

Straight Line

A straight line is the locus of all those points which are collinear with two given points.

General equation of a line is ax + by + c = 0

Note

- We can have one and only one line through a fixed point in a given direction.
- · We can have infinitely many lines through a given point.

Slope (Gradient) of a Line

The trigonometrical tangent of the angle that a line makes with the positive direction of the *X*-axis in anti-clockwise sense is called the slope or gradient of the line.

So, slope of a line, $m = \tan \theta$

where, θ is the angle made by the line with positive direction of X-axis.

Important Results on Slope of Line

- (i) Slope of a line parallel to X-axis, m = 0.
- (ii) Slope of a line parallel to Y-axis, $m = \infty$.
- (iii) Slope of a line equally inclined with axes is 1 or -1 as it makes an angle of 45° or 135° , with *X*-axis.
- (iv) Slope of a line passing through (x_1, y_1) and (x_2, y_2) is given by

$$m = \tan\theta = \frac{y_2 - y_1}{x_2 - x_1}.$$

Angle between Two Lines

The angle θ between two lines having slopes m_1 and m_2 , is

$$\tan\theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|.$$

- (i) Two lines are parallel, iff $m_1 = m_2$.
- (ii) Two lines are perpendicular to each other, iff $m_1 m_2 = -1$.

Equation of a Straight Line

General equation of a straight line is Ax + By + C = 0.

(i) The equation of a line parallel to X-axis at a distance b from it, is given by

$$y = b$$

(ii) The equation of a line parallel to Y-axis at a distance a from it, is given by

$$x = a$$

(iii) Equation of X-axis is

$$y = 0$$

(iv) Equation of Y-axis is

$$x = 0$$

Different Forms of the Equation of a Straight Line

(i) **Slope Intercept Form** The equation of a line with slope *m* and making an intercept *c* on *Y*-axis, is

$$y = mx + c$$

If the line passes through the origin, then its equation will be

$$y = mx$$

(ii) **One Point Slope Form** The equation of a line which passes through the point (x_1, y_1) and has the slope m is given by

$$(y - y_1) = m (x - x_1)$$

(iii) **Two Points Form** The equation of a line passing through the points (x_1, y_1) and (x_2, y_2) is given by

$$(y - y_1) = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1)$$

This equation can also be determined by the determinant method, that is

$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$

(iv) **Intercept Form** The equation of a line which cuts off intercept *a* and *b* respectively on the *X* and *Y*-axes is given by

$$\frac{x}{a} + \frac{y}{b} = 1$$

The general equation Ax + By + C = 0 can be converted into the intercept form, as

$$\frac{x}{-(C/A)} + \frac{y}{-(C/B)} = 1$$

(v) **Normal Form** The equation of a straight line upon which the length of the perpendicular from the origin is p and angle made by this perpendicular to the X-axis is α , is given by

$$x\cos\alpha + y\sin\alpha = p$$

(vi) **Distance** (Parametric) **Form** The equation of a straight line passing through (x_1, y_1) and making an angle θ with the positive direction of *X*-axis, is

$$\frac{x - x_1}{\cos \theta} = \frac{y - y_1}{\sin \theta} = r$$

where, r is the distance between two points P(x, y) and $Q(x_1, y_1)$.

Thus, the coordinates of any point on the line at a distance r from the given point (x_1, y_1) are $(x_1 + r \cos \theta, y_1 + r \sin \theta)$. If P is on the right side of (x_1, y_1) , then r is positive and if P is on the left side of (x_1, y_1) , then r is negative.

Position of Point(s) Relative to a Given Line

Let the equation of the given line be ax + by + c = 0 and let the coordinates of the two given points be $P(x_1, y_1)$ and $Q(x_2, y_2)$.

- (i) The two points are on the same side of the straight line ax + by + c = 0, if $ax_1 + by_1 + c$ and $ax_2 + by_2 + c$ have the same sign.
- (ii) The two points are on the opposite side of the straight line ax + by + c = 0, if $ax_1 + by_1 + c$ and $ax_2 + by_2 + c$ have opposite sign.
- (iii) A point (x_1, y_1) will lie on the side of the origin relative to a line ax + by + c = 0, if $ax_1 + by_1 + c$ and c have the same sign.
- (iv) A point (x_1, y_1) will lie on the opposite side of the origin relative to a line ax + by + c = 0, if $ax_1 + by_1 + c$ and c have the opposite sign.

Condition of Concurrency

Condition of concurrency for three given lines $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ and $a_3x + b_3y + c_3 = 0$ is

$$a_3 \; (b_1 c_2 - b_2 c_1) + \, b_3 (c_1 a_2 - a_1 c_2) + \, c_3 (a_1 b_2 - a_2 b_1) = 0$$

or

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

Distance of a Point from a Line

The distance of a point from a line is the **length of perpendicular** drawn from the point to the line. Let L: Ax + By + C = 0 be a line, whose perpendicular distance from the point $P(x_1, y_1)$ is d. Then,

$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$$

Note The distance of origin from the line Ax + By + C = 0 is

$$d = \frac{|C|}{\sqrt{A^2 + B^2}}$$

Distance between Two parallel Lines

The distance between two parallel lines

$$y = m x + c_1 \qquad \dots (i)$$

$$y = m x + c_2 \qquad \dots (ii)$$

is given by

$$d = \frac{|c_1 - c_2|}{\sqrt{1 + m^2}}$$

Point of Intersection of Two Lines

Let equation of lines be $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, then their point of intersection is $\left(\frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}, \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}\right)$.

Line Parallel and Perpendicular to a Given Line

- (i) The equation of a line parallel to a given line ax + by + c = 0 is $ax + by + \lambda = 0$, where λ is a constant.
- (ii) The equation of a line perpendicular to a given line ax + by + c = 0 is $bx ay + \lambda = 0$, where λ is a constant.

Image of a Point with Respect to a Line

Let the image of a point (x_1, y_1) with respect to ax + by + c = 0 be (x_2, y_2) , then

$$\frac{x_2 - x_1}{a} = \frac{y_2 - y_1}{b} = \frac{-2(ax_1 + by_1 + c)}{a^2 + b^2}$$

- (i) The image of the point $P(x_1, y_1)$ with respect to X-axis is $Q(x_1, -y_1)$.
- (ii) The image of the point $P(x_1, y_1)$ with respect to Y-axis is $Q(-x_1, y_1)$.
- (iii) The image of the point $P(x_1, y_1)$ with respect to mirror y = x is $Q(y_1, x_1)$.
- (iv) The image of the point $P(x_1, y_1)$ with respect to the line mirror $y = x \tan \theta$ is

$$x = x_1 \cos 2\theta + y_1 \sin 2\theta$$
$$y = x_1 \sin 2\theta - y_1 \cos 2\theta$$

(v) The image of the point $P(x_1, y_1)$ with respect to the origin is the point $(-x_1, -y_1)$.

Equation of the Bisectors

The equation of the bisectors of the angle between the lines

$$\begin{aligned} a_1x + b_1y + c_1 &= 0\\ a_2x + b_2y + c_2 &= 0\\ \text{are given by} \quad \frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} &= \pm \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}. \end{aligned}$$

To find acute and obtuse angle bisectors, first make constant terms in the equations of given straight lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ positive, if it is required, then find $a_1a_2 + b_1b_2$.

- (i) If $a_1a_2 + b_1b_2 > 0$, then we take positive sign for obtuse and negative sign for acute.
- (ii) If $a_1a_2 + b_1b_2 < 0$, then we take negative sign for obtuse and positive sign for acute.

Pair of Lines

General equation of second degree

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0.$$

It will represent a pair of straight line iff

$$abc + 2fgh - af^{2} - bg^{2} - ch^{2} = 0$$

$$\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$$

or

Homogeneous Equation of Second Degree

An equation in two variables x and y (whose RHS is zero) is said to be a homogeneous equation of the second degree, if the sum of the indices of x and y in each term is equal to 2. The general form of homogeneous equation of the second degree in x and y is $ax^2 + 2hxy + by^2 = 0$.

Note Any homogeneous equation of second degree in *x* and *y* represents two straight lines through the origin.

Important Properties

- (i) Let $ax^2 + 2hxy + by^2 = 0$ be an equation of pair of straight lines. Then,
 - (a) Slope of first line, $m_1 = \frac{-h + \sqrt{h^2 ab}}{b}$

and slope of the second line,
$$m_2 = \frac{-h - \sqrt{h^2 - ab}}{b}$$

$$\therefore m_1 + m_2 = -\frac{2h}{b} = -\frac{\text{Coefficient of } xy}{\text{Coefficient of } y^2}$$

and
$$m_1 m_2 =$$

$$m_1 m_2 = \frac{a}{b} = \frac{\text{Coefficient of } x^2}{\text{Coefficient of } y^2}$$

Here, m_1 and m_2 are

- (1) real and distinct, if $h^2 > ab$. (2) coincident, if $h^2 = ab$.
- (3) imaginary, if $h^2 < ab$.
- (b) Angle between the pair of lines is given by

$$\tan \theta = \frac{2\sqrt{h^2 - ab}}{|a + b|}$$

- (1) If lines are coincident, then $h^2 = ab$.
- (2) If lines are perpendicular, then a + b = 0.

Note The angle between the lines represented by

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

= angle between the lines represented by
$$ax^2 + 2hxy + by^2 = 0$$

(c) The joint equation of bisector of the angles between the lines represented by the equation $ax^2 + 2hxy + by^2 = 0$ is

$$\frac{x^2 - y^2}{a - b} = \frac{xy}{h} \implies hx^2 - (a - b)xy - hy^2 = 0.$$

- (d) The equation of the pair of lines through the origin and perpendicular to the pair of lines given by $ax^2 + 2hxy + by^2 = 0$ is $bx^2 2hxy + ay^2 = 0$.
- (ii) If the equation of a pair of straight lines is $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, then the point of intersection is given by $\left(\frac{hf bg}{ab h^2}, \frac{gh af}{ab h^2}\right)$.
- (iii) The general equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ will represent two parallel lines, if $g^2 ac > 0$ and $\frac{a}{h} = \frac{h}{b} = \frac{g}{f}$ and the distance between them is $2\sqrt{\frac{g^2 ac}{a(a+b)}}$ or $2\sqrt{\frac{f^2 bc}{b(a+b)}}$.
- (iv) The equation of the bisectors of the angles between the lines represented by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ are given by

$$\frac{(x-x_1)^2-(y-y_1)^2}{a-b}=\frac{(x-x_1)(y-y_1)}{h},$$

where, (x_1, y_1) is the point of intersection of the lines represented by the given equation.

(v) Equation of the straight lines joining the origin to the points of intersection of a second degree curve $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ and a straight line lx + my + n = 0 is

$$ax^{2} + 2hxy + by^{2} + 2gx\left(\frac{lx + my}{-n}\right) + 2fy\left(\frac{lx + my}{-n}\right) + c\left(\frac{lx + my}{-n}\right)^{2} = 0.$$

Important Points to be Remembered

- (i) A triangle is an isosceles, if any two of its median are equal.
- (ii) In an equilateral triangle, orthocentre, centroid, circumcentre, incentre coincide.
- (iii) The circumcentre of a right angled triangle is the mid-point of the hypotenuse.
- (iv) Orthocentre, centroid, circumcentre of a triangle are collinear. Centroid divides the line joining orthocentre and circumcentre in the ratio 2 : 1.
- (v) If D, E and F are the mid-point of the sides BC, CA and AB of $\triangle ABC$, then the centroid of $\triangle ABC$ = centroid of $\triangle DEF$.
- (vi) Orthocentre of the right angled $\triangle ABC$, right angled at A is A.
- (vii) The distance of a point (x_1, y_1) from the ax + by + c = 0 is

$$d = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|.$$

(viii) Distance between two parallel lines $ax + by + c_1 = 0$ and $ax + by + c_2 = 0$ is given by

$$d = \left| \frac{c_2 - c_1}{\sqrt{a^2 + b^2}} \right|.$$

(ix) The area of the triangle formed by the lines $y = m_1x + c_1$, $y = m_2x + c_2$ and $y = m_3x + c_3$ is

$$\Delta = \frac{1}{2} \left| \sum \frac{(c_1 - c_2)^2}{m_1 - m_2} \right|.$$

(x) Three given points A, B, C are collinear i.e. lie on the same straight line, if any of the three points (say B) lie on the straight line joining the other two points.

$$\Rightarrow$$
 $AB + BC = AC$

- (xi) Area of the triangle formed by the line ax + by + c = 0 with the coordinate axes is $\Delta = \frac{c^2}{2|ab|}$.
- (xii) The foot of the perpendicular (h,k) from (x_1, y_1) to the line ax + by + c = 0 is given by $\frac{h x_1}{a} = \frac{k y_1}{b} = -\frac{(ax_1 + by_1 + c)}{a^2 + b^2}.$
- (xiii) Area of rhombus formed by $ax \pm by \pm c = 0$ is $\left| \frac{2c^2}{ab} \right|$.
- (xiv) Area of the parallelogram formed by the lines

$$a_1x + b_1y + c_1 = 0$$
, $a_2x + b_2y + c_2 = 0$, $a_1x + b_1y + d_1 = 0$

and
$$a_2x + b_2y + d_2 = 0$$
 is

$$\left| \frac{(d_1 - c_1)(d_2 - c_2)}{a_1 b_2 - a_2 b_1} \right|.$$

(xv) (a) Foot of the perpendicular from (a, b) on x - y = 0 is

$$\left(\frac{a+b}{2}, \frac{a+b}{2}\right)$$
.

(b) Foot of the perpendicular from (a,b) on x + y = 0 is

$$\left(\frac{a-b}{2},\frac{a-b}{2}\right)$$
.

- (xvi) The image of the line $a_1x + b_1y + c_1 = 0$ about the line ax + by + c = 0 is $2(aa_1 + bb_1)(ax + by + c) = (a^2 + b^2)(a_1x + b_1y + c_1)$.
- (xvii) Given two vertices (x_1, y_1) and (x_2, y_2) of an equilateral $\triangle ABC$, then its third vertex is given by.

$$\left[\frac{x_1 + x_2 \pm \sqrt{3}(y_1 - y_2)}{2}, \frac{y_1 + y_2 \mp \sqrt{3}(x_1 - x_2)}{2}\right]$$

(xviii) The equation of the straight line which passes through a given point (x_1, y_1) and makes an angle α with the given straight line y = mx + c are

$$(y-y_1) = \frac{m \pm \tan \alpha}{1 \mp m \tan \alpha} (x - x_1)$$

- (xix) The equation of the family of lines passing through the intersection of the lines $a_1x+b_1y+c_1=0$ and $a_2x+b_2y+c_2=0$ is $(a_1x+b_1y+c_1)+\lambda(a_2x+b_2y+c_2)=0$ where, λ is any real number.
- (xx) Line ax + by + c = 0 divides the line joining the points (x_1, y_1) and (x_2, y_2) in the ratio λ : 1, then $\lambda = -\left(\frac{ax_1 + by_1 + c}{ax_2 + by_2 + c}\right)$.

If λ is positive it divides internally and if λ is negative, then it divides externally.

- (xxi) Area of a polygon of *n*-sides with vertices $A_1(x_1, y_1)$, $A_2(x_2, y_2)$,..., $A_n(x_n, y_n)$ $= \frac{1}{2} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} + \begin{bmatrix} x_2 & y_2 \\ x_3 & y_3 \end{bmatrix} + \dots + \begin{bmatrix} x_n & y_n \\ x_1 & y_1 \end{bmatrix}$
- (xxii) Equation of the pair of lines through (α, β) and perpendicular to the pair of lines $ax^2 + 2hxy + by^2 = 0$ is $b(x \alpha)^2 2h(x \alpha)(y \beta) + a(y \beta)^2 = 0$.