

Relations and Functions

1.1 Relation

A relation R from a set X to a set Y is defined as a subset of the cartesian product $X \times Y$, i.e. $R \subseteq X \times Y$.

Domain and Range of a Relation

The set of first elements of all ordered pairs in R, i.e. $\{x:(x,y)\in R\}$ is called the domain of relation R and the set of second elements of all ordered pairs in R, i.e. $\{y:(x,y)\in R\}$ is called the range of relation R.

NOTE If n(A) = p and n(B) = q, then $n(A \times B) = pq$ and number of relations from set A to set $B = 2^{pq}$.

Types of Relation

 Empty (or Void) Relation A relation R in a set X is called an empty relation, if no element of X is related to any element of X,

i.e. $R = \phi \subset X \times X$.

 Universal Relation A relation R in a set X is called universal relation, if each element of X is related to every element of X,

i.e. $R = X \times X$.

3. **Reflexive Relation** A relation R defined on a set A is said to be reflexive, if

 $(x, x) \in R, \forall x \in A$

or $xRx, \forall x \in A$.

4. **Symmetric Relation** A relation R defined on a set A is said to be symmetric, if

 $(x, y) \in R$

 \Rightarrow $(y, x) \in R, \forall x, y \in A$

or $xRy \Rightarrow yRx, \forall x, y \in A$.

- 5. Transitive Relation A relation R defined on a set A is said to be transitive, if $(x, y) \in R$ and $(y, z) \in R \Rightarrow (x, z) \in R, \forall x, y, z \in A$ or xRy and yRz $\Rightarrow xRz, \forall x, y, z \in A$.
- 6. **Equivalence Relation** A relation R defined on a set A is said to be an equivalence relation, if R is reflexive, symmetric and transitive.
- 7. Equivalence Classes Let R be an equivalence relation in a set A and let $a \in A$. Then, the set of all those elements of A which are related to a under the relation R, is called the equivalence class determined by a and it is denoted by [a]. So, $[a] = \{b \in A: aRb\}$

NOTE (i) Two equivalence classes are either disjoint or identical.

- (ii) The union of all equivalence classes gives the whole set.
- (iii) Identity relation is always reflexive, symmetric and transitive.

1.2 Function

Let X and Y be two non-empty sets. A function or mapping f from X into Y written as $f: X \to Y$ is a rule by which each element $x \in X$ is associated to a unique element $y \in Y$.

Domain, codomain and Range of Function

The elements of X are called the **domain** of f and the elements of Y are called the **codomain** of f. The images of the elements of X is called the range of f which is a subset of Y.

NOTE Every function is a relation but every relation is not a function.

Types of Function

- 1. One-one (or Injective) and Many-one Function A function $f: X \to Y$ is said to be a one-one function, if the images of distinct elements of X under f are distinct, Thus, f is one-one iff $f(x_1) = f(x_2)$ $\Rightarrow x_1 = x_2 \text{ for all } x_1, x_2 \in X$ or f is one-one iff $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ for all $x_1, x_2 \in X$.
 A function which is not one-one, is known as many-one function.
- Onto (or Surjective) and Into Function
 A function f: X → Y is said to be an onto
 function, if every element of Y is image of
 some element of set X under f, i.e. for every
 y ∈ Y, there exists an element x in X such that
 f(x) = y.
 In other words, a function is called an onto
 function, if its range is equal to codomain.
 A function f: X → Y is said to be into function,
 if there exists at least one element in Y, which
 do not have any pre-image in X.
- 3. Bijective Function A function $f: X \to Y$ is said to be a bijective function, if it is both one-one and onto.

Composition of Functions

Let $f: X \to Y$ and $g: Y \to Z$ be two functions. Then, composition of functions f and g is a function from X to Z, denoted by $g \circ f$ is defined as function $g \circ f: X \to Z$ and given by $g \circ f \circ f(X) = g(f(X))$, $\forall X \in X$. Similarly, if $f: X \to Y$, $g: Y \to Z$ and $h: Z \to S$ are three functions, then composition of f, g and h is defined as the function $hogof: X \to S$ given by hogof(x) = ho(gof)(x) = h (gof)(x) = h(g(f(x)))

NOTE (i) fog may or may not be equal to gof.

- (ii) If f and g are onto, then gof is also onto.
- (iii) If f and g are one-one, then gof is also one-one.
- (iv) In general, gof is one-one implies that f is one-one and gof is onto implies that f is onto.
- (v) ho(gof) is always same as (hog)of, i.e. ho(gof) (x) = (hog)of(x), $\forall x$ in x

Invertible Function, (d. co), (d. co)

A function $f: X \to Y$ is said to be invertible, if there exists a function $g: Y \to X$ such that $gof = I_X$ and $fog = I_Y$. The function g is called inverse of function f and is denoted by f^{-1} .

- **NOTE** (i) To prove a function is invertible, we need to prove that, it is both one-one and onto, i.e. bijective.
 - (ii) The inverse of a bijective function is also a bijective function.
 - (iii) If f is an invertible function, then $(f^{-1})^{-1} = f$.
 - (iv) If $f: X \to Y$ and $g: Y \to Z$ are two invertible functions, then gof is also invertible with $(gof)^{-1} = f^{-1}og^{-1}$.

Domain and Range of Some Useful Functions

S.No.	Function	Domain	Range
1.	Polynomial function	R	R (if degree is odd) and subset of R (if degree is even)
2.	Rational function	All real values except for which denominator = 0.	Depends on particular rational function.
3.	Exponential function, a^x , $a > 0$	R	(0, ∞)
4,	Logarithmic function, $\log_a x$, $a > 0$ and $a \ne 1$	(0,∞)	R
5.	Identity function, $y = x$	R	R
6.	Modulus function, x	R	[0, ∞)
7.	Signum function, $\begin{cases} \frac{ A }{x}, x \neq 0 \\ 0, x = 0 \end{cases}$	R	{-1, 0, 1}
8.	Greatest integer function, [x]	R	Set of integers (1)