
$\therefore \quad U(x=\infty)-U_{\text {equilibrium }}=0-\left(-\frac{b^{2}}{4 a}\right)=\frac{b^{2}}{4 a}$
15. $\frac{1}{2} m v^{2} \propto t$
$\mathrm{v} \propto \sqrt{\mathrm{t}} \Rightarrow \frac{\mathrm{dv}}{\mathrm{dt}} \propto \mathrm{t}^{-\frac{1}{2}} \Rightarrow \mathrm{~F}=\mathrm{ma} \propto \mathrm{t}^{-\frac{1}{2}} \Rightarrow \propto \frac{1}{\sqrt{\mathrm{t}}}$
16. Given same force $\mathrm{F}=\mathrm{k}_{1} \mathrm{x}_{1}=\mathrm{k}_{2} \mathrm{x}_{2} \Rightarrow \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\mathrm{x}_{2}}{\mathrm{x}_{1}}$

$$
\mathrm{W}_{1}=\frac{1}{2} \mathrm{k}_{1} \mathrm{x}_{1}^{2} \quad \& \quad \mathrm{~W}_{2}=\frac{1}{2} \mathrm{k}_{2} \mathrm{x}_{2}^{2}
$$

As $\frac{\mathrm{W}_{1}}{\mathrm{~W}_{2}}>1$ so $\frac{\frac{1}{2} \mathrm{k}_{1} \mathrm{x}_{1}^{2}}{\frac{1}{2} \mathrm{k}_{2} \mathrm{x}_{2}^{2}}>1$
$\Rightarrow \frac{\mathrm{Fx}_{1}}{\mathrm{Fx}_{2}}>1 \quad \Rightarrow \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}>1$
$\therefore \mathrm{k}_{2}>\mathrm{k}_{1}$ statement 2 is true
OR
if $\mathrm{X}_{1}=\mathrm{x}_{2}=\mathrm{x}$
$\frac{\mathrm{W}_{1}}{\mathrm{~W}_{2}}=\frac{\frac{1}{2} \mathrm{~K}_{1} \mathrm{x}^{2}}{\frac{1}{2} \mathrm{~K}_{2} \mathrm{x}^{2}}=\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}$
$\therefore \frac{\mathrm{W}_{1}}{\mathrm{~W}_{2}}=\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}<1$
$\therefore \mathrm{W}_{1}<\mathrm{W}_{2}$
statement 1 is false
17. $\mathrm{m} \times 3.8 \times 10^{7} \times 0.2=\mathrm{W}$

$$
=(10 \times 9.8 \times 1) \times 1000
$$

$\mathrm{m}=12.89 \times 10^{-3} \mathrm{~kg}$

Part \# II : IIT-JEE ADVANCED

1. Force $=\mathrm{v} \times \frac{\mathrm{dm}}{\mathrm{dt}}=\mathrm{v} \times \frac{\mathrm{d}}{\mathrm{dt}}$ (volume \times density $)$

$$
=v \frac{d}{d t}(A x \times \rho)=v \times A \rho \frac{d x}{d t}=A \rho v^{2}
$$

$\therefore \quad$ Power $=$ Force \times velocity

$$
=\left(A \rho v^{2}\right)(v)=A \rho v^{3} \quad \therefore \text { Power } \propto v^{3}
$$

2. $\mathrm{F}=-\frac{\mathrm{dU}}{\mathrm{dx}} \quad \therefore \mathrm{dU}=-\mathrm{Fdx}$
$\int d U=-\int_{0}^{x}\left(-k x+\mathrm{ax}^{3}\right) d x$ or $U(x)=\frac{\mathrm{kx}^{2}}{2}-\frac{\mathrm{ax}^{4}}{4}$
Let potential energy $U(x)=0$
$\therefore 0=\frac{\mathrm{x}^{2}}{2}\left(\mathrm{k}-\frac{\mathrm{ax}^{2}}{2}\right)$
x has two roots $\operatorname{viz} x=0$ and $x=\sqrt{\frac{2 \mathrm{k}}{\mathrm{a}}}$.
If $k<\frac{a x^{2}}{2}$, P.E. will be - ve or
when $\mathrm{x}>\sqrt{\frac{2 \mathrm{k}}{\mathrm{a}}}$, P.E. will be negative.
$\because F=-k x+\mathrm{ax}^{3} \quad \therefore$ At $\mathrm{x}=0, \mathrm{~F}=0$,
Slope of $U-x$ graph is zero at $x=0$.
Thus P.E. is zero at $\mathrm{x}=0$ and at $\mathrm{x}=\sqrt{\frac{2 \mathrm{k}}{\mathrm{a}}}$
Slope of $U-x$ graph, at $x=0$, is zero.
3. Mechanical energy is conserved in the process.

Let $\mathrm{x}=$ Maximum extension of the spring.
$\therefore \quad$ Increase in elastic potential energy $=\frac{1}{2} \mathrm{kx}^{2}$
Loss of gravitational potential energy $=\operatorname{Mgx}$
$\therefore \quad \operatorname{Mgx}=\frac{1}{2} \mathrm{kx}^{2} \quad$ or $\quad \mathrm{x}=\frac{2 \mathrm{Mg}}{\mathrm{k}}$
4. The gravitational field is a conservative field. In a conservative field, the work done W does not depend on the path (from A to B). It depends on initial and final points.
$\therefore \quad \mathrm{W}_{1}=\mathrm{W}_{2}=\mathrm{W}_{3}$
5. For conservative forces,
$\Delta \mathrm{U}=-\int_{0}^{\mathrm{x}} \mathrm{Fdx}=-\int_{0}^{\mathrm{x}} \mathrm{kx} \mathrm{dx}$ or $\mathrm{U}(\mathrm{x})-\mathrm{U}(0)=-\frac{\mathrm{kx}^{2}}{2}$
But $\mathrm{U}(0)=0$, as given in the question,
$\therefore \quad \mathrm{U}(\mathrm{x})=\frac{-\mathrm{kx}^{2}}{2}$ or $\mathrm{x}^{2}=\frac{-2 \mathrm{U}(\mathrm{x})}{\mathrm{k}}$
It represents a parabola, below x -axis, symmetrical about U -axis, passing through origin.
6. Energy conservation gives
$v^{2}=u^{2}-2 g(L-L \cos \theta)$
or $\frac{5 \mathrm{gL}}{4}=5 \mathrm{gL}-2 \mathrm{gL}(1-\cos \theta)$
or $5=20-8+8 \cos \theta$ or $\cos \theta$

$$
=-\frac{7}{8} \Rightarrow \frac{3 \pi}{4}<\theta<\pi
$$

7. $\mathrm{T} \sin \theta=\mathrm{m} \omega^{2}(\mathrm{~L} \sin \theta) \Rightarrow \mathrm{T}=\mathrm{m} \omega^{2} \mathrm{~L}$

$\omega_{\max }=\sqrt{\frac{T_{\max }}{\mathrm{mL}}}=\sqrt{\frac{324}{0.5 \times 0.5}}=36 \mathrm{rad} / \mathrm{s}$
8. According to problem particle is to land on disc.

If we consider a time ' t ' then x component of displacement is $\mathrm{R} \omega \mathrm{t}$

$$
\mathrm{R} \sin \omega \mathrm{t}<\mathrm{R} \omega \mathrm{t}
$$

Thus particle P lands in unshaded region.
For Q , x -component is very small and y -component equal to P it will also land in unshaded region.
9. B
10. It is a case of uniform circular motion.

Velocity and acceleration keep on changing their directions. Their magnitudes remain constants. Kinetic energy remains constant.
12. (i) For circular motion of the ball, the centripetal force is provided by $(\mathrm{mg} \cos \theta-\mathrm{N})$
$\therefore \quad m g \cos \theta-N=\frac{\mathrm{mv}^{2}}{\left(\mathrm{R}+\frac{\mathrm{d}}{2}\right)}$

By geometry, $h=\left(R+\frac{d}{2}\right)(1-\cos \theta)$
By conservation of energy,
Kinetic energy = potential energy

$$
\begin{align*}
& \frac{1}{2} m v^{2}-m g\left(R+\frac{d}{2}\right)(1-\cos \theta) \text { or } \\
v^{2}= & 2\left(R+\frac{d}{2}\right)(1-\cos \theta) g \tag{iii}
\end{align*}
$$

From (i) \& (ii), we get total normal reaction force N .

$$
\begin{equation*}
\mathrm{N}=\operatorname{mg}(3 \cos \theta-2) \tag{iiii}
\end{equation*}
$$

(ii) To find N_{A} and N_{B}

For graphs :
From (iiii), at A,
$\mathrm{N}_{\mathrm{A}}=\operatorname{mg}(3 \cos \theta-2)$.
(i) If $_{\mathrm{A}}=0$,
i.e. $\operatorname{At} \mathrm{A}, \mathrm{N}=0$,

$$
0=m g(3 \cos \theta-2)
$$

or $3 \cos \theta=2$ or $\cos \theta=\frac{2}{3}$
When N_{A} becomes zero, the ball will lose contact with inner sphere A. After this, it makes contact with outer sphere B. When $\theta-0, N_{A}=m g$
The N_{A} versus $\cos \theta$ graph is a straight line as shown in the figure.

(ii) To find N_{B} :

Consider : $\cos \theta>\frac{2}{3}$
The ball makes contact with B.

$$
\mathrm{N}_{\mathrm{B}}-(-\mathrm{mg} \cos \theta)=\frac{\mathrm{mv}^{2}}{\mathrm{R}+\frac{\mathrm{d}}{2}} \quad \text { or }
$$

$$
\mathrm{N}_{\mathrm{B}}+\mathrm{mg} \cos \theta=\frac{\mathrm{mv}^{2}}{\mathrm{R}+(\mathrm{d} / 2)}
$$

By energy conservation,

$$
\begin{align*}
& \frac{1}{2} \mathrm{mv}^{2}=\mathrm{mg} \\
& \text { or } \frac{\mathrm{mv}^{2}}{\mathrm{R}+\frac{\mathrm{d}}{2}}=2 \mathrm{mg}(1-\cos \theta) \tag{vi}
\end{align*}
$$

From (iv) and (v)

$$
\begin{align*}
& \mathrm{N}_{\mathrm{B}}+\mathrm{mg} \cos \theta=2 \mathrm{mg}-2 \mathrm{mg} \cos \theta \\
& \mathrm{~N}_{\mathrm{B}}=\mathrm{mg}(2-3 \cos \theta) \tag{vii}
\end{align*}
$$

When $\cos \theta=\frac{2}{3}, \mathrm{~N}_{\mathrm{B}}=0$
When $\cos \theta=-1, N_{B}=5 \mathrm{mg}$.
Thus the $N_{B}-\cos \theta$ graph is as shown in the figure.

13. $\mathrm{m}_{1} \mathrm{~g}-\mathrm{T}=\mathrm{m}_{1} \mathrm{a}$
$T-m_{2} g=m_{2} a$
$\left(\mathrm{m}_{1}=0.72 \mathrm{~kg} ; \mathrm{m}_{2}=0.36 \mathrm{~kg}\right)$
From (i) and (ii) $a=\frac{10}{3} \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{d}=\frac{1}{2} \times \frac{10}{3} \times 1^{2}=\frac{5}{3} \mathrm{~m}$
$\mathrm{v}=0+\frac{10}{3} \times 1=\frac{10}{3} \mathrm{~m} / \mathrm{s}$
$\mathrm{W}_{\mathrm{T}}=0.36 \times 10 \times \frac{5}{3}+\frac{1}{2} \times 0.36 \times \frac{100}{9}$
$\mathrm{W}_{\mathrm{T}}=8 \mathrm{~J}$
14. By using work energy theorem $(\mathrm{W}=\Delta \mathrm{KE})$

$$
\begin{aligned}
& -\mu \mathrm{mgx}-\frac{1}{2} \mathrm{kx}^{2}=0-\frac{1}{2} \mathrm{mV}^{2} \\
\Rightarrow & \mathrm{~V}^{2}=\frac{1.44}{9} \Rightarrow \mathrm{~V}=\frac{1.2}{3}=0.4=\frac{4}{10} \Rightarrow \mathrm{~N}=4
\end{aligned}
$$

15. 5
16. (A) $\mathrm{U}_{1}=\frac{\mathrm{U}_{0}}{2}\left[1-\left(\frac{\mathrm{x}}{\mathrm{a}}\right)^{2}\right]^{2}$
$\mathrm{U}_{\text {min }}$ at $1-\left(\frac{\mathrm{x}}{\mathrm{a}}\right)^{2}=0$
$x= \pm a, F=0$ at $x= \pm a$

(B) $U_{2}=\frac{U_{0}}{2}\left(\frac{X^{2}}{A^{2}}\right)$

(C) $U_{3}=\frac{U_{0}}{2}\left(\frac{x}{a}\right)^{2} e^{\frac{x^{2}}{a^{2}}}$

(D) $\mathrm{U}_{4}=\frac{\mathrm{U}_{0}}{2}\left[\frac{\mathrm{x}}{\mathrm{a}}-\frac{1}{3}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)^{3}\right]=\frac{\mathrm{U}}{3}$

AT $\mathrm{x}=-\mathrm{a}$
$U_{4}=\frac{4}{3} \frac{U_{0}}{2}=-\frac{U_{0}}{3}$
At $\mathrm{x}=\mathrm{a}$,
$\mathrm{U}_{4}=\frac{2}{3} \times \frac{\mathrm{U}_{0}}{2}=\frac{\mathrm{U}_{0}}{3}$
$\frac{1}{a}-\frac{x^{3}}{a^{3}}=0$
$\frac{1}{a}=\frac{x^{2}}{a^{3}}=x= \pm a$

MOCK TEST

1.

Consider the blocks shown in the figure to be moving together due to friction between them.
The free body diagrams of both the blocks are shown below.

Work done by static friction on A is positive and on B is negative.
2. The work done by man is negative of magnitude of decrease in potential energy of chain

$\Delta \mathrm{U}=\mathrm{mg} \frac{\mathrm{L}}{2}-\frac{\mathrm{m}}{2} \mathrm{~g} \frac{\mathrm{~L}}{4}=3 \mathrm{mg} \frac{\mathrm{L}}{8}$
$\therefore \mathrm{W}=-\frac{3 \mathrm{mg} \ell}{8}$
3. From conservation of energy
K.E. + P.E. $=E$ or K.E. $=E-\frac{1}{2} \mathrm{kx}^{2}$
\therefore K.E. at $x=-\sqrt{\frac{2 E}{k}}$ is $\quad x=-\sqrt{\frac{2 E}{k}}$
$E-\frac{1}{2} k\left(\frac{2 E}{k}\right)=0$
\therefore The speed of particle at $x=-\sqrt{\frac{2 E}{k}}$ is zero.
4. If A moves down the incline by 1 metre, B shall move up by $\frac{1}{2}$ metre. If the speed of B is v then the speed of A will be 2 v .
From conservation of energy:
Gain in K.E. $=$ loss in P.E.
$\frac{1}{2} m_{A}(2 v)^{2}+\frac{1}{2} m_{B} v^{2}=m_{A} g \times \frac{3}{5}-m_{B} g \times \frac{1}{2}$
Solving we get
$v=\frac{1}{2} \sqrt{\frac{g}{3}} \quad$ Ans.
5. Internal forces can not change acceleration of centre of mass. Thus internal forces have no effect on velocity of centre of mass.
The kinetic energy of system of two particles of mass m_{1} and m_{2} having velocities $\overrightarrow{\mathrm{v}}_{1}$ and $\overrightarrow{\mathrm{v}}_{2}$, in centre of mass frame is:
$\mathrm{k}=\frac{1}{2} \mathrm{~m}_{1}\left(\overrightarrow{\mathrm{v}}_{1}-\overrightarrow{\mathrm{v}}_{\mathrm{cm}}\right) \cdot\left(\overrightarrow{\mathrm{v}}_{1}-\overrightarrow{\mathrm{v}}_{\mathrm{cm}}\right)+\frac{1}{2} \mathrm{~m}_{2}\left(\overrightarrow{\mathrm{v}}_{2}-\overrightarrow{\mathrm{v}}_{\mathrm{cm}}\right) \cdot\left(\overrightarrow{\mathrm{v}}_{2}-\overrightarrow{\mathrm{v}}_{\mathrm{cm}}\right)$
Internal forces change velocities \vec{v}_{1} and \vec{v}_{2} and hence kinetic energies of constituent particles of the system. Thus internal forces change kinetic energy of the system in centre of mass frame.
\therefore only (i) is correct.
6. Initial extension will be equal to 6 m .

$\therefore \quad$ Initial energy $=\frac{1}{2}(200)(6)^{2}=3600 \mathrm{~J}$.
Reaching A : $\frac{1}{2} \mathrm{mv}^{2}=3600 \mathrm{~J}$

$\Rightarrow \mathrm{mv}^{2}=7200 \mathrm{~J}$
From F.B.D. at A :
$\mathrm{N}=\frac{\mathrm{mv}^{2}}{\mathrm{R}}=\frac{7200}{5}=1440 \mathrm{~N}$
7. From given graphs :

$$
\begin{align*}
& \mathrm{a}_{\mathrm{x}}=\frac{3}{4} \mathrm{t} \text { and } \mathrm{a}_{\mathrm{y}}=-\left(\frac{3}{4} \mathrm{t}+1\right) \Rightarrow \mathrm{v}_{\mathrm{x}}=\frac{3}{8} \mathrm{t}^{2}+\mathrm{C} \\
& \text { At } \mathrm{t}=0: \mathrm{v}_{\mathrm{x}}=-3 \Rightarrow \mathrm{C}=-3 \\
& \therefore \mathrm{v}_{\mathrm{x}}=\frac{3}{8} \mathrm{t}^{2}-3 \\
& \Rightarrow \mathrm{dx}=\left(\frac{3}{8} \mathrm{t}^{2}-3\right) \mathrm{dt} \tag{1}\\
& \text { Similarly } ; \mathrm{dy}=\left(-\frac{3}{8} \mathrm{t}^{2}-\mathrm{t}+4\right) \mathrm{dt} \tag{2}
\end{align*}
$$

As $d w=\vec{F} \cdot \overrightarrow{d s}=\vec{F} \cdot(d x \hat{i}+d y \hat{j})$
$\therefore \int_{0}^{w} d w=\int_{0}^{4}\left[\frac{3}{4} t \hat{\mathrm{i}}-\left(\frac{3}{4} \mathrm{t}+1\right) \hat{\mathrm{j}}\right] \cdot\left[\left(\frac{3}{8} \mathrm{t}^{2}-3\right) \hat{\mathrm{i}}+\left(-\frac{3}{8} \mathrm{t}^{2}-\mathrm{t}+4\right) \hat{\mathrm{j}}\right] \mathrm{dt}$
$\therefore \quad W=10 \mathrm{~J}$

Alternate Solution :

Area of the graph ;
$\int a_{x} d t=6=V_{(x) f}-(-3) \Rightarrow V_{(x) f}=3$.
and $\int a_{y} d t=-10=V_{(y) f}-(4) \Rightarrow V_{(y) f}=-6$.
Now work done $=\Delta \mathrm{KE}=10 \mathrm{~J}$
8.

The above graphs show $v-t$ graph from $a-t$ graph $\&$ Then $v^{2}-t$ graph, which are self explanatory.
9. $\overrightarrow{\mathrm{f}}=-\frac{\partial \mathrm{U}}{\partial \mathrm{x}} \hat{\mathrm{i}}-\frac{\partial \mathrm{U}}{\partial \mathrm{y}} \hat{\mathrm{j}}=-[6 \hat{\mathrm{i}}]+[8] \hat{\mathrm{j}}=-6 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}$
$\therefore \vec{a}=-3 \hat{i}+4 \hat{j}$ has same direction as that of
$\overrightarrow{\mathrm{u}}=\frac{-3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}}{2}=\left(\frac{\overrightarrow{\mathrm{a}}}{2}\right)$
$|\vec{a}|=5 \Rightarrow|\vec{u}|=5 / 2$
Since $\overrightarrow{\mathrm{u}}$ and $\overrightarrow{\mathrm{a}}$ are in same direction, particle will move along a straight line
$\therefore S=\frac{5}{2} \times 2+\frac{1}{2} \times 5 \times 2^{2}=5+10=15 \mathrm{~m} .15 \mathrm{~m}$. Ans
10. Statement I: Work done by gravity is same for motion from A to J and B to M for equal mass. So K.E. will be equal.
Statement II: Acceleration $=g \sin \theta$

$$
\sin \theta_{A}>\sin \theta_{B}
$$

$$
\frac{\mathrm{h}}{\ell}>\frac{\mathrm{h}}{2 \ell}
$$

Statement III :

$\mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\text {ext }}=0$ (Because moved slowly) $\mathrm{W}_{\text {ext }}=-\mathrm{W}_{\mathrm{g}}$ from B to $\mathrm{O}: \mathrm{W}_{\mathrm{g}}$ is positive so $\mathrm{W}_{\mathrm{ext}}<0$
11. Let at any time the speed of the block along the incline upwards be v .
Then from Newton's second law
$\frac{\mathrm{P}}{\mathrm{v}}-\mathrm{mg} \sin \theta-\mu \mathrm{mg} \cos \theta=\frac{\mathrm{mdv}}{\mathrm{dt}}$
the speed is maximum when $\frac{\mathrm{dv}}{\mathrm{dt}}=0$
$\therefore \quad \mathrm{v}_{\max }=\frac{\mathrm{P}}{\mathrm{mg} \sin \theta+\mu \mathrm{mg} \cos \theta}$
12. $x=x_{1}$ and $x=x_{3}$ are not equilibrium positions because $\frac{d u}{d x} \neq 0$ at these points.
$x=x_{2}$ is unstable, as U is maximum at this point.
13. Let v be the speed of B at lowermost position, the speed of A at lowermost position is 2 v .
From conservation of energy
$\frac{1}{2} \mathrm{~m}(2 \mathrm{v})^{2}+\frac{1}{2} \mathrm{mv}^{2}=\mathrm{mg}(2 \ell)+\mathrm{mg} \ell$.
Solving we get $\mathrm{v}=\sqrt{\frac{6}{5} \mathrm{~g} \ell}$.
14. At equilibrium position $\mathrm{x}=\frac{\mathrm{mg}}{\mathrm{k}}$
$\mathrm{U}_{\text {spring }}=\frac{1}{2} \mathrm{kx}^{2}=\frac{1}{2} \mathrm{k}\left(\frac{\mathrm{mg}}{\mathrm{k}}\right) \cdot \mathrm{x}=\frac{\mathrm{mgx}}{2}$
$=\frac{1}{2}(\operatorname{loss}$ in G.P.E. $) \Rightarrow G=2 S$
15. $d U=-\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{ds}}=-\overrightarrow{\mathrm{F}} \cdot(\mathrm{dx} \hat{\mathrm{i}}+\mathrm{dy} \hat{\mathrm{j}})$

Also by reverse method using $\mathrm{F}_{\mathrm{x}}=-\frac{\partial \mathrm{U}}{\partial \mathrm{X}}$ and $\mathrm{F}_{\mathrm{y}}=-\frac{\partial \mathrm{U}}{\partial \mathrm{Y}}$, only (B) option satisfies the criteria.
16. As long as the block of mass m remains stationary, the block of mass M released from rest comes down by $\frac{2 \mathrm{Mg}}{\mathrm{K}}$ (before coming it rest momently again).
Thus the maximum extension in spring is
$\mathrm{x}=\frac{2 \mathrm{Mg}}{\mathrm{K}}$
for block of mass m to just move up the incline
$\mathrm{kx}=\mathrm{mg} \sin \theta+\mu \mathrm{mg} \cos \theta$ \qquad
$2 \mathrm{Mg}=\mathrm{mg} \times \frac{3}{5}+\frac{3}{4} \mathrm{mg} \times \frac{4}{5}$ or $\mathrm{M}=\frac{3}{5} \mathrm{~m}$
Ans.

$$
\text { 17. } \begin{aligned}
\mathrm{F}_{\mathrm{x}} & =-\frac{\partial \mathrm{U}}{\partial \mathrm{x}}=\sin (\mathrm{x}+\mathrm{y}) \mathrm{F}_{\mathrm{y}}=-\frac{\partial \mathrm{U}}{\partial \mathrm{y}}=\sin (\mathrm{x}+\mathrm{y}) \\
\mathrm{F}_{\mathrm{x}} & =\sin (\mathrm{x}+\mathrm{y})]_{(0, \pi / 4)}=\frac{1}{\sqrt{2}} \\
\mathrm{~F}_{\mathrm{y}} & =\sin (\mathrm{x}+\mathrm{y})]_{(0, \pi / 4)}=\frac{1}{\sqrt{2}} \\
\therefore \quad \mathrm{~F} & =\frac{1}{\sqrt{2}}[\hat{\mathrm{i}}+\hat{\mathrm{j}}]
\end{aligned}
$$

18. In the frame (inertial w.r.t earth) of free end of spring, the initial velocity of block is $3 \mathrm{~m} / \mathrm{s}$ to left and the spring unstretched .

Applying conservation of energy between initial and maximum extension state.
$\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} k A^{2}$ or $A=\sqrt{\frac{m}{k}} \mathrm{v}=\sqrt{\frac{4}{10,000}} \times 3=6 \mathrm{~cm}$.
19. The force is constant and hence conservative $\therefore \mathrm{W}_{1}=\mathrm{W}_{2}$
20. The initial extension in spring is $x_{0}=\frac{m g}{k}$

Just after collision of B with A the speed of combined mass is $\frac{\mathrm{v}}{2}$.
For the spring to just attain natural length the combined mass must rise up by $\mathrm{x}_{0}=\frac{\mathrm{mg}}{\mathrm{k}}$ (sec fig.) and comes to rest.

Applying conservation of energy between initial and final states
$\frac{1}{2} 2 m\left(\frac{v}{2}\right)^{2}+\frac{1}{2} k\left(\frac{m g}{k}\right)^{2}=2 m g\left(\frac{m g}{k}\right)$
Solving we get $\mathrm{v}=\sqrt{\frac{6 \mathrm{mg}^{2}}{\mathrm{k}}}$
Alternative solution by SHM
$\frac{\mathrm{v}}{2}=\sqrt{\frac{\mathrm{k}}{2 \mathrm{~m}}} \sqrt{\left(\frac{2 \mathrm{mg}}{\mathrm{k}}\right)^{2}-\left(\frac{\mathrm{mg}}{\mathrm{k}}\right)^{2}} ;$
$\left.\mathrm{v}=\sqrt{\frac{2 \mathrm{k}}{\mathrm{m}}} \sqrt{\frac{3 \mathrm{~m}^{2} \mathrm{~g}^{2}}{\mathrm{k}^{2}}}=\sqrt{\frac{6 \mathrm{mg}^{2}}{\mathrm{k}}}\right]$
21. (A) Area under $P-x$ graph $=\int p d x=\int\left(m \frac{d v}{d t}\right) v d x$

$$
=\int_{1}^{\mathrm{v}} \mathrm{mv}^{2} \mathrm{dV}=\left[\frac{\mathrm{mv}^{3}}{3}\right]_{1}^{\mathrm{v}}=\frac{10}{7 \times 3}\left(\mathrm{v}^{3}-1\right)
$$

from graph ; area $=\frac{1}{2}(2+4) \times 10=30$
$\therefore \quad \frac{10}{7 \times 3}\left(\mathrm{v}^{3}-1\right)=30$
$\therefore \mathrm{v}=4 \mathrm{~m} / \mathrm{s}$
Aliter :
from graph

$$
\begin{aligned}
& \mathrm{P}=0.2 \mathrm{x}+2 \\
& \text { or } \operatorname{mv} \frac{\mathrm{dv}}{\mathrm{dx}} \mathrm{v}=0.2 \mathrm{x}+2 \\
& \text { or } \quad \mathrm{mv}^{2} \mathrm{dv}=(0.2 \mathrm{x}+2) \mathrm{dx}
\end{aligned}
$$

Now integrate both sides,

$$
\int_{1}^{v} m v^{2} d v=\int_{1}^{10}(0.2 x+2) d x \Rightarrow v=4 \mathrm{~m} / \mathrm{s}
$$

22. The speed of the water leaving the hose must be $\sqrt{2 g h}$ if it is to reach a height h when directed vertically upward. If the diameter is d, the volume of water ejected at this speed is

$$
\begin{aligned}
& (\text { A } . \mathrm{v})=\frac{1}{4} \pi \mathrm{~d}^{2} \times \sqrt{2 \mathrm{gh}} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \\
\Rightarrow & \text { Mass ejected is } \frac{1}{4} \pi \mathrm{~d}^{2} \times \sqrt{2 \mathrm{gh}} \times \rho \frac{\mathrm{kg}}{\mathrm{~s}} .
\end{aligned}
$$

The kinetic energy of this water leaving the hose

$$
=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{8} \pi \mathrm{~d}^{2} \times(2 \mathrm{gh})^{3 / 2} \times \rho=21.5 \mathrm{~kW}
$$

23. From work energy theorem
for upward motion
$\frac{1}{2} \mathrm{~m}(16)^{2}=\mathrm{mgh}+\mathrm{W}$ (work by air resistance)
for downward motion
$\frac{1}{2} \mathrm{~m}(8)^{2}=\mathrm{mgh}-\mathrm{W}$
$\frac{1}{2}\left[(16)^{2}+(8)^{2}\right]=2 \mathrm{gh} \quad$ or $\quad \mathrm{h}=8 \mathrm{~m}$
24. When 4 coaches (m each) are attached with engine (2 m) according to question $\mathrm{P}=\mathrm{K} 6 \mathrm{mgv}$
(constant power), (K being proportionality constant)
Since resistive force is proportional to weight
Now if 12 coaches are attached

$$
\begin{equation*}
\mathrm{P}=\mathrm{K} \cdot 14 \mathrm{mg} \cdot \mathrm{v}_{1} \tag{2}
\end{equation*}
$$

Since engine power is constant
So by equation (1) and (2)
$6 \mathrm{Kmgv}=14 \mathrm{Kmgv}_{1} \Rightarrow \mathrm{v}_{1}=\frac{6}{14} \times \mathrm{v}$
$=\frac{6}{14} \times 20=\frac{6 \times 10}{7}=\frac{60}{7}=v_{1}=8.5 \mathrm{~m} / \mathrm{sec}$
Similarly for 6 coaches $\Rightarrow \mathrm{K} 6 \mathrm{mgv}=\mathrm{K} 8 \mathrm{mgv}_{2}$
$\Rightarrow \mathrm{v}_{2}=\frac{6}{8} \times 20=\frac{3}{4} \times 20=15 \mathrm{~m} / \mathrm{sec}$
25. The work done by force from time $t=0$ to $t=t$ sec. is given by shaded area in graph below.
Hence as t increases, this area increases.

$\therefore \quad$ Work done by force keeps on increasing.
26. Increase in $\mathrm{KE}=$ work done

$$
\begin{aligned}
& \frac{1}{2} \mathrm{mv}_{2}^{2}-\frac{1}{2} \mathrm{mx}\left(\frac{2 \mathrm{~F}_{0} \mathrm{x}_{\mathrm{o}}}{\mathrm{~m}}\right)=\frac{1}{2}\left(2 \mathrm{~F}_{0}+\mathrm{F}_{0}\right) 3 \mathrm{x}_{0} \\
& \Rightarrow \mathrm{v}_{2}=\sqrt{\frac{11 \mathrm{~F}_{0} \mathrm{x}_{0}}{\mathrm{~m}}}
\end{aligned}
$$

27. $\mathrm{mg} 1=\frac{1}{2} \mathrm{mu}^{2} \Rightarrow \mathrm{u}^{2}=2 \mathrm{~g}$
$\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as} \Rightarrow 0=2 \mathrm{~g}-2 \mathrm{a}(3)$
$\Rightarrow \mathrm{a}=\frac{\mathrm{g}}{3} \Rightarrow \because \mu_{\mathrm{k}} \mathrm{g}=\mathrm{a} \quad \therefore \mu_{\mathrm{k}} \mathrm{g}=\frac{\mathrm{g}}{3} \quad \therefore \mathrm{u}_{\mathrm{K}}=\frac{1}{3}$
28. Let m be minimum mass of ball.

Let mass A moves downwards by x .
From conservation of energy,
$\operatorname{mgx}=\frac{1}{2} \mathrm{kx}^{2}$
$\mathrm{x}=\left(\frac{2 \mathrm{mg}}{\mathrm{k}}\right)$
For mass M to leave contact with ground,

$$
\begin{aligned}
& \mathrm{kx}=\mathrm{Mg} \\
& \mathrm{~K}\left(\frac{2 \mathrm{mg}}{\mathrm{k}}\right)=\mathrm{Mg} \Rightarrow \mathrm{~m}=\frac{\mathrm{M}}{2} .
\end{aligned}
$$

29. $\mathrm{W}_{\text {spring }}+\mathrm{W}_{100 \mathrm{~N}}=\Delta \mathrm{k}($ on A $)$

$$
\begin{aligned}
& \mathrm{W}_{\text {spring }}+(100)\left(\frac{10}{100}\right)=\frac{1}{2}(2)(2)^{2} \\
& \mathrm{~W}_{\text {spring }}=4-10=-6 \mathrm{~J}
\end{aligned}
$$

30. Since $; \mathrm{W}=\int \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{dr}}$

Clearly for forces (A) and (B) the integration do not require any information of the path taken.

For (C): $W_{c}=\int \frac{3(x \hat{i}+y \hat{j})}{\left(x^{2}+y^{2}\right)^{3 / 2}} \cdot(\mathrm{dx} \hat{\mathrm{i}}+\mathrm{dy} \hat{\mathrm{j}})$

$$
=3 \int \frac{x d x+y d y}{\left(x^{2}+y^{2}\right)^{3 / 2}}
$$

Taking : $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{t}$

$$
2 x d x+2 y d y=d t
$$

$\Rightarrow x d x+y d y=\frac{d t}{2} \Rightarrow W_{c}=3 \int \frac{\mathrm{dt} / 2}{\mathrm{t}^{3 / 2}}=\frac{3}{2} \int \frac{\mathrm{dt}}{\mathrm{t}^{3 / 2}}$
which is solvable.
Hence (A), (B) and (C) are conservative forces.
But (D) requires some more information on path. Hence non-conservative.
31. Free body diagram of block is as shown in figure.

From work-energy theorem
$\mathrm{W}_{\text {net }}=\Delta \mathrm{KE}$
or $(40-20) s=40$
$\therefore \mathrm{s}=2 \mathrm{~m}$
Work done by gravity is
$-20 \times 2=-40 \mathrm{~J}$
and work done by tension is

$40 \times 2=80 \mathrm{~J}$
32. If the springs are compressed to same amount:
$\mathrm{W}_{\mathrm{A}}=\frac{1}{2} \mathrm{~K}_{\mathrm{A}} \mathrm{x}^{2} ; \mathrm{W}_{\mathrm{B}}=\frac{1}{2} \mathrm{~K}_{\mathrm{B}} \mathrm{x}^{2}$
$\because \mathrm{K}_{\mathrm{A}}>\mathrm{K}_{\mathrm{B}} \Rightarrow \mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{B}}$
If the springs are compressed by same force.
$\mathrm{F}=\mathrm{K}_{\mathrm{A}} \mathrm{x}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}} \mathrm{x}_{\mathrm{B}} ; \mathrm{x}_{\mathrm{A}}=\frac{\mathrm{F}}{\mathrm{K}_{\mathrm{A}}} ; \mathrm{x}_{\mathrm{B}}=\frac{\mathrm{F}}{\mathrm{K}_{\mathrm{B}}} ; \frac{\mathrm{W}_{\mathrm{A}}}{\mathrm{W}_{\mathrm{B}}}$
$=\frac{\frac{1}{2} \mathrm{~K}_{\mathrm{A}} \cdot \frac{\mathrm{F}^{2}}{\mathrm{~K}_{\mathrm{A}}^{2}}}{\frac{1}{2} \mathrm{~K}_{\mathrm{B}} \frac{\mathrm{F}^{2}}{\mathrm{~K}_{\mathrm{B}}^{2}}}=\frac{\mathrm{K}_{\mathrm{B}}}{\mathrm{K}_{\mathrm{A}}}$
Hence, $\mathrm{W}_{\mathrm{A}}<\mathrm{W}_{\mathrm{B}}$
33. (A) If velocity and acceleration are not in same direction, work done by force perpendicular to acceleration will not be zero.
(B) If the object is at rest no force can do work.
(C) If force is perpendicular to velocity work done will be zero.
(D) If the point on the body has velocity component in direction of application of force work done will be non-zero.
34. From the figure-1 work done by gravity from $t=0$ to $\mathrm{t}=\mathrm{t}_{0}$ is $\mathrm{W}=\operatorname{mg}\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)$

Since initial and final velocity of ball is zero its average acceleration will be zero.
Since net work done is zero from time interval $t=0$ to $t=t_{0}$. Hence work done by forces except gravity is $\operatorname{mg}\left(h_{2}-h_{1}\right)$.
35. $U=3 x+4 y$

$$
\begin{aligned}
& a_{y}=\frac{F_{y}}{m}=\frac{-(\partial U / \partial x)}{m}=-3 \\
& a_{x} \\
&=\frac{F_{y}}{m}=\frac{-(\partial U / \partial y)}{m}=-4 \Rightarrow|\vec{a}|=\mathbf{5} \mathbf{~ m} / \mathbf{s}^{2}
\end{aligned}
$$

Let at time 't' particle crosses y-axis
then $-6=\frac{1}{2}(-3) t^{2} \Rightarrow t=2 \mathrm{sec}$.
Along y-direction :
$\Delta y=\frac{1}{2}(-4)(2)^{2}=-8$
\Rightarrow particle crosses y-axis at $y=-4$
$\operatorname{At}(6,4): U=34 \& K E=0$
At $(0,-4): U=-16 \Rightarrow K E=50$
or $\frac{1}{2} \mathrm{mv}^{2}=50 \Rightarrow \mathbf{v}=\mathbf{1 0} \mathbf{m} / \mathbf{s}$ while crossing y-axis
36. Maximum extension will be at the moment when both masses stop momentarily after going down. Applying W-E theorem from starting to that instant. $\mathrm{k}_{\mathrm{f}}-\mathrm{k}_{\mathrm{i}}=\mathrm{W}_{\mathrm{gr} .}+\mathrm{W}_{\mathrm{sp}}+\mathrm{W}_{\mathrm{ten}}$.
$0-0=2$ M.g.x $+\left(-\frac{1}{2} K x^{2}\right)+0$
$x=\frac{4 M g}{K}$
System will have maximum KE when net force on the system becomes zero. Therefore
$2 \mathrm{Mg}=\mathrm{T}$ and $\mathrm{T}=\mathrm{kx} \Rightarrow \mathrm{x}=\frac{2 \mathrm{Mg}}{\mathrm{K}}$
Hence KE will be maximum when 2 M mass has gone down by $\frac{2 \mathrm{Mg}}{\mathrm{K}}$.
Applying W/E theorem
$\mathrm{k}_{\mathrm{f}}-0=2 \mathrm{Mg} \cdot \frac{2 \mathrm{Mg}}{\mathrm{K}}-\frac{1}{2} \mathrm{~K} \cdot \frac{4 \mathrm{M}^{2} \mathrm{~g}^{2}}{\mathrm{~K}^{2}}$
$\mathrm{k}_{\mathrm{f}}=\frac{2 \mathrm{M}^{2} \mathrm{~g}^{2}}{\mathrm{~K}^{2}}$
Maximum energy of spring $=\frac{1}{2} \mathrm{~K} \cdot\left(\frac{4 \mathrm{Mg}}{\mathrm{K}}\right)^{2}=\frac{8 \mathrm{M}^{2} \mathrm{~g}^{2}}{\mathrm{~K}}$
Therefore Maximum spring energy $=4 \times$ maximum K.E.
When K.E. is maximum $x=\frac{2 \mathrm{Mg}}{\mathrm{K}}$.
Spring energy $=\frac{1}{2} \cdot \mathrm{~K} \cdot \frac{4 \mathrm{M}^{2} \mathrm{~g}^{2}}{\mathrm{~K}^{2}}=\frac{2 \mathrm{M}^{2} \mathrm{~g}^{2}}{\mathrm{~K}^{2}}$
i.e. (D) is wrong.
37. The maximum extension is non-zero, while the spring never undergoes compression.
Hence statement-1 is false.
38. When frictional force is opposite to velocity, kinetic energy will decrease.
39. Both the statements are true. The work done by all forces on a system is equal to change in its kinetic energy, irrespective of fact whether work done by internal forces is positive, is zero or is negative.
40. Linear momentum is conserved only in horizontal direction.
41. Net $\mathrm{F}_{\text {ext }}$ on system is zero in horizontal direction therefore linear momentum is conserved only in horizontal direction.
42.

Smooth ground
$\mathrm{mv}_{1}=\mathrm{mv}_{2}$
$\frac{1}{2} \mathrm{mv}_{1}{ }^{2}+\frac{1}{2} \mathrm{mv}_{2}^{2}=\mathrm{mgh}$
From(i) \& (ii),
$\mathrm{v}_{2}=10 \mathrm{~ms}^{-1}$.
43. Applying W-E theorem on the block for any compression x :
$\mathrm{W}_{\mathrm{ext}}+\mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\text {spring }}=\Delta \mathrm{KE} \Rightarrow \mathrm{Fx}+0-\frac{1}{2} \mathrm{Kx}^{2}=\frac{1}{2} \mathrm{mv}^{2}$.
$\Rightarrow \mathrm{KE}$ vs x is inverted parabola.
44. $\mathrm{W}_{\mathrm{ext}}=\mathrm{F} \cdot \mathrm{x} \Rightarrow$ linear variation
45. From beginning to end of motion : $\Delta \mathrm{KE}=0$
$\Rightarrow x=2 F / K$. (from W-E theorem)
\therefore first half corresponds to $0 \leq \mathrm{x} \leq(\mathrm{F} / \mathrm{K})$.
46. (A) $-\mathrm{p} ;(\mathrm{B})-\mathrm{p} ;(\mathrm{C})-\mathrm{s} ;(\mathrm{D})-\mathrm{q}$
47. (Easy) Point $\mathrm{J} \longrightarrow$ No equilibrium
$\mathrm{K} \longrightarrow$ Unstable equilibrium
$\mathrm{L} \longrightarrow$ Stable equilibrium
$\mathrm{M} \longrightarrow$ Neutral equilibrium
48. Change in velocity $=\frac{\text { area under } \mathrm{F}-\mathrm{T} \text { graph }}{\text { mass }}$

$$
\begin{aligned}
= & \frac{40+(-10)}{5}=6 \mathrm{~m} / \mathrm{s} \\
\mathrm{~W}_{\mathrm{F}} & =\Delta K . E \cdot=\frac{1}{2}(5) 6^{2}=90 \mathrm{~J}
\end{aligned}
$$

49. Assume 20 kg and 30 kg block move together
$\therefore \mathrm{a}=\frac{50}{50}=1 \mathrm{~m} / \mathrm{s}^{2} \quad 20 \mathrm{~kg} \longrightarrow f$ (force of friction)

\therefore frictional force on 20 kg block is

$$
f=20 \times 1=20 \mathrm{~N}
$$

The maximum value of frictional force is
$\mathrm{f}_{\max }=\frac{1}{2} \times 200=100 \mathrm{~N}$
Hence no slipping is occurring.
\therefore The value of frictional force is $f=20 \mathrm{~N}$.
Distance travelled in $t=2$ seconds.
$S=\frac{1}{2} \times 1 \times 4=2 \mathrm{~m}$.
Work done by frictional force on upper block is
$\mathrm{W}_{\mathrm{fri}}=20 \times 2=40 \mathrm{~J}$
Work done by frictional force on lower block is
$=-20 \times 2=-40 \mathrm{~J}$.
50. (40)
51. Work done by force F
$W=\int \vec{F} \cdot d x=(y \hat{i}-x \hat{j}) \cdot(d x \hat{i}+d y \hat{j})=(y d x \hat{i}-x d y \hat{j})$
$\because \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2} \quad \therefore \mathrm{xdx}+\mathrm{ydy}=0$
$\Rightarrow \quad W=\int\left(y\left(\frac{-y d y}{x}\right)-x d y\right)=-\int \frac{\left(x^{2}+y^{2}\right)}{x} d y$
$=-\int_{0}^{a} \frac{a^{2}}{\sqrt{a^{2}-y^{2}}} d y=-\frac{\pi a^{2}}{2}$
52. For the block of mass m_{2}, not to move, the maximum compression in the spring x_{o} should be such that $\mathrm{kx}_{\mathrm{o}}=\mu \mathrm{m}_{2} \mathrm{~g}$
Applying work energy theorem to block of mass m_{1} we get
$\frac{1}{2} \mathrm{~m}_{1} \mathrm{u}^{2}=\frac{1}{2} \mathrm{k} \mathrm{x}_{\mathrm{o}}^{2}+\mu \mathrm{m}_{1} \mathrm{gx}_{\mathrm{o}}$
From equation (1) and (2) we get
$\frac{1}{2} m_{1} u^{2}=\frac{1}{2} \frac{\mu^{2} m_{2}^{2} g^{2}}{K}+\frac{\mu^{2} m_{1} m_{2} g^{2}}{K}$
putting the appropriate value we get $u=10 \mathrm{~m} / \mathrm{s}$.

