DPP - Daily Practice Problems ## Chapter-wise Sheets | Date : | Start Time : | End Time : | | |--------|--------------|------------|--| ## CHEMISTRY (CC10) **SYLLABUS:** The s-Block Elements Max. Marks: 120 Marking Scheme: (+ 4) for correct & (-1) for incorrect Time: 60 min. INSTRUCTIONS: This Daily Practice Problem Sheet contains 30 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page. - 1. Alkali metals are generally extracted by - (a) reduction methods - (b) double decomposition methods - (c) displacement methods - (d) electrolytic methods - **2.** Which of the following represents a correct sequence of reducing power of the following elements? - (a) Li > Cs > Rb - (b) Rb > Cs > Li - (c) Cs > Li > Rb - (d) Li > Rb > Cs - 3. Strongest bond is in between - (a) CsF - (b) NaCl - (c) Both (a) and (b) - (d) None of above - **4.** A metal salt solution forms a yellow precipitate with potassium chromate in acetic acid, a white precipitate with dil H₂SO₄, but gives no precipitate with NaCl. The metal salt solution will consist of - (a) PbCO₂ - (b) BaCO₃ - (c) MgCO₃ - (d) CaCO₃ RESPONSE GRID | 1. (a)(b)(c)(d) 2 | |-------------------| |-------------------| | 3. | abc | (d) | |----|------------|------------| | | | | | 4. ⓐ ⓑ ⓒ ⓓ | |-------------------| |-------------------| Space for Rough Work | c-3 | 8 | | ———— DPP/ CC10 | | | |---------------------------------|--|-----|---|--|--| | 5.6. | Which of the following has lowest thermal stability? (a) Li_2CO_3 (b) Na_2CO_3 (c) K_2CO_3 (d) Rb_2CO_3 The first (IE ₁) and second (IE ₂) ionisation energies (kJ/mol) of a few elements designated by Roman numerals are given below. Which of these would be an alkali metal? $\text{IE}_1 \qquad \text{IE}_2$ | 11. | correct? (a) It is diamagnetic in nature (b) It is derivative of H ₂ O ₂ (c) Na ₂ O ₂ oxidises Cr ³⁺ to CrO ₄ ²⁻ in acid medium. (d) It is the super oxide of sodium | | | | 7. | (a) I 2372 5251 (b) II 520 7300 (c) III 900 1760 (d) IV 16803 380 The solubilities of carbonates decrease down the magnesium group due to a decrease in | | that gives the same gaseous product is (a) K and KO ₂ (b) Na and Na ₂ O ₂ (c) Ca and CaH ₂ (d) Ba and BaO ₂ | | | | 8.
9. | (a) hydration energies of cations (b) inter-ionic attraction (c) entropy of solution formation (d) lattice energies of solids KO₂ (potassium super oxide) is used in oxygen cylinders in space and submarines because it (a) absorbs CO₂ and increases O₂ content (b) eliminates moisture (c) absorbs CO₂ (d) produces ozone. Which one of the following salts does not impart colour to the flame? | | Which is not correctly matched? (1) Basic strength Cs₂O < Rb₂O < K₂O < Na₂O < Li₂O or oxides (2) Stability of Na₂O₂ < K₂O₂ < Rb₂O₂ < Cs₂O₂ peroxides (3) Stability of LiHCO₃ < NaHCO₃ < KHCO₃ bicarbonate < RbHCO₃ < CsHCO₃ (4) Melting point NaF < NaCl < NaBr < NaI (a) 1 and 4 (b) 1 and 3 (c) 1 and 2 (d) 2 and 3 | | | | 10. | (a) KI (b) LiCl (c) CaCl ₂ (d) MgCl ₂ Amongst LiCl, RbCl, BeCl ₂ and MgCl ₂ the compounds with the greatest and least ionic character respectively are: (a) LiCl and RbCl (b) MgCl ₂ and BeCl ₂ (c) RbCl and BeCl ₂ (d) RbCl and MgCl ₂ | 14. | 14. If NaOH is added to an aqueous solution of Zn²⁺ ions, white precipitate appears and on adding excess NaOH, the precipitate dissolves. In this solution zinc exists in the: (a) both in cationic and anionic parts (b) there is no zinc left in the solution (c) cationic part (d) anionic part. | | | | | RESPONSE 5. a b c d 6. a b c d 10. a b c d 11. a b c d | | abcd 8. abcd 9. abcd abcd 13. abcd 14. abcd | | | - 15. The compound A on heating gives a colourless gas and a residue that is dissolved in water to obtain B. Excess of CO₂ is bubbled through aqueous solution of B, C is formed which is recovered in the solid form. Solid C on gentle heating gives back A. The compound is - (a) CaSO₄.2H₂O - (b) CaCO₃ - (c) Na₂CO₃ - (d) K_2CO_3 - 16. In Castner-Kellner cell for production of sodium hydroxide: - (a) Brine is electrolyzed with Pt electrodes - (b) Brine is electrolyzed using graphite electrodes - (c) Molten sodium chloride is electrolysed - (d) Sodium amalgam is formed at mercury cathode - 17. A metal X on heating in nitrogen gas gives Y. Y on treatment with H₂O gives a colourless gas which when passed through CuSO₄ solution gives a blue colour. Y is - (a) $Mg(NO_3)_2$ - (b) Mg_3N_2 - (c) NH₂ - (d) MgO - **18.** The metals A and B form oxide but B also forms nitride when both burn in air. The A and B are - (a) Cs, K - (b) Mg, Ca - (c) Li, Na - (d) K, Mg - **19.** The melting point of lithium (181°C) is just double the melting point of sodium (98°C) because - (a) down the group, the hydration energy decreases - (b) down the group, the ionization energy decreases - (c) down the group the cohesive energy decreases - (d) None of these - 20. Which of the following are arranged in increasing order of solubilities? - (a) CaCO₃ < KHCO₃ < NaHCO₃ - (b) NaHCO₃ < KHCO₃ < CaCO₃ - (c) KHCO₃ < NaHCO₃ < CaCO₃ - (d) CaCO₃ < NaHCO₃ < KHCO₃ - 21. For a good quality cement what should be the ratio of following: - I. Silica to alumina - II. CaO to the total of oxides of SiO₂, Al₂O₃ and Fe₂O₃ - (a) I = 2.5 to 4 - II = Greater than 2 - (b) I = Nearly 4 - II = Less than 2 - (c) I = 2.5 - II = Closer to 2 - (d) I = 2.5 to 4 - II = Closer to 2 - 22. Which one of the following does not react with water even under red hot condition? - (a) Na - (b) Be - (c) Ca - (d) K - 23. Which of the following are found in biological fluids Na $^+$, Mg $^{2+}$, Ca $^{2+}$, K $^+$, Sr $^{2+}$, Li $^+$ and Ba $^{2+}$ - (a) Mg^{2+} , Ca^{2+} , and Sr^{2+} - (b) Na² +and K⁺ - (c) Na⁺, K⁺, Mg²⁺and Ca²⁺ - (d) Sr⁺, Li and Ba²⁺ - 24. Which of the following statements is not correct for alkali metals? - (a) Alkali metals are the most electropositive metals. - (b) Alkali metals exist in free state in nature. - (c) These metals have the largest size in a particular period of the periodic table. - (d) Both (b) and (c) RESPONSE GRID 15. a b c d 20. a b c d 16. a b c d 21. a b c d 17. (a) (b) (c) (d) 22. (a) (b) (c) (d) 18. a b c d 23. a b c d 19. ⓐ b © d 24. ⓐ b © d c-40 DPP/CC10 - 25. Which one of the following alkaline earth metal sulphates has its hydration enthalpy greater than its lattice enthalpy? - (a) BaSO₄ - (b) SrSO₄ - (c) CaSO₄ - (d) BeSO₄ - 26. The metallic sodium disolves in liquid ammonia to form a deep blue coloured solution. The deep blue colour is due to formation of: - (a) solvated electron, $e(NH_3)_x^-$ - (b) solvated atomic sodium, Na(NH₃)_v - (c) $(Na^+ + Na^-)$ - (d) $NaNH_2 + H_2$ - 27. A firework gives out crimson coloured light. It contains a salt of - (a) Ca - (b) Na - (c) Sr - (d) Ba - 28. Magnesium wire burns in the atmosphere of CO₂ because - (a) Magnesium acts as an oxidising agent - (b) Magnesium has 2 electrons in the outermost orbit. - (c) Magnesium acts as a reducing agent and removes oxygen from CO, - (d) None of these - 29. The first ionisation potential of Na is 5.1 eV. The value of electron gain enthalpy of Na+ will be - (a) $-2.55 \, \text{eV}$ - (b) -5.1 eV - (c) -10.2 eV - (d) $+2.55 \, \text{eV}$ - 30. Stability of the species Li_2 , Li_2^- and Li_2^+ increases in the order of: - $\mbox{(a)} \quad \ \mbox{Li}_2 < \mbox{Li}_2^+ < \mbox{Li}_2^- \qquad \qquad \mbox{(b)} \quad \ \mbox{Li}_2^- < \mbox{Li}_2^+ < \mbox{Li}_2$ - $\label{eq:continuous} \text{(c)} \quad \text{Li}_2 < \text{Li}_2^- < \text{Li}_2^+ \qquad \qquad \text{(d)} \quad \text{Li}_2^- < \text{Li}_2 < \text{Li}_2^+$ RESPONSE GRID - 25. (a) (b) (c) (d) 30. a b c d - 26. (a) (b) (c) (d) - 27. (a) (b) (c) (d) 28. (a) (b) (c) (d) - 29. (a)(b)(c)(d) | DAILY PRACTICE PROBLEM DPP CHAPTERWISE 10 - CHEMISTRY | | | | | | |---|---------------------|-------------|-----|--|--| | Total Questions | 30 | Total Marks | 120 | | | | Attempted Correct | | | | | | | Incorrect Net Score | | | | | | | Cut-off Score | 37 Qualifying Score | | 56 | | | | Success Gap = Net Score - Qualifying Score | | | | | | | Net Score = (Correct × 4) – (Incorrect × 1) | | | | | | Space for Rough Work